Submitted:
27 July 2024
Posted:
30 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Various Types of Hydrogels with Different Crosslinking Methods
2.1. Utilizing Physical Mechanisms for Crosslinking
2.2. Employing Chemical Agents for Crosslinking
| Crosslinking type | Plomer | Preparation method | Characteristic | Ref. |
|---|---|---|---|---|
| Physical crosslinking | Alnigate | Ionic crosslinking | Excellent biocompatible, low viscosity | [23,24] |
| PVA | Freezing and thawing | Biocompatible, film-forming ability, Chemical stability | [25,34] | |
| PCL-Col I nanofibers | Thermal gelation | Adjustable mechanical strength, Well hemostatic | [35] | |
| HA/β-TCP | Ionic crosslinking | Similar in structure and composition to bone minerals | [36,37] | |
| Eudragit® S100 and Alnigate | Physical crosslinking | Excellent compactness | [28,38] | |
| PolyHIPE/Nanocellulose | Ionic crosslinking | / | [39] | |
| PVA-SA | Ionic crosslinking | Strong hydrophilicity, Painless removal | [25] | |
| Agarose/HAMA | Thermal gelation | Thermal reversibility, Low cell adhesion | [40] | |
| PNIPAMco-ALA | Thermal gelation | Thermal reversibility, Hardly degradable | [27] | |
| HPMC | Thermal gelation | Thermal reversibility, Biodegradability | [26,41,42] | |
| QCS poly (xylitol sebacate)–APP | Freeze-thawing | Biodegradability Low toxicity, Biocompatibility | [43] | |
| Agarose | Physical crosslinking | Withstand acidic conditions, Biodegradability | [44] | |
| Chitosan | Ionic crosslinking | Biocompatibility, Biodegradability, non-toxicity | [45] | |
| Poloxamer P407 | Thermal gelation | Good bactericidal effect, Thermo-reversible properties | [46] | |
| Pluronic® F-127/HPMC | Thermal gelation | Thermal responsiveness, | [47] | |
| Chemical crosslinking | PEG-polyurethane | Bulk polymerization | Heat reactivity Anti-biological pollution, Hardly degradable | [48,49,50,51] |
| CMC | / | Odorless, non-toxic | [33] | |
| PEG-4MAL | Michael-type addition | Biodegradability | [31] | |
| CS-NP | Coercavation method | / | [52] |
3. Enhancing Phage- Hydrogel Therapy for Treating Infections Caused by a Range of Bacterial Strains
3.1. Phage Hydrogel Therapy for Infections Caused by E. coli
| E. coli | Phages | Ploymer | Characteristic | preparation method | Type of infection | Effect | Ref. |
|---|---|---|---|---|---|---|---|
| E. coli DH5α | HZJ | Alnigate | Biocompatibility, Biodegradability, Ease of gelation | Ion crosslinking | Wound infection | Reducing bacterial numbers by 59.3-68.5% | [53] |
| E. coli O157:H7 | UFV-AREG1 | PVA | Biocompatibility, Chemical stability | Freezing and thawing | Skin wound infection | Increasing bacterial inhibition zone | [54] |
| E. coli XL-1 | T4 | PCL-Col I nanofibers | Biocompatibility, Biodegradability, Good flexibility | Thermal gelation | Wound infection | Improving antibacterial effect by 90% | [35] |
| E. coli K12 | λvir | Hydroxyapatite/β-TCP | Osteoinduction, Biodegradability | Ion crosslinking | Infection by bone reconstruction surgery | Enhancing the release of phages | [36] [37] |
| E. coli | ΦKAZ14 | CS-NP | Biocompatibility, Biodegradability, non-toxicity | Coercavation | Alimentary infection | Providing strong protection against ΦKAZ14 phages | [52] |
| E. coli EV36 | K1F | Eudragit® S100/Alnigate | Dissoluble, Excellent compactness | Physical crosslinking | Alimentary infection | / | [38] |
| E. coli K-12 MG1655 | T7 | PolyHIPE/Nanocellulose | / | Ion crosslinking | Alimentary infection | Shielding phages in acidic conditions and releasing them in alkaline conditions | [39] |
| E. coli ATCC 11303 | T4 Coli-proteus | PEG-polyurethane | Heat reactivity, Anti-biological pollution | Chemical crosslinking | Urinary catheter infection | Reducing the biofilm formation by 90% | [48] |
| E. coli O104:H4 | H4 | Alnigate | Biocompatibility, Biodegradability, Ease of gelation | Ion crosslinking | Food pollution | Reducing E. coli count by 1.3 log10 CFU/g | [55] |
3.2. Bacteriophage Hydrogel Therapy for Infections Caused by S. aureus
| S. aureus | Phage | Plomyer | Characteristic | Preparation method | Type of infection | Effect | Ref. |
|---|---|---|---|---|---|---|---|
| MRSA | MR10 | PVA-SA | Strong hydrophilicity | Chemical/ionic crosslinking | Burn wound infection | Decreasing bacteria number from 8 to 2 log10 CFU/mL | [25] |
| S. aureus H560 | ΦK | Agarose/HAMA | Thermal reversibility, Low cell adhesion | Thermal gelation | Wound infection | Enhancing bacteria-killing capability. | [40] |
| S. aureus ST228 | ΦK | PNIPAMco-ALA | Thermal reversibility, Not readily degradable | Thermal gelation | Skin and soft tissue infection | Effectively lysing S. aureus at 37 °C | [27] |
| MRSA | MR5 MR10 | Liposomes | Biodegradable, Not eliciting an immune response. | / | Wound infection | Reducing bacterial load by 4 log CFU/mL | [56] |
| S. aureus ATCC 43300 | MR-5 | HPMC | Thermal reversibility, Biodegradability | Thermal gelation | Orthopedic implant infection | No bacterial burden found on the wire | [41] |
| S. aureus | Phage K | Alginate | Withstand acidic conditions, Biodegradability | Ion crosslinking | Alimentary infection | Improving the survival of free phages | [23] |
| S. aureus BCRC 13077 | 44AHJD | QCS/poly (xylitol sebacate)–co-APP | Biodegradabilit, Low toxicity, Biocompatibility | Freeze-thawing | Food contamination | Releasing up to 60% of phage particles within 6 hours | [43] |
| S. aureus | Modified phage | Alginate | Biodegradability | Ion crosslinking | Bone-related infection | Reducing soft tissue infection | [24] |
| S. aureus | Phage K | Agarose/HAMA | Thermal reversibility, Nondegradable, Low cell adhesion | Thermal gelation | Bone-related infection | / | [57] |
3.3. Bacteriophage Hydrogel Therapy for Infections Caused by P. aeruginosa
| P. aeruginosa | Phage | Plomyer | Characteristic | Preparation method | Type of infection | Effect | Ref. |
|---|---|---|---|---|---|---|---|
| P. aeruginosa | PS1 | HPCS | / | / | Wound infection | Reducing the bacterial count from 7 × 108 CFU/mL to 0 | [58] |
| CRPA | vB_Pae_SMP1/SMP5 | CMC | Odorless, non-toxic | Chemical crosslinking | Burn wound infection | 100% survival rate for mice | [33] |
| P. aeruginosa | KT28, KTN and LUZ19 | Agarose | Temperature response | Physical crosslinking | Wound infection | Effectively hindering biofilm formation | [44] |
| P. aeruginosa | ΦPaer4/14/22 and ΦW2005A | PEG-4MAL | Biodegradability | Michael-type addition | Orthopedic implant infection | Reducing the CFU amount of bacteria by 16.9 times | [31] |
| P. aeruginosa isolate (Paer09) | FJK, R9–30, KR3–15 | Alginate | Biocompatibiliy, Biodegradability, Hypotoxicity | Thermal gelation | Infection by fracture | Decreasing bacteria in the soft tissue by 6.5-fold | [17] |
| P. aeruginosa | PA5 | PVA-SA | Strong hydrophilicity | Chemical/ionic crosslinking | Burn wound infection | Reducing P. aeruginosa biomass by 4.6 log10 | [25] |
| P. aeruginosa | Phage cocktail | PEG-polyurethane | Heat reactivity, Anti-biological pollution | Bulk polymerization | Urinary catheter infection | Reducing the number of P. aeruginosa biofilm by 4 log10 CFU/cm2 | [49] |
| P. aeruginosa | M4 | PEG-polyurethane | Heat reactivity, Anti-biological pollution | Bulk polymerization | Urinary catheter infection | Reducing biofilm cells from 7.13 to 4.13 log10 CFU/cm2 | [50] |
3.4. Bacteriophage Hydrogel Therapy for Infections Caused by K. pneumoniae
3.5. Bacteriophage Hydrogel Therapy for Infections Caused by P. mirabilis
3.6. Bacteriophage Hydrogel Therapy for Infections Caused by A. baumannii
| Strain | Phages | Ploymer | Characteristic | Preparation method | Type of infection | Antibacterial effect | Ref. |
|---|---|---|---|---|---|---|---|
| K. pneumoniae B5055 | Kpn5 | HPMC | Thermal reversibility, Biodegradability | Thermal gelation | Burn wound infection | The survival rate was 63.33% for mice | [42] |
| Carbapenem-resistant K. pneumoniae | Kpn5 | PVA-SA | Strong hydrophilicity | Ion crosslinking | Wound infection | Decreasing the biomass of K. pneumoniae by 6.37 log10 | [25] |
| K. pneumoniae B5055 | Kpn5 | HPMC | Thermal reversibility, Biodegradability | Thermal gelation | Burn wound infection | The survival rate was 66.66% for mice | [26,60] |
| P. mirabilis | B4 | PVA-Eudragit® S 100 | Poor biodegradable, Poor cell adhesion | Freezing and thawing | Urinary catheter infection | Reducing P. mirabilis biofilm by 6-log | [28] |
| P. mirabilis | ΦPmir1/32/34/37 | PEG-polyurethane | Heat reactivity, Anti-biological pollution, Poor biodegradable | Bulk polymerization | Urinary catheter infection | Reducing the number of P. mirabilis biofilm by >2 log10 CFU/cm2 | [49] |
| P. mirabilis 13 HER1094 | T4 | PEGpolyurethane | Heat reactivity | Chemical crosslinking | Urinary catheter infection | Reducing the P. mirabilis biofilm formation by 90% | [48] |
| A. baumannii MDR-AB2 | IME-AB2 phage | P407 | Thermo-reversible properties | physical crosslinking | Wound infection | Reducing A. baumannii >5 log10 CFU/mL, eliminating biofilm by 59% | [59] |
| A. baumannii | AB140/50 | Chitosan | Biocompatibility, Biodegradability, non-toxicity | Ionic crosslinking | Wound infection | Completely eliminating A. baumannii | [45] |
| A. baumannii | Phage 53 | Poloxamer P407 | Thermo-reversible properties | Thermal gelation | Wound infection | Resulting A. baumannii by 3.62 log 10 | [46] |
| A. baumannii | vB_AbaM-IME-AB2 | Pluronic® F-127/HPMC | Thermal responsiveness | Thermal gelation | Wound infection | Killing 5.66 log of A. baumannii | [47] |
4. Conclusions
References
- Deusenbery, C.; Wang, Y.; Shukla, A. Recent Innovations in Bacterial Infection Detection and Treatment. Acs Infect Dis 2021, 7, 695–720. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Li, H.; Peng, X. Proteomics approach to understand bacterial antibiotic resistance strategies. Expert Rev Proteomic 2019, 16, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xiao, J.; Wang, S.; et al. Research Progress on Bacterial Membrane Vesicles and Antibiotic Resistance. Int J Mol Sci 2022, 23, 1553. [Google Scholar] [CrossRef]
- Chinemerem, N.D.; Ugwu, M.C.; Oliseloke, A.C.; et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal 2022, 36, e24655. [Google Scholar] [CrossRef]
- Makabenta, J.; Nabawy, A.; Li, C.H.; Schmidt-Malan, S.; Patel, R.; Rotello, V.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 2021, 19, 23–36. [Google Scholar] [CrossRef]
- Melo, L.; Oliveira, H.; Pires, D.P.; Dabrowska, K.; Azeredo, J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 2020, 46, 78–99. [Google Scholar] [CrossRef]
- Crunkhorn, S. Prospecting for new antibiotics. Nat Rev Drug Discov 2019, 18, 581. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F.; Dedrick, R.M.; Schooley, R.T. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu Rev Med 2022, 73, 197–211. [Google Scholar] [CrossRef]
- Strathdee, S.A.; Hatfull, G.F.; Mutalik, V.K.; Schooley, R.T. Phage therapy: From biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef]
- Chang, R.; Wallin, M.; Lin, Y.; et al. Phage therapy for respiratory infections. Adv Drug Deliver Rev 2018, 133, 76–86. [Google Scholar] [CrossRef]
- Dave, R.; Banerjee, D. Bacteriophage therapy- a refurbished age-old potential strategy to treat antibiotic and multidrug resistant bacterial infections in future. Braz J Microbiol 2024. [Google Scholar] [CrossRef] [PubMed]
- Shiue, S.J.; Wu, M.S.; Chiang, Y.H.; Lin, H.Y. Bacteriophage-cocktail hydrogel dressing to prevent multiple bacterial infections and heal diabetic ulcers in mice. J Biomed Mater Res A 2024. [Google Scholar] [CrossRef] [PubMed]
- Rotman, S.G.; Sumrall, E.; Ziadlou, R.; et al. Local Bacteriophage Delivery for Treatment and Prevention of Bacterial Infections. Front Microbiol 2020, 11, 538060. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Chang, R.; Morales, S.; Chan, H.K. Bacteriophage-Delivering Hydrogels: Current Progress in Combating Antibiotic Resistant Bacterial Infection. Antibiotics 2021, 10, 130. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Borjihan, Q.; Li, Z.; et al. Phage-Based antibacterial hydrogels for bacterial targeting and Ablation: Progress and perspective. Eur J Pharm Biopharm 2024, 198, 114258. [Google Scholar] [CrossRef] [PubMed]
- Shafigh, K.F.; Sheikhzadeh, H.F.; Aminifazl, M.S.; Skurnik, M.; Gholadze, S.; Zarrini, G. Design of Phage-Cocktail-Containing Hydrogel for the Treatment of Pseudomonas aeruginosa-Infected Wounds. Viruses 2023, 15, 803. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Benavente, L.P.; Chitto, M.; et al. Alginate microbeads and hydrogels delivering meropenem and bacteriophages to treat Pseudomonas aeruginosa fracture-related infections. J Control Release 2023, 364, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Moghtader, F.; Solakoglu, S.; Piskin, E. Alginate- and Chitosan-Modified Gelatin Hydrogel Microbeads for Delivery of E. coli Phages. Gels 2024, 10, 244. [Google Scholar] [CrossRef] [PubMed]
- Vacek, L.; Polastik, K.D.; Lipovy, B.; et al. Phage therapy combined with Gum Karaya injectable hydrogels for treatment of methicillin-resistant Staphylococcus aureus deep wound infection in a porcine model. Int J Pharmaceut 2024, 660, 124348. [Google Scholar] [CrossRef]
- Khazani, A.M.; Elikaei, A.; Abed, S.; et al. A novel Enterococcus faecium phage EF-M80: unveiling the effects of hydrogel-encapsulated phage on wound infection healing. Front Microbiol 2024, 15, 1416971. [Google Scholar]
- Narayanan, K.B.; Bhaskar, R.; Choi, S.M.; Han, S.S. Development of carrageenan-immobilized lytic coliphage vB_Eco2571-YU1 hydrogel for topical delivery of bacteriophages in wound dressing applications. Int J Biol Macromol 2024, 259 Pt 2, 129349. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Hina, M.; Iqbal, J.; et al. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Pacan, J.C.; Wang, Q.; Sabour, P.M.; Huang, X.; Xu, Y. Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocolloid 2010, 26, 434–440. [Google Scholar] [CrossRef]
- Cobb, L.H.; Park, J.; Swanson, E.A.; Beard, M.C.; McCabe, E.M.; Rourke, A.S.; Seo, K.S.; Olivier, A.K.; Priddy, L.B.; et al. CRISPR-Cas9 modified bacteriophage for treatment of Staphylococcus aureus induced osteomyelitis and soft tissue infection. PLoS One 2019, 258–273. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Gondil, V.S.; Chhibber, S. A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics. Int J Pharmaceut 2019, 572, 118779. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Harjai, K.; Chhibber, S. Topical treatment of Klebsiella pneumoniae B5055 induced burn wound infection in mice using natural products. J Infect Dev Countr 2010, 4, 367–377. [Google Scholar] [CrossRef]
- Hathaway, H.; Alves, D.R.; Bean, J.; et al. Poly(N-isopropylacrylamide-co-allylamine) (PNIPAM-co-ALA) nanospheres for the thermally triggered release of Bacteriophage K. Eur J Pharm Biopharm 2015, 96, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Milo, S.; Hathaway, H.; Nzakizwanayo, J.; et al. Prevention of encrustation and blockage of urinary catheters by Proteus mirabilis via pH-triggered release of bacteriophage. J Mater Chem B 2017, 5, 5403–5411. [Google Scholar] [CrossRef] [PubMed]
- Azadeh Peivandi, L.T.R.M. Bioactive hydrogels with self-organizing bundles of phage nanofilaments. Chem Mater 2019, 31, 5442–5449. [Google Scholar] [CrossRef]
- Peivandi, A.; Jackson, K.; Tian, L.; et al. Inducing Microscale Structural Order in Phage Nanofilament Hydrogels with Globular Proteins. ACS Biomater Sci Eng 2022, 8, 340–347. [Google Scholar] [CrossRef]
- Wroe, J.A.; Johnson, C.T.; Garcia, A.J. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J Biomed Mater Res A 2020, 108, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Bassi, M.; Kalpana, R.; Kumar, V. Starch Glutaraldehyde Cross-Linked Hydrogel for Drug Release Properties. J Pharm Bioallied Sc 2024, 16 (Suppl. 2), S1198–S1200. [Google Scholar] [CrossRef] [PubMed]
- Mabrouk, S.S.; Abdellatif, G.R.; Abu Zaid, A.S.; Aziz, R.K.; Aboshanab, K.M. In Vitro and Pre-Clinical Evaluation of Locally Isolated Phages, vB_Pae_SMP1 and vB_Pae_SMP5, Formulated as Hydrogels against Carbapenem-Resistant Pseudomonas aeruginosa. Viruses 2022, 14, 2760. [Google Scholar] [CrossRef] [PubMed]
- Boggione, D.M.G.; Santos, I.J.B.; de Souza, S.M.; Mendonça, R.C.S. Preparation of polyvinyl alcohol hydrogel containing bacteriophage and its evaluation for potential use in the healing of skin wounds. J Drug Deliv Sci Tec 2021, 63, 102484. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, Z.; Xu, R.; et al. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. J Biomed Mater Res B 2018, 106, 2588–2595. [Google Scholar] [CrossRef] [PubMed]
- Ismail, R.; Dorighello, C.N.; Hornez, J.C.; Bouchart, F. A Localized Phage-Based Antimicrobial System: Effect of Alginate on Phage Desorption from beta-TCP Ceramic Bone Substitutes. Antibiotics 2020, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Meurice, E.; Rguiti, E.; Brutel, A.; et al. New antibacterial microporous CaP materials loaded with phages for prophylactic treatment in bone surgery. J Mater Sci-Mater M 2012, 23, 2445–2452. [Google Scholar] [CrossRef] [PubMed]
- Vinner, G.K.; Richards, K.; Leppanen, M.; Sagona, A.P.; Malik, D.J. Microencapsulation of Enteric Bacteriophages in a pH-Responsive Solid Oral Dosage Formulation Using a Scalable Membrane Emulsification Process. Pharmaceutics 2019, 11, 475. [Google Scholar] [CrossRef] [PubMed]
- Kopac, T.; Lisac, A.; Mravljak, R.; Rucigaj, A.; Krajnc, M.; Podgornik, A. Bacteriophage Delivery Systems Based on Composite PolyHIPE/Nanocellulose Hydrogel Particles. Polymers 2021, 13, 2648. [Google Scholar] [CrossRef]
- Jessica, E.; Bean, D.R.A.M.; Mark, C.; Enright, A.A.T.A. Triggered Release of Bacteriophage K from Agarose/Hyaluronan Hydrogel Matrixes by Staphylococcus aureus Virulence Factors. Chem Mater 2014, 26, 7201–7208. [Google Scholar]
- Kaur, S.; Harjai, K.; Chhibber, S. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA) Mediated Orthopaedic Device Related Infections. PLoS ONE 2016, 11, e0157626. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Harjai, K.; Chhibber, S. Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol 2011, 60 Pt 2, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yeh, Y.J.; An, Y.N. Engineering pH-sensitive erodible chitosan hydrogel composite containing bacteriophage: An interplay between hydrogel and bacteriophage against Staphylococcus aureus. Int J Biol Macromol 2023, 253 Pt 7, 127371. [Google Scholar] [CrossRef] [PubMed]
- Dorotkiewicz-Jach, A.; Markwitz, P.; Rachuna, J.; Arabski, M.; Drulis-Kawa, Z. The impact of agarose immobilization on the activity of lytic Pseudomonas aeruginosa phages combined with chemicals. Appl Microbiol Biot 2023, 107, 897–913. [Google Scholar] [CrossRef]
- Ilomuanya, M.O.; Enwuru, N.V.; Adenokun, E.; Fatunmbi, A.; Adeluola, A.; Igwilo, C.I. Chitosan-Based Microparticle Encapsulated Acinetobacter baumannii Phage Cocktail in Hydrogel Matrix for the Management of Multidrug Resistant Chronic Wound Infection. Turk J Pharm Sci 2022, 19, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Nyaruaba, R.; Zhao, X.; et al. Thermosensitive Hydrogel Wound Dressing Loaded with Bacteriophage Lysin LysP53. Viruses 2022, 14, 1956. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; To, K.; Liu, Y.; Bai, C.; Leung, S. A thermosensitive hydrogel formulation of phage and colistin combination for the management of multidrug-resistant Acinetobacter baumannii wound infections. Biomater Sci 2023, 12, 151–163. [Google Scholar] [CrossRef]
- Carson, L.; Gorman, S.P.; Gilmore, B.F. The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol Med Microbiol 2010, 59, 447–455. [Google Scholar] [CrossRef]
- Lehman, S.M.; Donlan, R.M. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Ch 2015, 59, 1127–1137. [Google Scholar] [CrossRef]
- Fu, W.; Forster, T.; Mayer, O.; Curtin, J.J.; Lehman, S.M.; Donlan, R.M. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Ch 2010, 54, 397–404. [Google Scholar] [CrossRef]
- Zhou, G.; Ma, C.; Zhang, G. Synthesis of polyurethane-g-poly(ethylene glycol) copolymers by macroiniferter and their protein resistance. Polymer Chemistry 2011, 2, 1409–1414. [Google Scholar] [CrossRef]
- Adamu, A.K.; Sabo, M.A.; Abas, F. Chitosan Nanoparticles as Carriers for the Delivery of PhiKAZ14 Bacteriophage for Oral Biological Control of Colibacillosis in Chickens. Molecules 2016, 21, 256. [Google Scholar]
- Shen, H.Y.; Liu, Z.H.; Hong, J.S.; Wu, M.S.; Shiue, S.J.; Lin, H.Y. Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J Control Release 2021, 331, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Chahardoli, F.; Pourmoslemi, S.; Soleimani, A.S.; Tamri, P.; Haddadi, R. Preparation of polyvinyl alcohol hydrogel containing chlorogenic acid microspheres and its evaluation for use in skin wound healing. J Biomater Appl 2023, 37, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Lone, A.; Anany, H.; Hakeem, M.; et al. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int J Food Microbiol 2016, 217, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Chhibber, S.; Kaur, J.; Kaur, S. Liposome Entrapment of Bacteriophages Improves Wound Healing in a Diabetic Mouse MRSA Infection. Front Microbiol 2018, 9, 561. [Google Scholar] [CrossRef] [PubMed]
- Brendan, L.; Roach, A.B.N.G.; Hung, A.C.T. Agarose hydrogel characterization for regenerative medicine applications: Focus on engineering cartilage. Biomaterials from Nature for Advanced Devices and Therapies 2016, 2016, 258–273. [Google Scholar]
- Sarhan, W.A.; Azzazy, H.M. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine 2017, 12, 2055–2067. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Banerjee, P.; Liu, Y.; et al. Development of thermosensitive hydrogel wound dressing containing Acinetobacter baumannii phage against wound infections. Int J Pharmaceut 2021, 602, 120508. [Google Scholar] [CrossRef]
- Cheng, Y.; Shi, X.; Jiang, X.; Wang, X.; Qin, H. Printability of a cellulose derivative for extrusion-based 3D printing: The application on a biodegradable support material. Front Mater 2020. [Google Scholar] [CrossRef]
- Qi, X.; Wei, W.; Li, J.; et al. Salecan-Based pH-Sensitive Hydrogels for Insulin Delivery. Mol Pharmaceut 2017, 14, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Qiu, Y.; Zhao, X.; et al. Visible light-triggered gel-to-sol transition in halogen-bond-based supramolecules. Soft Matter 2019, 15, 6411–6417. [Google Scholar] [CrossRef] [PubMed]
- Gohil, S.V.; Padmanabhan, A.; Kan, H.M.; Khanal, M.; Nair, L.S. Degradation-Dependent Protein Release from Enzyme Sensitive Injectable Glycol Chitosan Hydrogel. Tissue Eng Pt A 2021, 27, 867–80. [Google Scholar] [CrossRef] [PubMed]
- Milcovich, G.; Lettieri, S.; Antunes, F.E.; et al. Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Adv Colloid Interfac 2017, 249, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Meenach, S.A.; Hilt, J.Z.; Anderson, K.W. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater 2010, 6, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, A.; Zhang, Y.; Guan, Y. Novel Redox Hydrogel by in Situ Gelation of Chitosan as a Result of Template Oxidative Polymerization of Hydroquinone. Macromolecules 2011, 44, 2245–2252. [Google Scholar] [CrossRef]
- Tomatsu, I.; Hashidzume, A.; Harada, A. Redox-Responsive Hydrogel System Using the Molecular Recognition of β-Cyclodextrin. Macromol Rapid Comm 2006, 27, 238–241. [Google Scholar] [CrossRef]
- Choi, J.Y.; Joo, Y.J.; Kang, R.J.; Jeon, H.K.; Hong, G.S. Effect of Spray-Type Alginate Hydrogel Dressing on Burn Wounds. Gels 2024, 10, 152. [Google Scholar] [CrossRef]
- Ji, M.; Zhan, F.; Qiu, X.; et al. Research Progress of Hydrogel Microneedles in Wound Management. ACS Biomater Sci Eng 2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).