Submitted:
27 July 2024
Posted:
30 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Two Forms of Entropy
2.1. Caloric Form of Entropy in classical physics
2.2. Probabilistic Based Entropy in classical physics
2.2.1. Main points of and SED
2.2.2. for a 1D SHO
2.2.3. for N 1D SHOs
2.2.4. for the nonrelativistic classical hydrogen model
2.2.5. Some summary points on
3. Calculations in SED Using
3.1. N 3D Electric Dipole SHOs Bathed in ZPP Classical Electromagnetic Radiation
3.1.1. All Distances and Temperature van der Waals Conditions
3.1.2. Unretarded van der Waals Condition and Resonant SHO Approximation
3.1.3. Dynamics Involving Cavities and Fields, Using
4. Concluding Remarks
References
- Teitelboim, C. Splitting of the maxwell tensor: Radiation reaction without advanced fields. Phys. Rev. D, 1970, 1, 1572–1582. [Google Scholar] [CrossRef]
- Teitelboim, C.; Villarroel, D.; van Weert, C.G. Classical electrodynamics of retarded fields and point particles. Riv. Del Nuovo Cimento 1980, 3, 1–64. [Google Scholar] [CrossRef]
- Marshall, T.W. Statistical electrodynamics. Proc. Camb. Phil. Soc. 1965, 61, 537–546. [Google Scholar] [CrossRef]
- Boyer, T.H. Derivation of the blackbody radiation spectrum without quantum assumptions. Phys. Rev. 1969, 182, 1374–1383. [Google Scholar] [CrossRef]
- Cole, D.C. Derivation of the classical electromagnetic zero–point radiation spectrum via a classical thermodynamic operation involving van der waals forces. Phys. Rev. A 1990, 42, 1847–1862. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.C. Entropy and other thermodynamic properties of classical electromagnetic thermal radiation. Phys. Rev. A 1990, 42, 7006–7024. [Google Scholar] [CrossRef]
- Cole, D.C. Connection of the classical electromagnetic zero–point radiation spectrum to quantum mechanics for dipole harmonic oscillators. Phys. Rev. A 1992, 45, 8953–8956. [Google Scholar] [CrossRef]
- Cole, D.C. Reinvestigation of the thermodynamics of blackbody radiation via classical physics. Phys. Rev. A 1992, 45, 8471–8489. [Google Scholar] [CrossRef]
- Cole, D.C. Thermodynamics of blackbody radiation via classical physics for arbitrarily shaped cavities with perfectly conducting walls. Found. Phys. 2000, 30, 1849–1867. [Google Scholar] [CrossRef]
- Cole, D.C. Connections between the thermodynamics of classical electrodynamic systems and quantum mechanical systems for quasielectrostatic operations. Found. Phys. 1999, 29, 1819–1847. [Google Scholar] [CrossRef]
- Pe na, L.d.; Cetto, A.M. The Quantum Dice - An Introduction to Stochastic Electrodynamics. Kluwer Acad. Publishers, Kluwer Dordrecht, 1996.
- Boyer, T.H. Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero–point radiation. Phys. Rev. D 1975, 11, 790–808. [Google Scholar] [CrossRef]
- Cole, D.C. World Scientific, Singapore, 1993. pp. 501–532 in compendium book, “Essays on Formal Aspects of Electromagnetic Theory,” edited by A. Lakhtakia.
- Boyer, T.H. The classical vacuum. Sci. Am. 1985, 253, 70–78. [Google Scholar] [CrossRef]
- Boyer, T.H. Stochastic electrodynamics: The closest classical approximation to quantum theory. Atoms 2019, 7, 29. [Google Scholar] [CrossRef]
- Boyer, T.H. General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillator systems. Phys. Rev. D 1975, 11, 809–830. [Google Scholar] [CrossRef]
- Boyer, T.H. Retarded van der waals forces at all distances derived from classical electrodynamics with classical electromagnetic zero–point radiation. Phys. Rev. A 1973, 7, 1832–1840. [Google Scholar] [CrossRef]
- Renne, M.J. Physica 1971, 53, 193. 53.
- Cole, D.C. Correlation functions for homogeneous, isotropic random classical electromagnetic radiation and the electromagnetic fields of a fluctuating classical electric dipole. Phys. Rev. D 1986, 33, 2903–2915. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.C.; Zou, Y. Quantum mechanical ground state of hydrogen obtained from classical electrodynamics. Phys. Lett. A 2003, 317, 14–20. [Google Scholar] [CrossRef]
- Cole, D.C. Simulation results related to stochastic electrodynamics. In AIP Conference Proceedings, No. 810, 2006, number 810, pages 99 – 113, USA.
- Nieuwenhuizen, T.M.; Liska, M.T.P. Simulation of the hydrogen ground state in stochastic electrodynamics. Phys. Scr. 2015, 2015, 014006. [Google Scholar] [CrossRef]
- Nieuwenhuizen, T.M.; Liska, M.T.P. Simulation of the hydrogen ground state in stochastic electrodynamics-2: Inclusion of relativistic corrections. Found. Phys. 2015, 45, 1190–1202. [Google Scholar] [CrossRef]
- Boyer, T.H. Unfamiliar trajectories for a relativistic particle in a kepler or coulomb potential potential. Am. J. Phys. 2004, 75, 992–997. [Google Scholar] [CrossRef]
- Boyer, T.H. Classical zero-point radiation and relativity: The problem of atomic collapse revisited. Found. Phys. 2016, 46, 880–90. [Google Scholar] [CrossRef]
- Boyer, T.H. Relativity and radiation balance for the classical hydrogen atom in classical electromagnetic zero-point radiation. Eur. J. Phys. 2020, 42, 025205. [Google Scholar] [CrossRef]
- Cole, D.C.; Zou, Y. Analysis of orbital decay time for the classical hydrogen atom interacting with circularly polarized electromagnetic radiation. Phys. Rev. E 2004, 69, 016601–016612. [Google Scholar] [CrossRef]
- Cole, D.; Zou, Y. Subharmonic resonance behavior for the classical hydrogen atomic system. J. Sci. Comput. (USA) 2009, 39, 1–27. [Google Scholar] [CrossRef]
- Cole, D.C. Subharmonic resonance and critical eccentricity for the classical hydrogen atomic system. Eur. Phys. J. D - At. Mol. Opt. Plasma Phys. 2018, 72, 200. [Google Scholar] [CrossRef]
- Boyer, T.H. Any classical description of nature requires classical electromagnetic zero-point radiation. Am. J. Phys. 2011, 79, 1163–1167. [Google Scholar] [CrossRef]
- Boyer, T.H. Interference between source-free radiation and radiation from sources: Particle-like behavior for classical radiation. Am. J. Phys. 2017, 85, 670. [Google Scholar] [CrossRef]
- Boyer, T.H. Particle brownian motion due to random classical radiation: superfluid-like behavior in the presence of classical zero-point radiation. Eur. J. Phys. 2020, 41, 055103. [Google Scholar] [CrossRef]
- Boyer, T.H. Classical statistical thermodynamics and electromagnetic zero-point radiation. Phys. Rev. 1969, 186, 1304–1318. [Google Scholar] [CrossRef]
- Zemansky, M.W.; Dittman, R.H. Heat and Thermodynamics. McGraw–Hill, New York, 1981.
- Cole, D.C. Two new methods in stochastic electrodynamics for analyzing the simple harmonic oscillator and possible extension to hydrogen. Physics, 2022; 229–246. [Google Scholar]
- Cole, D.C. Probability calculations within stochastic electrodynamics. Front. Phys. 2020, 8, 127. [Google Scholar] [CrossRef]
- Cole, D.C. Energy considerations of classical electromagnetic zero-point radiation and a specific probability calculation in stochastic electrodynamics. Atoms 2019, 7, 50. [Google Scholar] [CrossRef]
- Marshall, T.W. Random electrodynamics. Proc. R. Soc. London, Ser. A 1963, 276, 475–491. [Google Scholar]
- Reif, F. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York, 1965.
- NIST Digital Library of Mathematical Functions. 5.19.4, http://dlmf.nist.gov/5.19 E4, Release 1.0.6 of 2013-05-06.
- Bohm, D. Quantum Theory. Prentice–Hall, Englewood Cliffs, New Jersey, 1951.
- Boyer, T.H. Temperature dependence of van der waals forces in classical electrodynamics with classical electromagnetic zero–point radiation. Phys. Rev. A 1975, 11, 1650–1663. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
