Submitted:
28 July 2024
Posted:
30 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Non-Obstructive Coronary Artery Disease: ANOCA, INOCA and MINOCA
- Coronary Angiography: this remains the gold standard for visualizing coronary anatomy. In NOCAD, angiography reveals less than 50% stenosis in the coronary arteries [12].
- Non-Invasive Imaging: techniques such as stress echocardiography, cardiac MRI, Positron Emission Tomography and CCTA may identify ischemia and assess coronary anatomy without the need of invasive procedures [17].
- microvascular dysfunction: impaired regulation of blood flow in the small coronary vessels, leading to insufficient oxygen supply to the myocardium caused by structural remodeling of the microvasculature, which will lead to fixed reduced microcirculatory conductance or vasomotor disorders affecting the coronary arterioles, which will cause dynamic arteriolar obstruction (the mechanism for microvascular angina) [21].
- vasospasm: transient constriction of the epicardial coronary arteries, leading to reduced blood flow and ischemia (the mechanism for epicardial vasospastic angina) [22].
- coronary artery spasm: severe transient constriction of a coronary artery, potentially leading to myocardial infarction [33].
- microvascular dysfunction: similar to INOCA, impaired function of the microvasculature may contribute to ischemia and infarction [36].
- coronary embolism or thrombosis: embolic events or thrombus formation in non-obstructive coronary arteries [37].
3. Coronary Ischemia as Substrate in Atrial Fibrillation
3.1. Inflammation due to coronary ischemia leading to AF
3.2. Oxidative stress due to coronary ischemia leading to atrial fibrillation
- sodium channels (Na⁺ Channels): ROS can reduce sodium current (INa) by modifying channel proteins, leading to slowed conduction and increased susceptibility to re-entry circuits [60].
- potassium channels (K⁺ Channels): ROS can affect several potassium channels involved in repolarization, such as IKs, IKr, and Ito. This can prolong or shorten action potential duration, creating a substrate for AF [61].
- calcium channels (Ca²⁺ Channels): ROS can increase L-type calcium current (ICa,L), contributing to abnormal calcium influx and triggered activity [62].
4. Atrial Fibrillation as Substrate for Microvascular Dysfunction
- Triggers and Drivers: AF may be triggered by ectopic beats originating from the pulmonary veins or other locations in the atria, such as: the left atria posterior wall, the superior vena cava, the left atrial appendage, the coronary sinus and the ligament of Marshall. These triggers, combined with areas of slowed conduction and functional reentry circuits, create a substrate for the initiation and perpetuation of AF. In some cases, rapid firing of ectopic foci or localized reentrant circuits may also drive the arrhythmia [65].
- Catalyst: The catalyst may change refractory periods, in this way increasing autonomic activity and it is represented by autonomic nervous system, thyroid hormones and illicit drugs. Sympathetic activation can increase the likelihood of AF episodes, while parasympathetic stimulation may promote the termination of AF; in this way, imbalances in autonomic tone can influence the susceptibility to AF [66].
- Substrate: The substrate is essential in maintaining the action of trigger and catalyst and it can be structural or electrical. The first one consists in structural modifications in the atria, such as fibrosis (excessive deposition of collagen and other extracellular matrix proteins) and dilation. These changes can disrupt normal electrical conduction pathways in the atrium and create conditions that are conducive to sustain AF. The second one is created by abnormal electrical activity in the atria, characterized by alterations in ion channel function and intracellular signaling pathways. Modifications in the action potential duration, refractoriness, and conduction velocity can promote the reentry of electrical impulses and the chaotic electrical activity seen in AF [67].
4.1. Microvascular Dysfunction in AF
4.2. Endothelial Dysfunction Due to Atrial Fibrillation
- Systemic inflammation and oxidative stress: On one hand, AF is associated with elevated levels of inflammatory markers such as C-reactive protein (CRP), IL-6 and TNF-α. These cytokines may cause direct damage to endothelial cells, impairing their function. On the other hand, the arrhythmic nature of AF leads to increased production of ROS, which are able to lead to cellular dysfunction and apoptosis [71,72].
- Hemodynamic shear stress: The irregular and rapid heart rate in AF results in abnormal shear stress on the blood vessel walls. This mechanical stress can disrupt the normal function of endothelial cells, reducing their ability to regulate vascular tone and blood flow [73].
- Endothelial nitric oxide synthase (eNOS) dysfunction: In AF, the bioavailability of NO, which is a critical vasodilator produced by endothelial cells, is reduced due to increased oxidative stress and inflammation, leading to impaired vasodilation and endothelial dysfunction. Moreover, under normal conditions, eNOS produces NO, but in the presence of oxidative stress and reduced tetrahydrobiopterin (BH4), a cofactor for eNOS, the enzyme becomes uncoupled and produces superoxide instead of NO, further exacerbating oxidative stress and endothelial dysfunction [74].
4.3. Neurohormonal Activation due to Atrial Fibrillation
4.4. Microthrombi Formation due to Atrial Fibrillation
4.5. Impaired CFR Due to Atrial Fibrillation
5. NOCAD and AF: challenges in clinical practice
5.1. Diagnostic Challenges
5.2. Therapeutic Challenges
5.3. Prognostic Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gautier, A.; Picard, F.; Ducrocq, G.; Elbez, Y.; Fox, K.M.; Ferrari, R.; Ford, I.; Tardif, J.-C.; Tendera, M.; Steg, P.G.; et al. New-Onset Atrial Fibrillation and Chronic Coronary Syndrome in the CLARIFY Registry. European Heart Journal 2024, 45, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.-C.; Lee, H.; Yoon, Y.E.; Choi, I.-S.; Kim, H.-L.; Chang, H.-J.; Lee, J.Y.; Choi, J.A.; Kim, H.J.; Cho, G.-Y.; et al. Risk Stratification of Non-Obstructive Coronary Artery Disease for Guidance of Preventive Medical Therapy. Atherosclerosis 2019, 290, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Floria, M.; Oancea, A.F.; Morariu, P.C.; Burlacu, A.; Iov, D.E.; Chiriac, C.P.; Baroi, G.L.; Stafie, C.S.; Cuciureanu, M.; Scripcariu, V.; et al. An Overview of the Pharmacokinetics and Pharmacodynamics of Landiolol (an Ultra-Short Acting Β1 Selective Antagonist) in Atrial Fibrillation. Pharmaceutics 2024, 16, 517. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhu, S.; Xie, C.; Zhu, M.; Weng, F.; Wang, C.; Guo, C. Coronary Artery Disease and Atrial Fibrillation: A Bidirectional Mendelian Randomization Study. JCDD 2022, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Cappello, I.A.; Pannone, L.; Della Rocca, D.G.; Sorgente, A.; Del Monte, A.; Mouram, S.; Vetta, G.; Kronenberger, R.; Ramak, R.; Overeinder, I.; et al. Coronary Artery Disease in Atrial Fibrillation Ablation: Impact on Arrhythmic Outcomes. Europace 2023, 25, euad328. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.H.; Lerman, A. Angina Pectoris with a Normal Coronary Angiogram. Herz 2005, 30, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, K.; Roshdi Dizaji, S.; Kiah, M.; Rashid, M.; Miri, R.; Yousefifard, M. The Value of Coronary Artery Disease – Reporting and Data System (CAD-RADS) in Outcome Prediction of CAD Patients; a Systematic Review and Meta-Analysis. Archives of Academic Emergency Medicine 2023, 11, e45. [Google Scholar] [CrossRef] [PubMed]
- Najib, K.; Boateng, S.; Sangodkar, S.; Mahmood, S.; Whitney, H.; Wang, C.E.; Racsa, P.; Sanborn, T.A. Incidence and Characteristics of Patients Presenting with Acute Myocardial Infarction and Non-obstructive Coronary Artery Disease. Cathet Cardio Intervent 2015, 86. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Anderson, T. Coronary Endothelial Dysfunction in Non-Obstructive Coronary Artery Disease: Risk, Pathogenesis, Diagnosis and Therapy. Vasc Med 2016, 21, 146–155. [Google Scholar] [CrossRef]
- Tunc, E.; Eve, A.A.; Madak-Erdogan, Z. Coronary Microvascular Dysfunction and Estrogen Receptor Signaling. Trends in Endocrinology & Metabolism 2020, 31, 228–238. [Google Scholar] [CrossRef]
- for the APPROACH investigators; Kissel, C. K.; Chen, G.; Southern, D.A.; Galbraith, P.D.; Anderson, T.J. Impact of Clinical Presentation and Presence of Coronary Sclerosis on Long-Term Outcome of Patients with Non-Obstructive Coronary Artery Disease. BMC Cardiovasc Disord 2018, 18, 173. [Google Scholar] [CrossRef]
- Rahman, H.; Corcoran, D.; Aetesam-ur-Rahman, M.; Hoole, S.P.; Berry, C.; Perera, D. Diagnosis of Patients with Angina and Non-Obstructive Coronary Disease in the Catheter Laboratory. Heart 2019, 105, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Kawashima, H.; Hara, H.; Gao, C.; Wang, R.; Kogame, N.; Takahashi, K.; Chichareon, P.; Modolo, R.; Tomaniak, M.; et al. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging. Front. Cardiovasc. Med. 2020, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Reiber, J.H.C.; Tu, S.; Tuinenburg, J.C.; Koning, G.; Janssen, J.P.; Dijkstra, J. QCA, IVUS and OCT in Interventional Cardiology in 2011. Cardiovasc Diagn Ther 2011, 1, 57–70. [Google Scholar] [CrossRef]
- Tajeddini, F.; Nikmaneshi, M.R.; Firoozabadi, B.; Pakravan, H.A.; Ahmadi Tafti, S.H.; Afshin, H. High Precision Invasive FFR, low-cost Invasive iFR, or non-invasive CFR ?: Optimum Assessment of Coronary Artery Stenosis Based on the patient-specific Computational Models. Numer Methods Biomed Eng 2020, 36, e3382. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanniahassankiadeh, A.; Marks, D.S.; LaDisa, J.F. Correlation of Computational Instantaneous Wave-Free Ratio With Fractional Flow Reserve for Intermediate Multivessel Coronary Disease. J Biomech Eng 2021, 143, 051011. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Wijesurendra, R.S.; Liu, J.M.; Forfar, J.C.; Channon, K.M.; Jerosch-Herold, M.; Piechnik, S.K.; Neubauer, S.; Kharbanda, R.K.; Ferreira, V.M. RETRACTED: Diagnosis of Microvascular Angina Using Cardiac Magnetic Resonance. Journal of the American College of Cardiology 2018, 71, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.G. MINOCA and INOCA: Role in Heart Failure. Curr Heart Fail Rep 2023, 20, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Woudstra, J.; Vink, C.E.M.; Schipaanboord, D.J.M.; Eringa, E.C.; Den Ruijter, H.M.; Feenstra, R.G.T.; Boerhout, C.K.M.; Beijk, M.A.M.; De Waard, G.A.; Ong, P.; et al. Meta-Analysis and Systematic Review of Coronary Vasospasm in ANOCA Patients: Prevalence, Clinical Features and Prognosis. Front. Cardiovasc. Med. 2023, 10, 1129159. [Google Scholar] [CrossRef]
- Mehta, P.K.; Huang, J.; Levit, R.D.; Malas, W.; Waheed, N.; Bairey Merz, C.N. Ischemia and No Obstructive Coronary Arteries (INOCA): A Narrative Review. Atherosclerosis 2022, 363, 8–21. [Google Scholar] [CrossRef]
- Chen, W.; Ni, M.; Huang, H.; Cong, H.; Fu, X.; Gao, W.; Yang, Y.; Yu, M.; Song, X.; Liu, M.; et al. Chinese Expert Consensus on the Diagnosis and Treatment of Coronary Microvascular Diseases (2023 Edition). MedComm 2023, 4, e438. [Google Scholar] [CrossRef] [PubMed]
- Mileva, N.; Nagumo, S.; Mizukami, T.; Sonck, J.; Berry, C.; Gallinoro, E.; Monizzi, G.; Candreva, A.; Munhoz, D.; Vassilev, D.; et al. Prevalence of Coronary Microvascular Disease and Coronary Vasospasm in Patients With Nonobstructive Coronary Artery Disease: Systematic Review and Meta-Analysis. JAHA 2022, 11, e023207. [Google Scholar] [CrossRef] [PubMed]
- Mayala, H.A.; Yan, W.; Jing, H.; Shuang-ye, L.; Gui-wen, Y.; Chun-xia, Q.; Ya, W.; Xiao-li, L.; Zhao-hui, W. Clinical Characteristics and Biomarkers of Coronary Microvascular Dysfunction and Obstructive Coronary Artery Disease. J Int Med Res 2019, 47, 6149–6159. [Google Scholar] [CrossRef] [PubMed]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. European Heart Journal 2020, 41, 3504–3520. [Google Scholar] [CrossRef] [PubMed]
- De Lima, J.J.G.; W. Gowdak, L.H.; De Paula, F.J.; Muela, H.C.S.; David-Neto, E.; Bortolotto, L.A. Evaluation of a Protocol for Coronary Artery Disease Investigation in Asymptomatic Elderly Hemodialysis Patients. IJNRD 2018, Volume 11, 303–311. [Google Scholar] [CrossRef]
- Fanning, J.P.; Nyong, J.; Scott, I.A.; Aroney, C.N.; Walters, D.L. Routine Invasive Strategies versus Selective Invasive Strategies for Unstable Angina and Non-ST Elevation Myocardial Infarction in the Stent Era. Cochrane Database of Systematic Reviews 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Barbato, E.; Aarnoudse, W.; Aengevaeren, W.R.; Werner, G.; Klauss, V.; Bojara, W.; Herzfeld, I.; Oldroyd, K.G.; Pijls, N.H.J.; De Bruyne, B.; et al. Validation of Coronary Flow Reserve Measurements by Thermodilution in Clinical Practice. Eur Heart J 2004, 25, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Pijls, N.H.J.; De Bruyne, B.; Smith, L.; Aarnoudse, W.; Barbato, E.; Bartunek, J.; Bech, G.J.W.; Van De Vosse, F. Coronary Thermodilution to Assess Flow Reserve: Validation in Humans. Circulation 2002, 105, 2482–2486. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Jung, J.-H.; Hwang, D.; Park, J.; Fan, Y.; Na, S.-H.; Doh, J.-H.; Nam, C.-W.; Shin, E.-S.; Koo, B.-K. Coronary Flow Reserve and Microcirculatory Resistance in Patients With Intermediate Coronary Stenosis. J Am Coll Cardiol 2016, 67, 1158–1169. [Google Scholar] [CrossRef]
- Usui, E.; Murai, T.; Kanaji, Y.; Hoshino, M.; Yamaguchi, M.; Hada, M.; Hamaya, R.; Kanno, Y.; Lee, T.; Yonetsu, T.; et al. Clinical Significance of Concordance or Discordance between Fractional Flow Reserve and Coronary Flow Reserve for Coronary Physiological Indices, Microvascular Resistance, and Prognosis after Elective Percutaneous Coronary Intervention. EuroIntervention 2018, 14, 798–805. [Google Scholar] [CrossRef]
- Everaars, H.; De Waard, G.A.; Driessen, R.S.; Danad, I.; Van De Ven, P.M.; Raijmakers, P.G.; Lammertsma, A.A.; Van Rossum, A.C.; Knaapen, P.; Van Royen, N. Doppler Flow Velocity and Thermodilution to Assess Coronary Flow Reserve. JACC: Cardiovascular Interventions 2018, 11, 2044–2054. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, M.; Ashokprabhu, N.; Shewale, A.; Pico, M.; Henry, T.D.; Quesada, O. Myocardial Infarction with Non-Obstructive Coronary Arteries (MINOCA). Front. Cardiovasc. Med. 2022, 9, 1032436. [Google Scholar] [CrossRef] [PubMed]
- Bryniarski, K.; Gasior, P.; Legutko, J.; Makowicz, D.; Kedziora, A.; Szolc, P.; Bryniarski, L.; Kleczynski, P.; Jang, I.-K. OCT Findings in MINOCA. JCM 2021, 10, 2759. [Google Scholar] [CrossRef] [PubMed]
- Jigoranu, R.-A.; Roca, M.; Costache, A.-D.; Mitu, O.; Oancea, A.-F.; Miftode, R.-S.; Haba, M. Ștefan C.; Botnariu, E.G.; Maștaleru, A.; Gavril, R.-S.; et al. Novel Biomarkers for Atherosclerotic Disease: Advances in Cardiovascular Risk Assessment. Life 2023, 13, 1639. [Google Scholar] [CrossRef] [PubMed]
- Zhukova, N.S.; Shakhnovich, R.M.; Merkulova, I.N.; Sukhinina, T.S.; Pevzner, D.V.; Staroverov, I.I. [Spontaneous Coronary Artery Dissection]. Kardiologiia 2019, 59, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases. Journal of the American College of Cardiology 2021, 78, 1352–1371. [Google Scholar] [CrossRef] [PubMed]
- Cheema, A.N.; Yanagawa, B.; Verma, S.; Bagai, A.; Liu, S. Myocardial Infarction with Nonobstructive Coronary Artery Disease (MINOCA): A Review of Pathophysiology and Management. Curr Opin Cardiol 2021, 36, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Hayes, S.N.; Tweet, M.S.; Adlam, D.; Kim, E.S.H.; Gulati, R.; Price, J.E.; Rose, C.H. Spontaneous Coronary Artery Dissection: JACC State-of-the-Art Review. J Am Coll Cardiol 2020, 76, 961–984. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.Z.; Amin, L.Z.; Pradipta, A. Takotsubo Cardiomyopathy: A Brief Review. J Med Life 2020, 13, 3–7. [Google Scholar] [CrossRef]
- Kogan, E.A.; Berezovskiy, Y.S.; Blagova, O.V.; Kukleva, A.D.; Bogacheva, G.A.; Kurilina, E.V.; Kalinin, D.V.; Bagdasaryan, T.R.; Semeyonova, L.A.; Gretsov, E.M.; et al. [Miocarditis in Patients with COVID-19 Confirmed by Immunohistochemical]. Kardiologiia 2020, 60, 4–10. [Google Scholar] [CrossRef]
- Timpau, A.-S.; Miftode, R.-S.; Leca, D.; Timpau, R.; Miftode, I.-L.; Petris, A.O.; Costache, I.I.; Mitu, O.; Nicolae, A.; Oancea, A.; et al. A Real Pandora’s Box in Pandemic Times: A Narrative Review on the Acute Cardiac Injury Due to COVID-19. Life 2022, 12, 1085. [Google Scholar] [CrossRef] [PubMed]
- Minha, S.; Gottlieb, S.; Magalhaes, M.A.; Gavrielov-Yusim, N.; Krakover, R.; Goldenberg, I.; Vered, Z.; Blatt, A. Characteristics and Management of Patients with Acute Coronary Syndrome and Normal or Non-Significant Coronary Artery Disease: Results from Acute Coronary Syndrome Israeli Survey (ACSIS) 2004-2010. J Invasive Cardiol 2014, 26, 389–393. [Google Scholar] [PubMed]
- Turgeon, R.D.; Sedlak, T. Use of Preventive Medications in Patients With Nonobstructive Coronary Artery Disease: Analysis of the PROMISE Trial. CJC Open 2021, 3, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Oancea, A.F.; Chipăilă, E.D.; Iov, E.D.; Morariu, P.; Tănase, D.M.; Floria, M. Stem Cell Therapy in Myocardial Infarction: Still Therapeutic Hope? Romanian Journal of Cardiology 2022, 32, 132–137. [Google Scholar] [CrossRef]
- Frederiksen, T.C.; Dahm, C.C.; Preis, S.R.; Lin, H.; Trinquart, L.; Benjamin, E.J.; Kornej, J. The Bidirectional Association between Atrial Fibrillation and Myocardial Infarction. Nat Rev Cardiol 2023, 20, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Oancea, A.F.; Jigoranu, R.A.; Morariu, P.C.; Miftode, R.-S.; Trandabat, B.A.; Iov, D.E.; Cojocaru, E.; Costache, I.I.; Baroi, L.G.; Timofte, D.V.; et al. Atrial Fibrillation and Chronic Coronary Ischemia: A Challenging Vicious Circle. Life 2023, 13, 1370. [Google Scholar] [CrossRef]
- Carrick, R.T.; Benson, B.E.; Bates, O.R.J.; Spector, P.S. Competitive Drivers of Atrial Fibrillation: The Interplay Between Focal Drivers and Multiwavelet Reentry. Front Physiol 2021, 12, 633643. [Google Scholar] [CrossRef] [PubMed]
- Hiraya, D.; Sato, A.; Hoshi, T.; Watabe, H.; Yoshida, K.; Komatsu, Y.; Sekiguchi, Y.; Nogami, A.; Ieda, M.; Aonuma, K. Impact of Coronary Artery Disease and Revascularization on Recurrence of Atrial Fibrillation after Catheter Ablation: Importance of Ischemia in Managing Atrial Fibrillation. Cardiovasc electrophysiol 2019, 30, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.M.F.L. Influence of Inflammation and Atherosclerosis in Atrial Fibrillation. Curr Atheroscler Rep 2017, 19, 2. [Google Scholar] [CrossRef]
- Dobrev, D.; Heijman, J.; Hiram, R.; Li, N.; Nattel, S. Inflammatory Signalling in Atrial Cardiomyocytes: A Novel Unifying Principle in Atrial Fibrillation Pathophysiology. Nat Rev Cardiol 2023, 20, 145–167. [Google Scholar] [CrossRef]
- Harada, M.; Nattel, S. Implications of Inflammation and Fibrosis in Atrial Fibrillation Pathophysiology. Card Electrophysiol Clin 2021, 13, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-F.; Chen, Y.-J.; Lin, Y.-J.; Chen, S.-A. Inflammation and the Pathogenesis of Atrial Fibrillation. Nat Rev Cardiol 2015, 12, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lip, G.Y.H.; Apostolakis, S. Inflammation in Atrial Fibrillation. J Am Coll Cardiol 2012, 60, 2263–2270. [Google Scholar] [CrossRef] [PubMed]
- Pahimi, N.; Rasool, A.H.G.; Sanip, Z.; Bokti, N.A.; Yusof, Z.; W. Isa, W.Y.H. An Evaluation of the Role of Oxidative Stress in Non-Obstructive Coronary Artery Disease. JCDD 2022, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.-Y.; Zhang, J.; Zhang, Y.; Chen, H.; Liu, D.; Ping, P.; Weiss, J.N.; Cai, H. Oxidative Stress in Atrial Fibrillation: An Emerging Role of NADPH Oxidase. J Mol Cell Cardiol 2013, 62, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Karam, B.S.; Chavez-Moreno, A.; Koh, W.; Akar, J.G.; Akar, F.G. Oxidative Stress and Inflammation as Central Mediators of Atrial Fibrillation in Obesity and Diabetes. Cardiovasc Diabetol 2017, 16, 120. [Google Scholar] [CrossRef]
- Korantzopoulos, P.; Letsas, K.; Fragakis, N.; Tse, G.; Liu, T. Oxidative Stress and Atrial Fibrillation: An Update. Free Radic Res 2018, 52, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Ping, Z.; Fangfang, T.; Yuliang, Z.; Xinyong, C.; Lang, H.; Fan, H.; Jun, M.; Liang, S. Oxidative Stress and Pyroptosis in Doxorubicin-Induced Heart Failure and Atrial Fibrillation. Oxid Med Cell Longev 2023, 2023, 4938287. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wang, X.; Yuan, M.; Tian, C.; Li, H.; Yang, X.; Li, X.; Li, Y.; Yang, Y.; Liu, N.; et al. Mechanisms and Treatments of Oxidative Stress in Atrial Fibrillation. Curr Pharm Des 2018, 24, 3062–3071. [Google Scholar] [CrossRef]
- Avula, U.M.R.; Dridi, H.; Chen, B.; Yuan, Q.; Katchman, A.N.; Reiken, S.R.; Desai, A.D.; Parsons, S.; Baksh, H.; Ma, E.; et al. Attenuating Persistent Sodium Current–Induced Atrial Myopathy and Fibrillation by Preventing Mitochondrial Oxidative Stress. JCI Insight 2021, 6, e147371. [Google Scholar] [CrossRef]
- Sovari, A.A. Cellular and Molecular Mechanisms of Arrhythmia by Oxidative Stress. Cardiology Research and Practice 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Nattel, S.; Dobrev, D. The Multidimensional Role of Calcium in Atrial Fibrillation Pathophysiology: Mechanistic Insights and Therapeutic Opportunities. European Heart Journal 2012, 33, 1870–1877. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Gong, M.; He, J.; Xie, B.; Zhang, Z.; Meng, L.; Tse, G.; Zhao, Y.; Bao, Q.; Zhang, Y.; et al. IP3R1/GRP75/VDAC1 Complex Mediates Endoplasmic Reticulum Stress-Mitochondrial Oxidative Stress in Diabetic Atrial Remodeling. Redox Biol 2022, 52, 102289. [Google Scholar] [CrossRef] [PubMed]
- Corban, M.T.; Toya, T.; Ahmad, A.; Lerman, L.O.; Lee, H.-C.; Lerman, A. Atrial Fibrillation and Endothelial Dysfunction. Mayo Clinic Proceedings 2021, 96, 1609–1621. [Google Scholar] [CrossRef]
- Krummen, D.E.; Hebsur, S.; Salcedo, J.; Narayan, S.M.; Lalani, G.G.; Schricker, A.A. Mechanisms Underlying AF: Triggers, Rotors, Other? Curr Treat Options Cardio Med 2015, 17, 14. [Google Scholar] [CrossRef]
- Carnagarin, R.; Kiuchi, M.G.; Ho, J.K.; Matthews, V.B.; Schlaich, M.P. Sympathetic Nervous System Activation and Its Modulation: Role in Atrial Fibrillation. Front. Neurosci. 2019, 12, 1058. [Google Scholar] [CrossRef]
- Corradi, D.; Callegari, S.; Maestri, R.; Benussi, S.; Alfieri, O. Structural Remodeling in Atrial Fibrillation. Nat Rev Cardiol 2008, 5, 782–796. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.; Schwartz, M.J.; Kronmal, R.A.; Kosinski, A.S. Prevalence and Significance of Atrial Fibrillation in Coronary Artery Disease (CASS Registry). The American journal of cardiology 1988, 61, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Endothelial Dysfunction Due to Atrial Fibrillation - Google Academic Available online:. Available online: https://scholar.google.ro/scholar?hl=ro&as_sdt=0%2C5&q=Endothelial+Dysfunction+Due+to++atrial+fibrillation&btnG= (accessed on 27 July 2024).
- Okawa, K.; Sogo, M.; Morimoto, T.; Tsushima, R.; Sudo, Y.; Saito, E.; Ozaki, M.; Takahashi, M. Relationship Between Endothelial Dysfunction and the Outcomes After Atrial Fibrillation Ablation. JAHA 2023, 12, e028482. [Google Scholar] [CrossRef]
- Black, N.; Mohammad, F.; Saraf, K.; Morris, G. Endothelial Function and Atrial Fibrillation: A Missing Piece of the Puzzle? Cardiovasc electrophysiol 2022, 33, 109–116. [Google Scholar] [CrossRef]
- Maida, C.D.; Vasto, S.; Di Raimondo, D.; Casuccio, A.; Vassallo, V.; Daidone, M.; Del Cuore, A.; Pacinella, G.; Cirrincione, A.; Simonetta, I. Inflammatory Activation and Endothelial Dysfunction Markers in Patients with Permanent Atrial Fibrillation: A Cross-Sectional Study. Aging (Albany NY) 2020, 12, 8423. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Arena, R. Endothelial Dysfunction and Pathophysiological Correlates in Atrial Fibrillation. Heart 2009, 95, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Thomas, G.N.; Lip, G.Y.H.; Shantsila, A. Endothelial Function in Patients with Atrial Fibrillation. Annals of Medicine 2020, 52, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Miftode, R.-S.; Costache, I.-I.; Constantinescu, D.; Mitu, O.; Timpau, A.-S.; Hancianu, M.; Leca, D.-A.; Miftode, I.-L.; Jigoranu, R.-A.; Oancea, A.-F.; et al. Syndecan-1: From a Promising Novel Cardiac Biomarker to a Surrogate Early Predictor of Kidney and Liver Injury in Patients with Acute Heart Failure. Life 2023, 13, 898. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Boidin, M.; Buckley, B.J.R.; Lip, G.Y.H.; Thijssen, D.H.J. Endothelial Dysfunction and Vascular Maladaptation in Atrial Fibrillation. Eur J Clin Investigation 2021, 51, e13477. [Google Scholar] [CrossRef] [PubMed]
- Linz, D.; Elliott, A.D.; Hohl, M.; Malik, V.; Schotten, U.; Dobrev, D.; Nattel, S.; Böhm, M.; Floras, J.; Lau, D.H. Role of Autonomic Nervous System in Atrial Fibrillation. International Journal of Cardiology 2019, 287, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Olshansky, B. Interrelationships between the Autonomic Nervous System and Atrial Fibrillation. Progress in cardiovascular diseases 2005, 48, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Parthenakis, F.I.; Patrianakos, A.P.; Skalidis, E.I.; Diakakis, G.F.; Zacharis, E.A.; Chlouverakis, G.; Karalis, I.K.; Vardas, P.E. Atrial Fibrillation Is Associated with Increased Neurohumoral Activation and Reduced Exercise Tolerance in Patients with Non-Ischemic Dilated Cardiomyopathy. International journal of cardiology 2007, 118, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Pfenniger, A.; Geist, G.E.; Arora, R. Autonomic Dysfunction and Neurohormonal Disorders in Atrial Fibrillation. Cardiac electrophysiology clinics 2021, 13, 183–190. [Google Scholar] [CrossRef]
- Aroor, A.R.; DeMarco, V.G.; Jia, G.; Sun, Z.; Nistala, R.; Meininger, G.A.; Sowers, J.R. The Role of Tissue Renin-Angiotensin-Aldosterone System in the Development of Endothelial Dysfunction and Arterial Stiffness. Frontiers in endocrinology 2013, 4, 161. [Google Scholar] [CrossRef]
- El-Maraghi, N.; Genton, E. The Relevance of Platelet and Fibrin Thromboembolism of the Coronary Microcirculation, with Special Reference to Sudden Cardiac Death. Circulation 1980, 62, 936–944. [Google Scholar] [CrossRef]
- Kell, D.B.; Lip, G.Y.; Pretorius, E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024, 12, 891. [Google Scholar] [CrossRef]
- Heusch, G.; Skyschally, A.; Kleinbongard, P. Coronary Microembolization and Microvascular Dysfunction. International journal of cardiology 2018, 258, 17–23. [Google Scholar] [CrossRef]
- Kei, C.Y.; Singh, K.; Dautov, R.F.; Nguyen, T.H.; Chirkov, Y.Y.; Horowitz, J.D. Coronary “Microvascular Dysfunction”: Evolving Understanding of Pathophysiology, Clinical Implications, and Potential Therapeutics. International Journal of Molecular Sciences 2023, 24, 11287. [Google Scholar] [CrossRef]
- Camici, P.G.; d’Amati, G.; Rimoldi, O. Coronary Microvascular Dysfunction: Mechanisms and Functional Assessment. Nature Reviews Cardiology 2015, 12, 48–62. [Google Scholar] [CrossRef]
- Bray, M.A.; Sartain, S.E.; Gollamudi, J.; Rumbaut, R.E. Microvascular Thrombosis: Experimental and Clinical Implications. Translational Research 2020, 225, 105–130. [Google Scholar] [CrossRef]
- Pintea Bentea, G.; Berdaoui, B.; Samyn, S.; Morissens, M.; van de Borne, P.; Castro Rodriguez, J. Particularities of Coronary Physiology in Patients with Atrial Fibrillation: Insights from Combined Pressure and Flow Indices Measurements. Frontiers in Cardiovascular Medicine 2023, 10, 1206743. [Google Scholar] [CrossRef]
- Kochiadakis, G.E.; Skalidis, E.I.; Kalebubas, M.D.; Igoumenidis, N.E.; Chrysostomakis, S.I.; Kanoupakis, E.M.; Simantirakis, E.N.; Vardas, P.E. Effect of Acute Atrial Fibrillation on Phasic Coronary Blood Flow Pattern and Flow Reserve in Humans. European heart journal 2002, 23, 734–741. [Google Scholar] [CrossRef]
- Range, F.T.; Schäfers, M.; Acil, T.; Schäfers, K.P.; Kies, P.; Paul, M.; Hermann, S.; Brisse, B.; Breithardt, G.; Schober, O. Impaired Myocardial Perfusion and Perfusion Reserve Associated with Increased Coronary Resistance in Persistent Idiopathic Atrial Fibrillation. European heart journal 2007, 28, 2223–2230. [Google Scholar] [CrossRef]
- Scarsoglio, S.; Gallo, C.; Saglietto, A.; Ridolfi, L.; Anselmino, M. Impaired Coronary Blood Flow at Higher Heart Rates during Atrial Fibrillation: Investigation via Multiscale Modelling. Computer Methods and Programs in Biomedicine 2019, 175, 95–102. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Kato, S.; Fukui, K.; Iwasawa, T.; Utsunomiya, D.; Kimura, K.; Tamura, K. Impaired Coronary Flow Reserve Evaluated by Phase-Contrast Cine Magnetic Resonance Imaging in Patients with Atrial Fibrillations. Heart Vessels 2021, 36, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Taqueti, V.R.; Everett, B.M.; Murthy, V.L.; Gaber, M.; Foster, C.R.; Hainer, J.; Blankstein, R.; Dorbala, S.; Di Carli, M.F. Interaction of Impaired Coronary Flow Reserve and Cardiomyocyte Injury on Adverse Cardiovascular Outcomes in Patients Without Overt Coronary Artery Disease. Circulation 2015, 131, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Widmer, R.J.; Samuels, B.; Samady, H.; Price, M.J.; Jeremias, A.; Anderson, R.D.; Jaffer, F.A.; Escaned, J.; Davies, J.; Prasad, M. The Functional Assessment of Patients with Non-Obstructive Coronary Artery Disease: Expert Review from an International Microcirculation Working Group. EuroIntervention 2019, 14, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Corcoran, D.; Aetesam-ur-Rahman, M.; Hoole, S.P.; Berry, C.; Perera, D. Diagnosis of Patients with Angina and Non-Obstructive Coronary Disease in the Catheter Laboratory. Heart 2019, 105, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- Ferdinand, K.C.; Samson, R. Nonobstructive Coronary Artery Disease in Women: Risk Factors and Noninvasive Diagnostic Assessment. Cardiovascular Innovations and Applications 2019, 3, 349. [Google Scholar] [CrossRef]
- Rottländer, D.; Saal, M.; Degen, H.; Gödde, M.; Horlitz, M.; Haude, M. Diagnostic Role of Coronary CT Angiography in Paroxysmal or First Diagnosed Atrial Fibrillation. Open Heart 2021, 8, e001638. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.-H.; Dong, J.-Z.; Du, X.; Hu, R.; He, L.; Long, D.-Y.; Sang, C.-H.; Jia, C.-Q.; Feng, L.; Li, X.; et al. Antithrombotic Strategy and Its Relationship with Outcomes in Patients with Atrial Fibrillation and Chronic Coronary Syndrome. J Thromb Thrombolysis 2022, 53, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.C.; Nattel, S.; Macle, L.; Andrade, J.G. Management of Atrial Fibrillation in 2021: An Updated Comparison of the Current CCS/CHRS, ESC, and AHA/ACC/HRS Guidelines. Canadian Journal of Cardiology 2021, 37, 1607–1618. [Google Scholar] [CrossRef] [PubMed]
- Kany, S.; Schnabel, R. Adding to the Evidence or to the Confusion: Dual Antithrombotic Therapy in Chronic Coronary Syndrome and Atrial Fibrillation. Heart 2021, 107, 1690–1691. [Google Scholar] [CrossRef]
- Lopes, R.D.; Vora, A.N.; Liaw, D.; Granger, C.B.; Darius, H.; Goodman, S.G.; Mehran, R.; Windecker, S.; Alexander, J.H. An Open-Label, 2 × 2 Factorial, Randomized Controlled Trial to Evaluate the Safety of Apixaban vs. Vitamin K Antagonist and Aspirin vs. Placebo in Patients with Atrial Fibrillation and Acute Coronary Syndrome and/or Percutaneous Coronary Intervention: Rationale and Design of the AUGUSTUS Trial. American Heart Journal 2018, 200, 17–23. [Google Scholar] [CrossRef]
- Manocha, P.; Bavikati, V.; Langberg, J.; Lloyd, M.S. Coronary Artery Disease Potentiates Response to Dofetilide for Rhythm Control of Atrial Fibrillation. Pacing Clinical Electrophis 2012, 35, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Pantlin, P.G.; Bober, R.M.; Bernard, M.L.; Khatib, S.; Polin, G.M.; Rogers, P.A.; Morin, D.P. Class 1C Antiarrhythmic Drugs in Atrial Fibrillation and Coronary Artery Disease. Cardiovasc electrophysiol 2020, 31, 607–611. [Google Scholar] [CrossRef]
- Haegeli, L.M.; Calkins, H. Catheter Ablation of Atrial Fibrillation: An Update. European heart journal 2014, 35, 2454–2459. [Google Scholar] [CrossRef] [PubMed]
- Akboga, M.K.; Yilmaz, S.; Department of Cardiology, Faculty of Medicine, Pamukkale University; Denizli-Turkey; Yalcin, R. ; Department of Cardiology, Faculty of Medicine, Gazi University; Ankara-Turkey Prognostic Value of CHA2DS2-VASc Score in Predicting High SYNTAX Score and in-Hospital Mortality for Non-ST Elevation Myocardial Infarction in Patients without Atrial Fibrillation. The Anatolian Journal of Cardiology 2021, 25, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Wojszel, Z.B.; Kuźma, Ł.; Rogalska, E.; Kurasz, A.; Dobrzycki, S.; Sobkowicz, B.; Tomaszuk-Kazberuk, A. A Newly Defined CHA2DS2-VA Score for Predicting Obstructive Coronary Artery Disease in Patients with Atrial Fibrillation—A Cross-Sectional Study of Older Persons Referred for Elective Coronary Angiography. JCM 2022, 11, 3462. [Google Scholar] [CrossRef] [PubMed]
- Worme, M.D.; Tan, M.K.; Armstrong, D.W.; Yan, A.T.; Tan, N.S.; Brieger, D.; Budaj, A.; Gore, J.M.; López-Sendón, J.; Van de Werf, F. Previous and New Onset Atrial Fibrillation and Associated Outcomes in Acute Coronary Syndromes (from the Global Registry of Acute Coronary Events). The American Journal of Cardiology 2018, 122, 944–951. [Google Scholar] [CrossRef]
- C. K.; Chen, G.; Southern, D.A.; Galbraith, P.D.; Anderson, T.J. Impact of Clinical Presentation and Presence of Coronary Sclerosis on Long-Term Outcome of Patients with Non-Obstructive Coronary Artery Disease. BMC Cardiovasc Disord 2018, 18, 173. [Google Scholar] [CrossRef]




| Diagnostic tool | Role of the diagnostic tool |
|---|---|
| Cardiac biomarkers (especially high-sensitive troponin) [23] | May differentiate ANOCA and INOCA from MINOCA by showing the status of myocardial injury |
| Non-Invasive Tests to detect ischemia: exercise tolerance test, transthoracic doppler echocardiography, myocardial contrast echocardiography, myocardial perfusion imaging, positron emission tomography, stress echocardiography and cardiac MRI [24] | May differentiate ANOCA (without signs of ischemia) from INOCA (the signs of ischemia are present) |
| Coronary Angiography [25] | Gold standard to exclude obstructive CAD |
| Invasive tests during coronary angiography: vasoreactivity test using intracoronary acetylcholine, FFR, IFR, CFR, IMR, HMR [26] | May differentiate the type of NOCAD regarding its physiopathology |
| Type of SCAD | Description |
|---|---|
| Type 1 (contrast staining of false lumen) | It has contrast stains in the arterial wall with multiple radiolucent lumens with or without slow contrast clearing. |
| Type 2 (long diffuse and smooth narrowing) | It shows diffuse, smooth, usually, 20–30 mm narrowing with varying severity. |
| Type 3 (focal/ tubular stenosis) | It shows focal or tubular stenosis that mimics atherosclerosis. |
| Type 4 (occlusion of the vessel) | There is no antegrade flux distal to the lesion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
