Submitted:
01 August 2024
Posted:
02 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Exact Solutions of the (1+1)-Dimensional FKdVSKR Equation
2.1. Soliton Solutions
2.1.1. One-Soliton Solution
2.1.2. Two-Soliton Solution
2.1.3. Three-Soliton Solution
2.1.4. Generalized Kaup-Kupershmidt Solitary Waves
2.2. Soliton-Cnoidal Interaction Wave Solution
2.3. Lump-Periodic Interaction Wave Solution
3. New Solutions of the (2+1)-Dimensional FKdVSKR Equation by CREM
3.1. Explanation of CREM
3.2. Exact Solutions by the CREM
4. Interaction Solutions of the (2+1)-dimensional FKdVSKR equation by FSGM
4.1. Finite Symmetry Group of (14)
4.2. Dark-Soliton-Sine INTERACTION Solution for (2)
4.3. Bright-Soliton-Elliptical-Interaction Solution for (2)
5. Results and Discussion
6. Conclusions
References
- Ma, P.C.; Taghipour, M.; Cattani, C. Option pricing in the illiquid markets under the mixed fractional Brownian motion model. Chaos. Soliton. Fract. 2024, 182, 114806. [Google Scholar] [CrossRef]
- Chen, Q.L.; Dipesh; Kumar, P.; Baskonus, H.M. Modeling and analysis of demand-supply dynamics with a collectability factor using delay differential equations in economic growth via the Caputo operator. AIMS Math. 2024, 9, 7471–7491. [Google Scholar] [CrossRef]
- Kavya, K.N.; Veeresha, P.; Baskonus, H.M.; Alsulami, M. Mathematical modeling to investigate the influence of vaccination and booster doses on the spread of Omicron. Commun. Nonlinear. Sci. Numer. Simulat. 2024, 130, 107755. [Google Scholar] [CrossRef]
- Cattani, C.; Baskonus, H.M.; Ciancio, A. Introduction to the special issue on recent developments on computational biology-i. CMES Comput. Model. Eng. Sci. 2024, 139, 2261–2264. [Google Scholar] [CrossRef]
- Wang, G.W.; Liu, X.Q.; Zhang, Y.Y. Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear. Sci. Numer. Simulat. 2013, 18, 2321–2326. [Google Scholar] [CrossRef]
- Li, Z.B.; He, J.H. Fractional complex transform for fractional differential equations. Math. Comput. Appl. 2016, 15, 970–973. [Google Scholar] [CrossRef]
- Saad, K.M.; Baleanu, D.; Atangana, A. New fractional derivatives applied to the Korteweg-deVries and Korteweg-de Vries-Burger’s equations. Comp. Appl. Math. 2018, 37, 5203–5216. [Google Scholar] [CrossRef]
- Yang, X.J.; Machado, J.T.; Baleanu, D.; Cattani, C. A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves. Chaos. Interdiscip. J. Nonlinear Sci. 2016, 26, 084312. [Google Scholar] [CrossRef]
- He, J.H. The simpler, the better: analytical methods for nonlinear oscillators and fractional oscillators. J. Low Freq. Noise V. A. 2019, 38, 1252–1260. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers: New York, NY, USA, 1993.
- Jumarie, G. Table of some basic fractional calculus formula derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Lett. 2009, 22, 378–385. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press: Cambridge, MA, USA, 1998.
- Jumarie, G. Modified Riemann-Liouville derivative and fractional Taylor series of non differentiable functions further results. Comput. Math. Appl. 2006, 51, 1367–1376. [Google Scholar] [CrossRef]
- Baleanu, D.; Atangana, A. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar]
- Yang, X.J.; Aty, M.A.; Cattani, C. New general fractional-order derivative with rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Therm. Sci. 2019, 23, 1677–1681. [Google Scholar] [CrossRef]
- Gou, C.H.; Cai, R.X.; Zhang, N. Explicit analytical solutions of transport equations considering non-Fourier and non-Fick effects in porous media. Prog. Nat. Sci. 2005, 15, 545–549. [Google Scholar]
- Zhang, L.H.; Shen, B.; Jiao, H.B.; Wang, G.W.; Wang, Z.L. Exact solutions for the KMM system in (2+1)-dimensions and its fractional form with Beta-derivative. Fractal. Fract. 2022, 6, 520. [Google Scholar] [CrossRef]
- Zhang, L.H.; Wang, Z.L.; Shen, B. Fractional complex transforms, reduced equations and exact solutions of the fractional Kraenkel-Manna-Merle system. Fractals 2022, 30, 22501791. [Google Scholar] [CrossRef]
- Baleanu, D.; Inc, M.; Yusuf, A.; Aliyu, A.I. Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 222–234. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, X.J.; Geng, L.L.; Fan, Y.R. Group analysis of the time fractional (3 + 1)-dimensional KdV-type equation. Fractals 2021, 29, 2150169. [Google Scholar] [CrossRef]
- Wang, G.W.; Kara, A.H.; Fakhar, K. Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dyn. 2015, 82, 281–287. [Google Scholar] [CrossRef]
- Inc, M.; Yusuf, A.; Aliyu, A.I.; Baleanu, D. Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis. Physica A. 2018, 493, 94–106. [Google Scholar] [CrossRef]
- Sahadevan, R.; Bakkyaraj, T. Invariant analysis of time fractional generalized burgers and Korteweg-de vries equations. J. Math. Anal. Appl. 2012, 393, 341–347. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A. 2011, 375, 1069–1073. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. Improved fractional sub-equation method for (3+1) -dimensional generalized fractional KdV-Zakharov-Kuznetsov equations. Comput. Math. Appl. 2015, 70, 158–166. [Google Scholar] [CrossRef]
- Murad, M.A.S.; Ismael, H.F.; Hamasalh, F.K.; Shah, N.A.; Eldin, S.M. Optical soliton solutions for time-fractional Ginzburg-Landau equation by a modified sub-equation method. Results Phys. 2023, 53, 106950. [Google Scholar] [CrossRef]
- Zheng, B. G′ / G-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 2012, 58, 623–630. [Google Scholar] [CrossRef]
- Zulfiqar, A.; Ahmad, J.; Ul-Hassan, Q.M. Analysis of some new wave solutions of fractional order generalized Pochhammer-Chree equation using exp-function method. Opt. Quant. Electron. 2022, 54, 1–21. [Google Scholar] [CrossRef]
- He, J.H.; Elagan, S.K.; Li, Z.B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A. 2012, 376, 257–259. [Google Scholar] [CrossRef]
- Ain, Q.T.; He, J.H.; Anjum, N.; Ali, M. The fractional complex transform: a novel approach to the time-fractional Schrodinger equation. Fractals 2020, 28, 2050141. [Google Scholar] [CrossRef]
- Naveed, A.; Ain, Q.T. Application of He’s fractional derivative and fractional complex transform for time fractional Camassa-Holm equation. Therm. Sci. 2020, 24, 3023–3030. [Google Scholar]
- Wang, X.B.; Tian, S.F.; Qin, C.Y.; Zhang, T.T. Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation. EPL-Europhys. Lett. 2016, 114, 20003. [Google Scholar] [CrossRef]
- Hirota, R. Exact Solution of the Korteweg—de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 1971, 27, 1192. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory. Cambridge University Press: New York, NY, USA, 2004.
- Lou, S.Y.; Ma, H.C. Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys. A: Math. Gen. 2005, 38, 129–137. [Google Scholar] [CrossRef]
- Zhang, L.H.; Liu, X.Q.; Bai, C.L. Symmetry groups and new exact solutions to (2+1)-dimensional variable coefficient canonical generalized KP equation. Commun. Theor. Phys. 2007, 48, 405–410. [Google Scholar]
- Lou, S.Y. Consistent Riccati expansion for integrable systems. Stud. Appl. Math. 2015, 134, 372–402. [Google Scholar] [CrossRef]
- Ren, B.; Lin, J.; Lou, Z.M. Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation. Appl. Math. Lett. 2020, 105, 106326. [Google Scholar] [CrossRef]
- Wang, K.J.; Liu, J.H.; Si, J.; Shi, F.; Wang, G.D. N-Soliton, breather, lump solutions and diverse travelling wave solutions of the fractional (2 + 1)-dimensional Boussinesq equation. Fractals 2023, 31, 23500238. [Google Scholar]
- Biswas, S.; Ghosh, U.; Raut, S. Construction of fractional Granular model and bright, dark, lump, breather types soliton solutions using Hirota bilinear method. Chaos. Soliton. Fract. 2023, 172, 13520. [Google Scholar] [CrossRef]
- Younas, U.; Sulaiman, T.A.; Ismael, H.F.; Shah, N.A.; Eldin, S.M. On the lump interaction phenomena to the conformable fractional (2+1)-dimensional KdV equation. Results Phys. 2023, 52, 106863. [Google Scholar] [CrossRef]
- Jaradat, H.M.; Shara, S.A.; Jaradat, M.M.M.; Mustafa, Z.; Alsayyed, O.; Alquran, M.; Abohassan, K.M.; Momani, S. New solitary wave and multiple soliton solutions for the time-space coupled fractional mKdV system with time-dependent coefficients. J. Comput. Theor. Nanos. 2016, 13, 9082–9089. [Google Scholar] [CrossRef]
- Xiong, N.; Yu, Y.X.; Li, B. Soliton molecules and full symmetry groups to the KdV -Sawada-Kotera-Ramani equation. Adv. Math. Phys. 2021, 1, 5534996. [Google Scholar] [CrossRef]
- Ma, P.L.; Tian, S.F.; Zhang, T.T.; Zhang, X.Y. On Lie symmetries, exact solutions and integrability to the KdV -Sawada-Kotera-Ramani equation. Eur. Phys. J. Plus. 2016, 131, 98. [Google Scholar] [CrossRef]
- Zhang, L.J.; Chaudry, M.K. Exact solitary wave and quasi-periodic wave solutions of the KdV-Sawada-Kotera-Ramani equation. Adv. Differ. Equ. 2015, 195, 13662. [Google Scholar] [CrossRef]
- Burde, G.I. Generalized Kaup-Kupershmidt solitons and other solitary wave solutions of the higher -order KdV equations. J. Phys. A: Math. Gen. 2010, 43, 085208. [Google Scholar] [CrossRef]
- Osman, M.S. Analytical study of rational and double-soliton rational solutions governed by the KdV-Sawada-Kotera-Ramani equation with variable coefficients. Nonlinear Dyn. 2017, 89, 2283–2289. [Google Scholar] [CrossRef]
- Cheng, W.G.; Xu, T.Z. Consistent Riccati expansion solvable classification and soliton-cnoidal wave interaction solutions for an extended Korteweg-de Vries equation. Chin. J. Phys. 2018, 56, 2753–2759. [Google Scholar] [CrossRef]
- Wang, H.; Xia, T.C. Bell polynomial approach to an extended Korteweg-de Vries equation. Math. Method Appl. Sci. 2014, 37, 1476–1487. [Google Scholar] [CrossRef]
- Xia, Y.R.; Yao, R.X.; Xin, X.P.; Li, Y. Trajectory equation of a lump before and after collision with other waves for (2+1)-dimensional Sawada-Kotera equation. Appl. Math. Lett. 2023, 135, 108408. [Google Scholar] [CrossRef]
- Zhu, C.; Long, C.X.; Zhou, Y.T.; Wei, P.F.; Ren, B.; Wang, W.L. Dynamics of multi-solitons, multi-lumps and hybrid solutions in (2+1)-dimensional korteweg-de vries-Sawada-Kotera-Ramani equation. Results Phys. 2022, 34, 105248. [Google Scholar] [CrossRef]
- Wei, P.F.; Long, C.X.; Zhu, C.; Zhou, Y.T.; Yu, H.Z.; Ren, B. Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation. Chaos Soliton Fract. 2022, 158, 112062. [Google Scholar] [CrossRef]
- Ma, H.C.; Deng, A.P.; Gao, Y.D. Novel y-type and hybrid solutions for the (2+1) -dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation. Nonlinear Dyn. 2023, 111, 4645–4656. [Google Scholar] [CrossRef]
- Li, L.X.; Dai, Z.D.; Cheng, B.T.; Li, R.B. Nonlinear superposition between lump soliton and other nonlinear localized waves for the (2+1)-dimensional Korteweg-deVries-Sawada-Kotera-Ramani equation. Results Phys. 2023, 49, 106516. [Google Scholar] [CrossRef]
- Chen, W.X.; Tang, L.P.; Tian, L.X. New interaction solutions of the KdV-Sawada-Kotera-Ramani equation in various dimensions. Phys. Scripta. 2023, 98, 055217. [Google Scholar] [CrossRef]
- Ren, B.; Lin, J.; Wang, W.L. Painlevé analysis, infinite dimensional symmetry group and symmetry reductions for the (2+1)-dimensional Korteweg-de Vries-Sawada-Ramani equation. Commun. Theor. Phys. 2023, 75, 085006. [Google Scholar] [CrossRef]
- Chen, H.T.; Zhang, H.Q. New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation. Appl. Math. Comput. 2004, 157, 765–769. [Google Scholar]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).