Submitted:
31 July 2024
Posted:
01 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2.1. A Circular Economy Model for the Development of Health Promotional Products
2.2. The Concept of Herbal Waste Recycling and Green Chemistry in Circular Models
2.3. Types of Secondary Herbal Raw Materials
2.4. The Presence of Beneficial Antioxidants and Phenolics in Secondary Materials
2.5. Alternative Herbal Secondary Materials for the Development of Health-Friendly Products
2.6. Bioactivity and Application of extracted Health-Friendly Compounds
2.7. The Current State of the Art in the Recycling of Health-Friendly Compounds
3. Conclusions
4. Future Directions
Funding
Conflicts of Interest
References
- Kaylor A. 7 Ways to Increase Pharmaceutical Sustainability. Enhancing pharmaceutical sustainability safeguards the planet’s health while ensuring a vital global supply of medications. Available online: URL https://pharmanewsintel.com/features/7-ways-to-increase-pharmaceutical-sustainability (accessed on 29 07 2024).
- Donner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; De Vries, H. Critical success and risk factors for circular business models valorising agricultural waste and by-products. Resour. Conserv. Recycl. 2021, 165, 105236. [CrossRef]
- Liu, H.; Qin, S.; Sirohi, R.; Ahluwalia, V.; Zhou, Y.; Sindhu, R.; Binod, P.; Singhnia, R.R.; Patel, A.K.; Juneja, A.; et al. Sustainable blueberry waste recycling towards biorefinery strategy and circular bioeconomy: A review. Bioresour. Technol. 2021, 332, 125181. [CrossRef]
- Roy, S.; Sarkar, T.; Upadhye, V.J.; Chakraborty, R. Comprehensive Review on Fruit Seeds: Nutritional, Phytochemical, Nanotechnology, Toxicity, Food Biochemistry, and Biotechnology Perspective. Appl. Biochem. Biotechnol. 2024, 196, 4472–4643. [CrossRef]
- Kumoro, A.C.; Alhanif, M.; Wardhani, D.H. A Critical Review on Tropical Fruits Seeds as Prospective Sources of Nutritional and Bioactive Compounds for Functional Foods Development: A Case of Indonesian Exotic Fruits. Int. J. Food Sci. 2020, 2020, 4051475. [CrossRef]
- Mohan, S.V.; Nikhil, G.; Chiranjeevi, P.; Reddy, C.N.; Rohit, M.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2016, 215, 2–12. [CrossRef]
- Mentink, B. A. S. Circular business model innovation: a process framework and a tool for business model innovation in a circular economy. Master Thesis, Delft University of Technology & Leiden University, The Netherlands, 2014.
- Bocken, N. M.; De Pauw, I., Bakker, C.; Van Der Grinten, B. Product design and business model strategies for a circular economy. J. Indus. Prod. Eng., 2016, 33 (5), 308-20.
- Vermunt, D.; Negro, S.; Verweij, P.; Kuppens, D.; Hekkert, M. Exploring barriers to implementing different circular business models. J. Clean. Prod. 2019, 222, 891–902. [CrossRef]
- Mak, T.M.; Xiong, X.; Tsang, D.C.; Yu, I.K.; Poon, C.S. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresour. Technol. 2020, 297, 122497. [CrossRef]
- European Commission. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Official Journal of the European Union, 2008, 312, 3-30.
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [CrossRef]
- Kumar, H.; Kimta, N.; Guleria, S.; Cimler, R.; Sethi, N.; Dhanjal, D.S.; Singh, R.; Duggal, S.; Verma, R.; Prerna, P.; et al. Valorization of non-edible fruit seeds into valuable products: A sustainable approach towards circular bioeconomy. Sci. Total. Environ. 2024, 922, 171142. [CrossRef]
- Pathak, A.; Gupta, A. P.; Pandey, P. Herbal Medicine and Sustainable Development Challenges and Opportunities. In: Izah, S.C., Ogwu, M.C., Akram, M. (eds) Herbal Medicine Phytochemistry. Reference Series in Phytochemistry. Springer, Switzerland, 2024, pp: 1- 26.
- Ubando, A.T.; Felix, C.B.; Chen, W.-H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 2020, 299, 122585. [CrossRef]
- European Commission. Closing the loop – An EU action plan for the Circular Economy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614 (accessed on 6 March 2023).
- Hao, H.-T.N.; Karthikeyan, O.P.; Heimann, K. Bio-Refining of Carbohydrate-Rich Food Waste for Biofuels. Energies 2015, 8, 6350–6364. [CrossRef]
- Pawelczyk, A. EU policy and legislation on recycling of organic wastes to agriculture, 2005, In ISAH 2005, Vol. 1, Proceedings of XIIth International Congress in Animal Hygiene, Warsaw, Poland, 4 - 8 September, Warszaw, Poland 2005, Vol. 1, 64-71.
- Alves, E.; Simoes, A.; Domingues, M.R. Fruit seeds and their oils as promising sources of value-added lipids from agro-industrial byproducts: oil content, lipid composition, lipid analysis, biological activity and potential biotechnological applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 1305–1339. [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global food losses and food waste; Publisher: FAO, Italy, Rome, 2011, pp. 4-15.
- Sherwood, J. The significance of biomass in a circular economy. Bioresour. Technol. 2020, 300, 122755. [CrossRef]
- Cashman, S.; Ma, X.(.; Mosley, J.; Garland, J.; Crone, B.; Xue, X. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery. Bioresour. Technol. 2018, 254, 56–66. [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [CrossRef]
- Traversier, M.; Gaslondes, T.; Milesi, S.; Michel, S.; Delannay, E. Polar lipids in cosmetics: recent trends in extraction, separation, analysis and main applications. Phytochem. Rev. 2018, 17, 1179–1210. [CrossRef]
- Circular economy: definition, importance and benefits. Available online: URL https://www.europarl.europa.eu/topics/en/article/20151201STO05603/circular-economy-definition-importance-and-benefits (accessed on 29 07 2024).
- Van Renswoude, K.; Ten Wolde, A.; Joustra, D. J. Circular Business Models—Part 1: An introduction to IMSA’s circular business model scan. IMSA: Amsterdam, The Netherlands, 2015. Available online: URL http://circular-future.eu/wp-content/uploads/2015/08/IMSA-Circular-Business-Models-April-2015-Part-1.pdf (accessed on 29 07 2024).
- Majerska, J.; Michalska, A.; Figiel, A. A review of new directions in managing fruit and vegetable processing by-products. Trends Food Sci. Technol. 2019, 88, 207–219. [CrossRef]
- Campalani, C.; Amadio, E.; Zanini, S.; Dall’acqua, S.; Panozzo, M.; Ferrari, S.; De Nadai, G.; Francescato, S.; Selva, M.; Perosa, A. Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace. J. CO2 Util. 2020, 41, 101259. [CrossRef]
- González-Centeno, M.R.; Knoerzer, K.; Sabarez, H.; Simal, S.; Rosselló, C.; Femenia, A. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) – A response surface approach. Ultrason. Sonochemistry 2014, 21, 2176–2184. [CrossRef]
- Di Donna, L.; Bartella, L.; De Vero, L.; et al. Vinegar production from Citrus bergamia by-products and preservation of bioactive compounds. European Food Research and Technology, 2020, 246, 1981-1990.
- Suri, S.; Singh, A.; Nema, P.K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2022, 2. [CrossRef]
- Citrus. Food and Agricultural Organization of the United Nations. Available online: URL https://www.fao.org/land-water/databases-and-software/crop-information/citrus/en/ (accessed on 29 07 2024).
- Panwar, D.; Saini, A.; Panesar, P.S.; Chopra, H.K. Unraveling the scientific perspectives of citrus by-products utilization: Progress towards circular economy. Trends Food Sci. Technol. 2021, 111, 549–562. [CrossRef]
- Ren, W.; Zhao, S.; Lian, Y.; Yang, Y.; Tian, G.; Zhao, C.; Gao, W.; Zheng, J. Effects of hydrosoluble calcium ions and organic acids on citrus oil emulsions stabilized with citrus pectin. Food Hydrocoll. 2020, 100, 105413. [CrossRef]
- Foti, P.; Ballistreri, G.; Timpanaro, N.; Rapisarda, P.; Romeo, F.V. Prebiotic effects of citrus pectic oligosaccharides. Nat. Prod. Res. 2022, 36, 3173–3176. [CrossRef]
- Míguez, B.; Gómez, B.; Gullón, P.; Gullón, B.; Alonso, J. L. Pectic oligosaccharides and other emerging prebiotics. Probiotics and prebiotics in human nutrition and health, 2016, 15, 301-315.
- Maimaiti, N.; Aili, N.; Khan, M.K.; Tang, Z.; Jiang, G.; Liu, Z. Ethanol shock enhances the recovery of anthocyanin from lowbush blueberry. Chin. J. Chem. Eng. 2020, 28, 3096–3102. [CrossRef]
- Nizamutdinova, I.T.; Kim, Y.M.; Chung, J.I.; Shin, S.C.; Jeong, Y.-K.; Seo, H.G.; Lee, J.H.; Chang, K.C.; Kim, H.J. Anthocyanins from black soybean seed coats stimulate wound healing in fibroblasts and keratinocytes and prevent inflammation in endothelial cells. Food Chem. Toxicol. 2009, 47, 2806–2812. [CrossRef]
- Amini, A.M.; Muzs, K.; Spencer, J.P.; Yaqoob, P. Pelargonidin-3- O -glucoside and its metabolites have modest anti-inflammatory effects in human whole blood cultures. Nutr. Res. 2017, 46, 88–95. [CrossRef]
- Vadivel, V.; Biesalski, H.K. Contribution of phenolic compounds to the antioxidant potential and type II diabetes related enzyme inhibition properties of Pongamia pinnata L. Pierre seeds. Process. Biochem. 2011, 46, 1973–1980. [CrossRef]
- Bickford, P.C.; Gould, T.; Briederick, L.; Chadman, K.; Pollock, A.; Young, D.; Shukitt-Hale, B.; Joseph, J. Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats. Brain Res. 2000, 866, 211–217. [CrossRef]
- Li, D.; Zhang, Y.; Liu, Y.; Sun, R.; Xia, M. Purified Anthocyanin Supplementation Reduces Dyslipidemia, Enhances Antioxidant Capacity, and Prevents Insulin Resistance in Diabetic Patients1–3. J. Nutr. 2015, 145, 742–748. [CrossRef]
- Kamiloglu, S.; Capanoglu, E.; Grootaert, C.; Van Camp, J. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review. Int. J. Mol. Sci. 2015, 16, 21555–21574. [CrossRef]
- Somavat, P.; Kumar, D.; Singh, V. Techno-economic feasibility analysis of blue and purple corn processing for anthocyanin extraction and ethanol production using modified dry grind process. Ind. Crop. Prod. 2018, 115, 78–87. [CrossRef]
- Kurambhatti, C.; Kumar, D.; Rausch, K.D.; Tumbleson, M.E.; Singh, V. Improving technical and economic feasibility of water based anthocyanin recovery from purple corn using staged extraction approach. Ind. Crop. Prod. 2020, 158, 112976. [CrossRef]
- He, B.; Zhang, L.-L.; Yue, X.-Y.; Liang, J.; Jiang, J.; Gao, X.-L.; Yue, P.-X. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry ( Vaccinium ashei ) wine pomace. Food Chem. 2016, 204, 70–76. [CrossRef]
- Cheng, Y.; Wu, T.; Chu, X.; Tang, S.; Cao, W.; Liang, F.; Fang, Y.; Pan, S.; Xu, X. Fermented blueberry pomace with antioxidant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode. LWT 2020, 125, 109260. [CrossRef]
- Algarra, M.; Fernandes, A.; Mateus, N.; de Freitas, V.; da Silva, J.E.; Casado, J. Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. J. Food Compos. Anal. 2014, 33, 71–76. [CrossRef]
- Bridgers, E.N.; Chinn, M.S.; Truong, V.-D. Extraction of anthocyanins from industrial purple-fleshed sweetpotatoes and enzymatic hydrolysis of residues for fermentable sugars. Ind. Crop. Prod. 2010, 32, 613–620. [CrossRef]
- Stoica, F.; Rațu, R.N.; Motrescu, I.; Cara, I.G.; Filip, M.; Țopa, D.; Jităreanu, G. Application of Pomace Powder of Black Carrot as a Natural Food Ingredient in Yoghurt. Foods 2024, 13, 1130. [CrossRef]
- Cerón, I.; Higuita, J.; Cardona, C. Design and analysis of antioxidant compounds from Andes Berry fruits (Rubus glaucus Benth) using an enhanced-fluidity liquid extraction process with CO2 and ethanol. J. Supercrit. Fluids 2012, 62, 96–101. [CrossRef]
- Dávila, J.A.; Rosenberg, M.; Cardona, C.A. A biorefinery for efficient processing and utilization of spent pulp of Colombian Andes Berry (Rubus glaucus Benth.): Experimental, techno-economic and environmental assessment. Bioresour. Technol. 2017, 223, 227–236. [CrossRef]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresour. Technol. 2020, 314, 123771. [CrossRef]
- Qin, S.; Giri, B.S.; Patel, A.K.; Sar, T.; Liu, H.; Chen, H.; Juneja, A.; Kumar, D.; Zhang, Z.; Awasthi, M.K.; et al. Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. Bioresour. Technol. 2021, 321, 124496. [CrossRef]
- Hijosa-Valsero, M.; Paniagua-García, A.I.; Antolinez, R. Biobutanol production from apple pomace: the importance of pretreatment methods on the fermentability of lignocellulosic agro-food wastes. Appl. Microbiol. Biotechnol. 2017, 101, 8041–8052. [CrossRef]
- Hwang, H.; Lee, J.H.; Choi, I.-G.; Choi, J.W. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations. Environ. Technol. 2019, 40, 1657–1667. [CrossRef]
- Vieira, S.; Barros, M.V.; Sydney, A.C.N.; Piekarski, C.M.; de Francisco, A.C.; Vandenberghe, L.P.d.S.; Sydney, E.B. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresour. Technol. 2020, 299, 122635. [CrossRef]
- Zheng, R.; Su, S.; Li, J.; Zhao, Z.; Wei, J.; Fu, X.; Liu, R.H. Recovery of phenolics from the ethanolic extract of sugarcane (Saccharum officinarum L.) baggase and evaluation of the antioxidant and antiproliferative activities. Ind. Crop. Prod. 2017, 107, 360–369. [CrossRef]
- Meerod, K.; Weerawatanakorn, M.; Pansak, W. Effect of Liming Process on Physicochemical Properties and Phytochemical Components of Non-Centrifugal Sugar from Different Sugarcane Cultivars. Agric. Res. 2020, 9, 35–45. [CrossRef]
- Teixeira, F.S.; Vidigal, S.S.M.P.; Pimentel, L.L.; Costa, P.T.; Pintado, M.E.; Rodríguez-Alcalá, L.M. Bioactive Sugarcane Lipids in a Circular Economy Context. Foods 2021, 10, 1125. [CrossRef]
- Scaglia, B.; D’incecco, P.; Squillace, P.; Dell’orto, M.; De Nisi, P.; Pellegrino, L.; Botto, A.; Cavicchi, C.; Adani, F. Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate. J. Clean. Prod. 2020, 243, 118650. [CrossRef]
- Zuknik, M.H.; Nik Norulaini, N.A.; Mohd Omar, A.K. Supercritical carbon dioxide extraction of lycopene: A review. J. Food Eng. 2012, 112, 253–262. [CrossRef]
- Guerra, A.S.; Hoyos, C.G.; Molina-Ramírez, C.; Velásquez-Cock, J.; Vélez, L.; Gañán, P.; Eceiza, A.; Goff, H.D.; Zuluaga, R. Extraction and preservation of lycopene: A review of the advancements offered by the value chain of nanotechnology. Trends Food Sci. Technol. 2021, 116, 1120–1140. [CrossRef]
- Urbonaviciene, D.; Viskelis, P. The cis-lycopene isomers composition in supercritical CO2 extracted tomato by-products. LWT 2017, 85, 517–523. [CrossRef]
- Melo, P.S.; Massarioli, A.P.; Denny, C.; dos Santos, L.F.; Franchin, M.; Pereira, G.E.; Vieira, T.M.F.d.S.; Rosalen, P.L.; de Alencar, S.M. Winery by-products: Extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species. Food Chem. 2015, 181, 160–169. [CrossRef]
- Su, M.-S.; Silva, J.L. Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (Vaccinium ashei) by-products as affected by fermentation. Food Chem. 2006, 97, 447–451. [CrossRef]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.R. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresour. Technol. 2021, 323, 124566. [CrossRef]
- Debnath-Canning, M.; Unruh, S.; Vyas, P.; Daneshtalab, N.; Igamberdiev, A.U.; Weber, J.T. Fruits and leaves from wild blueberry plants contain diverse polyphenols and decrease neuroinflammatory responses in microglia. J. Funct. Foods 2020, 68, 103906. [CrossRef]
- Liaudanskas, M.; Viškelis, P.; Raudonis, R.; Kviklys, D.; Uselis, N.; Janulis, V. Phenolic Composition and Antioxidant Activity ofMalus domesticaLeaves. Sci. World J. 2014, 2014, 306217. [CrossRef]
- Caldeira, C.; Vlysidis, A.; Fiore, G.; De Laurentiis, V.; Vignali, G.; Sala, S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour. Technol. 2020, 312, 123575. [CrossRef]
- Cruz, M.G.; Bastos, R.; Pinto, M.; Ferreira, J.M.; Santos, J.F.; Wessel, D.F.; Coelho, E.; Coimbra, M.A. Waste mitigation: From an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. J. Clean. Prod. 2018, 193, 652–660. [CrossRef]
- Duan, Y.; Pandey, A.; Zhang, Z.; Awasthi, M.K.; Bhatia, S.K.; Taherzadeh, M.J. Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. Ind. Crop. Prod. 2020, 153, 112568. [CrossRef]
- Sudha, M.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [CrossRef]
- Gustafsson, J.; Landberg, M.; Bátori, V.; Åkesson, D.; Taherzadeh, M.J.; Zamani, A. Development of Bio-Based Films and 3D Objects from Apple Pomace. Polymers 2019, 11, 289. [CrossRef]
- Kham, N.N.N.; Phovisay, S.; Unban, K.; et al. Valorization of Cashew Apple Waste into a Low-Alcohol, Healthy Drink Using a Co-Culture of Cyberlindnera rhodanensis DK and Lactobacillus pentosus A14-6. Foods, 2024, 13(10), 1469.
- Nasrollahzadeh, M.; Shafiei, N.; Nezafat, Z.; Sadat Soheili Bidgoli, N.; Soleimani, F.; Varma, R. S. Valorisation of fruits, their juices and residues into valuable (nano) materials for applications in chemical catalysis and environment. The Chemical Record, 2020, 20(11), 1338-93.
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 2016, 209, 27–36. [CrossRef]
- Cañellas, J.; Femenia, A.; Rosselló, C.; Soler, L. Chemical composition of the shell of apricot seeds. J. Sci. Food Agric. 1992, 59, 269–271. [CrossRef]
- Fang, N.; Yu, S.; Prior, R.L. LC/MS/MS Characterization of Phenolic Constituents in Dried Plums. J. Agric. Food Chem. 2002, 50, 3579–3585. [CrossRef]
- Mandal, S.; Ishak, S.; Adnin, R.J.; Lee, D.-E.; Park, T. An approach to utilize date seeds biochar as waste material for thermal energy storage applications. J. Energy Storage 2023, 68. [CrossRef]
- Guo, J.; Gao, Z.; Li, G.; Fu, F.; Liang, Z.; Zhu, H.; Shan, Y. Antimicrobial and antibiofilm efficacy and mechanism of essential oil from Citrus Changshan-huyou YB chang against Listeria monocytogenes. Food Control, 2019, 105, 256-264.
- Walia, M.; Rawat, K.; Bhushan, S.; Padwad, Y.S.; Singh, B. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace. J. Sci. Food Agric. 2014, 94, 929–934. [CrossRef]
- Abdullah, A.-S.H.; Mohammed, A.S.; Abdullah, R.; Mirghani, M.E.S.; Al-Qubaisi, M. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract. BMC Complement. Altern. Med. 2014, 14, 199–199. [CrossRef]
- Rosa, A.; Era, B.; Masala, C.; et al. Supercritical CO2 extraction of waste citrus seeds: Chemical composition, nutritional and biological properties of edible fixed oils. European Journal of Lipid Science and Technology, 2019, 121(7), 800502.
- Lacombe, A.; Tadepalli, S.; Hwang, C.-A.; Wu, V.C. Phytochemicals in Lowbush Wild Blueberry InactivateEscherichia coliO157:H7 by Damaging Its Cell Membrane. Foodborne Pathog. Dis. 2013, 10, 944–950. [CrossRef]
- Xiao-hong, S.; Tong-tong Z.; Wei C et al. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food control, 2018, 94,155-61.
- Yamasaki, M.; Kitagawa, T.; Koyanagi, N.; Chujo, H.; Maeda, H.; Kohno-Murase, J.; Imamura, J.; Tachibana, H.; Yamada, K. Dietary effect of pomegranate seed oil on immune function and lipid metabolism in mice. Nutrition 2006, 22, 54–59. [CrossRef]
- Tkacz, K.; Wojdyło, A.; Nowicka, P.; Turkiewicz, I.; Golis, T. Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. J. Funct. Foods 2019, 56, 353–363. [CrossRef]
- Athaydes, B.R.; Alves, G.M.; de Assis, A.L.E.M.; Gomes, J.V.D.; Rodrigues, R.P.; Campagnaro, B.P.; Nogueira, B.V.; Silveira, D.; Kuster, R.M.; Pereira, T.M.C.; et al. Avocado seeds (Persea americana Mill.) prevents indomethacin-induced gastric ulcer in mice. Food Res. Int. 2019, 119, 751–760. [CrossRef]
- Micallef, M.A.; Garg, M.L. Anti-inflammatory and cardioprotective effects of n-3 polyunsaturated fatty acids and plant sterols in hyperlipidemic individuals. Atherosclerosis 2009, 204, 476–482. [CrossRef]
- Ferguson, J.J.; Stojanovski, E.; MacDonald-Wicks, L.; Garg, M.L. Fat type in phytosterol products influence their cholesterol-lowering potential: A systematic review and meta-analysis of RCTs. Prog. Lipid Res. 2016, 64, 16–29. [CrossRef]
- Sharma, R.; Matsuzaka, T.; Kaushik, M.K.; Sugasawa, T.; Ohno, H.; Wang, Y.; Motomura, K.; Shimura, T.; Okajima, Y.; Mizunoe, Y.; et al. Octacosanol and policosanol prevent high-fat diet-induced obesity and metabolic disorders by activating brown adipose tissue and improving liver metabolism. Sci. Rep. 2019, 9, 1–12. [CrossRef]
- Lee, S.-H.; Scott, S.D.; Pekas, E.J.; Lee, J.-G.; Park, S.-Y. Improvement of Lipids and Reduction of Oxidative Stress With Octacosanol After Taekwondo Training. Int. J. Sports Physiol. Perform. 2019, 14, 1297–1303. [CrossRef]
- Guo, T.; Lin, Q.; Li, X.; Nie, Y.; Wang, L.; Shi, L.; Xu, W.; Hu, T.; Guo, T.; Luo, F. Octacosanol Attenuates Inflammation in Both RAW264.7 Macrophages and a Mouse Model of Colitis. J. Agric. Food Chem. 2017, 65, 3647–3658. [CrossRef]
- Espinosa-Pardo, F.A.; Nakajima, V.M.; Macedo, G.A.; Macedo, J.A.; Martínez, J. Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food Bioprod. Process. 2017, 101, 1–10. [CrossRef]
- Manthey, J.A.; Guthrie, N.; Grohmann, K. Biological Properties of Citrus Flavonoids Pertaining to Cancer and Inflammation. Curr. Med. Chem. 2001, 8, 135–153. [CrossRef]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [CrossRef]
- Naser, A.A.; Younis, E.; El-Feky, A.; Elbatanony, M.; Hamed, M.A. Management of Citrus sinensis peels for protection and treatment against gastric ulcer induced by ethanol in rats. Biomarkers 2020, 25, 349–359. [CrossRef]
- Baniya, S.; Dhananjaya, D.; Acharya, A.; Dangi, B.; Sapkota, A. Cardioprotective activity of ethanolic extract of Citrus grandis (L.) Osbeck peel on doxorubicin and cyclophosphamide induced cardiotoxicity in albino rats. International Journal of Pharmaceutical Sciences and Drug Research, 2015, 7(4), 354-60.
- Kim, G.-N.; Shin, M.-R.; Shin, S.H.; Lee, A.R.; Lee, J.Y.; Seo, B.-I.; Kim, M.Y.; Kim, T.H.; Noh, J.S.; Rhee, M.H.; et al. Study of Antiobesity Effect through Inhibition of Pancreatic Lipase Activity ofDiospyros kakiFruit andCitrus unshiuPeel. BioMed Res. Int. 2016, 2016, 1–7. [CrossRef]
- Pantsulaia, I.; Iobadze, M.; Pantsulaia, N.; Chikovani, T. The Effect of Citrus Peel Extracts on Cytokines Levels and T Regulatory Cells in Acute Liver Injury. BioMed Res. Int. 2014, 2014, 1–7. [CrossRef]
- Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 2011, 44, 391–396. [CrossRef]
- Zhang, M.; Zhu, J.; Zhang, X.; Zhao, D.-G.; Ma, Y.-Y.; Li, D.; Ho, C.-T.; Huang, Q. Aged citrus peel (chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food Funct. 2020, 11, 2667–2678. [CrossRef]
- Mustafa, M.A.-M.; Sorour, M.A.-H.; Mehanni, A.-H.E.; Hussien, S.M. Amino acid profile, physico-chemical properties and fatty acids composition of some fruit seed kernels after detoxification. Chem. Biol. Technol. Agric. 2023, 10, 1–11. [CrossRef]
- Bruno, L.O.; Simoes, R.S.; Simoes, M.d.J.; Girão, M.J.B.C.; Grundmann, O. Pregnancy and herbal medicines: An unnecessary risk for women's health—A narrative review. Phytotherapy Res. 2018, 32, 796–810. [CrossRef]
- Sirohi, R.; Pandey, J.P.; Gaur, V.K.; Gnansounou, E.; Sindhu, R. Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresour. Technol. 2020, 311, 123536. [CrossRef]
- Yunus, M.A.C.; Zhari, S.; Haron, S.; Arsad, N.H.; Idham, Z.; Ruslan, M.S.H. Extraction and Identification of Vitamin E from Pithecellobium Jiringan Seeds Using Supercritical Carbon Dioxide. J. Teknol. 2015, 74. [CrossRef]
- Attard, T. M. Supercritical CO2 Extraction of Waxes as Part of a Holistic Biorefinery. Ph.D. Thesis, University of York, New York, NY, USA, 2015.
- Ou, S.; Zhao, J.; Wang, Y.; Tian, Y.; Wang, J. Preparation of octacosanol from filter mud produced after sugarcane juice clarification. LWT 2012, 45, 295–298. [CrossRef]
- Lee, J.-K.; Patel, S.K.S.; Sung, B.H.; Kalia, V.C. Biomolecules from municipal and food industry wastes: An overview. Bioresour. Technol. 2020, 298, 122346. [CrossRef]
- Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour. Technol. 2021, 325, 124739. [CrossRef]
- Rosero-Chasoy, G.; Rodríguez-Jasso, R.M.; Aguilar, C.N.; Buitrón, G.; Chairez, I.; Ruiz, H.A. Growth kinetics and quantification of carbohydrate, protein, lipids, and chlorophyll of Spirulina platensis under aqueous conditions using different carbon and nitrogen sources. Bioresour. Technol. 2022, 346, 126456. [CrossRef]
- Teng, S.Y.; Yew, G.Y.; Sukačová, K.; Show, P.L.; Máša, V.; Chang, J.-S. Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnol. Adv. 2020, 44, 107631. [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D.; Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [CrossRef]
- Ahluwalia, V.; Kumar, J.; Rana, V. S.; Sati, O. P.; Walia, S. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity. Natural Product Research, 2015, 29(10), 914-20.
- Netzker, T.; Flak, M.; Krespach, M.K.; Stroe, M.C.; Weber, J.; Schroeckh, V.; A Brakhage, A. Microbial interactions trigger the production of antibiotics. Curr. Opin. Microbiol. 2018, 45, 117–123. [CrossRef]
- Gertsch, J. The Metabolic Plant Feedback Hypothesis: How Plant Secondary Metabolites Nonspecifically Impact Human Health. Planta Medica 2016, 82, 920–929. [CrossRef]
- Singh, M.; Devi, S.; Rana, V.S.; Mishra, B.B.; Kumar, J.; Ahluwalia, V. Delivery of phytochemicals by liposome cargos: recent progress, challenges and opportunities. J. Microencapsul. 2019, 36, 215–235. [CrossRef]
- Naranjo, J.M.; Cardona, C.A.; Higuita, J.C. Use of residual banana for polyhydroxybutyrate (PHB) production: Case of study in an integrated biorefinery. Waste Manag. 2014, 34, 2634–2640. [CrossRef]
- Rabalao, T.M.; Ndaba, B.; Roopnarain, A.; Vatsha, B. Towards a circular economy: The influence of extraction methods on phytosynthesis of metallic nanoparticles and their impact on crop growth and protection. JSFA Rep. 2022, 2, 208–221. [CrossRef]
- Bagheri, A.R.; Aramesh, N.; Hasnain, S.; Nayak, A.K.; Varma, R.S. Greener fabrication of metal nanoparticles using plant materials: A review. Chem. Phys. Impact 2023, 7. [CrossRef]
- Madhumitha, G.; Roopan, S.M. Devastated Crops: Multifunctional Efficacy for the Production of Nanoparticles. J. Nanomater. 2013, 2013, 1–12. [CrossRef]
- Tolisano, C.; Del Buono, D. Biobased: Biostimulants and biogenic nanoparticles enter the scene. Sci. Total. Environ. 2023, 885, 163912. [CrossRef]
- Adelere, I.A.; Lateef, A. A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol. Rev. 2016, 5. [CrossRef]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharm. J. 2016, 24, 473–484. [CrossRef]
- Khatami, M.; Pourseyedi, S. Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis high stable silver nanoparticles with high antifungal and antibacterial activity. IET Nanobiotechnology 2015, 9, 184–190. [CrossRef]
- Sakthivel, S.; Dhanapal, A.R.; Paulraj, L.P.; Gurusamy, A.; Venkidasamy, B.; Thiruvengadam, M.; Govindasamy, R.; Shariati, M.A.; Bouyahya, A.; Zengin, G.; et al. Antibacterial activity of seed aqueous extract of Citrus limon (L.) mediated synthesis ZnO NPs: An impact on Zebrafish (Danio rerio) caudal fin development. Heliyon 2022, 8, e10406. [CrossRef]
- Rafique, M.; Sohaib, M.; Tahir, R.; Tahir, M.B.; Khalid, N.; Shakil, M.; Gillani, S.; Khan, M.I.; Alrobei, H.; Shahzad, K.; et al. Novel, facile and first time synthesis of zinc oxide nanoparticles using leaves extract of Citrus reticulata for photocatalytic and antibacterial activity. Optik 2021, 243. [CrossRef]
- Nisa F. Y.; Rahman M. A.; Rafi M. K. J.; et al. Biosynthesized magnesium oxide nanoparticles from Tamarindus indica seed attenuate doxorubicin-induced cardiotoxicity by regulating biochemical indexes and linked genes. Biomater Adv, 2023, 146, 213291.
| Food residues |
| Fruit pomace and cakes |
| Parts of the fruit (seeds and other) |
| Leaves and parts of the plant remaining after collecting of crop |
| Residues of extracts |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).