Submitted:
24 July 2024
Posted:
24 July 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Materials and Methods
Study Subjects
Ophthalmic Examinations and Blood Tests
Oxylipins Analysis
Statistical Analysis
Results
Demographics and Clinical Examinations of the Study Subjects
Identification of oxylipins in aqueous humor of primary open angle glaucoma subjects
Discussion
Supplementary Materials
Acknowledgments
References
- JAYARAM H, KOLKO M, FRIEDMAN D S, et al. Glaucoma: now and beyond[J]. Lancet (London, England), 2023, 402(10414): 1788-1801.
- STEIN J D, KHAWAJA A P, WEIZER J S. Glaucoma in Adults-Screening, Diagnosis, and Management: A Review[J]. JAMA, 2021, 325(2): 164-174.
- JAMMAL A A, THOMPSON A C, MARIOTTONI E B, et al. Impact of Intraocular Pressure Control on Rates of Retinal Nerve Fiber Layer Loss in a Large Clinical Population[J]. Ophthalmology, 2021, 128(1): 48-57.
- SUSANNA B N, OGATA N G, JAMMAL A A, et al. Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure[J]. Ophthalmology, 2019, 126(12): 1640-1646.
- CHEN Y, LIN Y, VITHANA E N, et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma[J]. Nature Genetics, 2014, 46(10): 1115-1119.
- NUSINOVICI S, LI H, THAKUR S, et al. High-Density Lipoprotein 3 Cholesterol and Primary Open-Angle Glaucoma: Metabolomics and Mendelian Randomization Analyses[J]. Ophthalmology, 2022, 129(3): 285-294.
- THORLEIFSSON G, WALTERS G B, HEWITT A W, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma[J]. Nature Genetics, 2010, 42(10): 906-909.
- FU C, XU J, CHEN S-L, et al. Profile of Lipoprotein Subclasses in Chinese Primary Open-Angle Glaucoma Patients[J]. International Journal of Molecular Sciences, 2024, 25(8):.
- XU J, FU C, SUN Y, et al. Untargeted and Oxylipin-Targeted Metabolomics Study on the Plasma Samples of Primary Open-Angle Glaucoma Patients[J]. Biomolecules, 2024, 14(3):.
- LUO N, CONWELL M D, CHEN X, et al. Primary cilia signaling mediates intraocular pressure sensation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12871-12876.
- ZENG Q, GONG Y, ZHU N, et al. Lipids and lipid metabolism in cellular senescence: Emerging targets for age-related diseases[J]. Ageing Research Reviews, 2024, 97: 102294.
- NAYEEM M, A. Role of oxylipins in cardiovascular diseases[J]. Acta Pharmacologica Sinica, 2018, 39(7): 1142-1154.
- AZBUKINA N V, CHISTYAKOV D V, GORIAINOV S V, et al. Targeted Lipidomic Analysis of Aqueous Humor Reveals Signaling Lipid-Mediated Pathways in Primary Open-Angle Glaucoma[J]. Biology, 2021, 10(7):.
- TANG Y, PAN Y, CHEN Y, et al. Metabolomic Profiling of Aqueous Humor and Plasma in Primary Open Angle Glaucoma Patients Points Towards Novel Diagnostic and Therapeutic Strategy[J]. Frontiers In Pharmacology, 2021, 12: 621146.
- LI K, ZHAO J, WANG M, et al. The Roles of Various Prostaglandins in Fibrosis: A Review[J]. Biomolecules, 2021, 11(6):.
- BUISSET A, GOHIER P, LERUEZ S, et al. Metabolomic Profiling of Aqueous Humor in Glaucoma Points to Taurine and Spermine Deficiency: Findings from the Eye-D Study[J]. Journal of Proteome Research, 2019, 18(3): 1307-1315.
- RIAPOSOVA L, KIM S H, HANYALOGLU A C, et al. Prostaglandin F2α requires activation of calcium-dependent signalling to trigger inflammation in human myometrium[J]. Frontiers In Endocrinology, 2023, 14: 1150125.
- BREMNER F, D. Putting raised intraocular pressure in context[J]. Lancet (London, England), 2015, 386(9988): 102.
- CHEN Z-Y, XIAO H-W, DONG J-L, et al. Gut Microbiota-Derived PGF2α Fights against Radiation-Induced Lung Toxicity through the MAPK/NF-κB Pathway[J]. Antioxidants (Basel, Switzerland), 2021, 11(1):.
- HELMERSSON-KARLQVIST J, ÄRNLöV J, LARSSON A, et al. Prostaglandin F2α formation is associated with mortality in a Swedish community-based cohort of older males[J]. European Heart Journal, 2015, 36(4): 238-243.
- HE R, CHEN Y, CAI Q. The role of the LTB4-BLT1 axis in health and disease[J]. Pharmacological Research, 2020, 158: 104857.
- YOKOMIZO T, SHIMIZU T. The leukotriene B4 receptors BLT1 and BLT2 as potential therapeutic targets[J]. Immunological Reviews, 2023, 317(1): 30-41.
- GONG M, DUAN H, WU F, et al. Berberine Alleviates Insulin Resistance and Inflammation via Inhibiting the LTB4-BLT1 Axis[J]. Frontiers In Pharmacology, 2021, 12: 722360.
- GERSTMEIER J, SEEGERS J, WITT F, et al. Ginkgolic Acid is a Multi-Target Inhibitor of Key Enzymes in Pro-Inflammatory Lipid Mediator Biosynthesis[J]. Frontiers In Pharmacology, 2019, 10: 797.
- ANITA N Z, KWAN F, RYOO S W, et al. Cytochrome P450-soluble epoxide hydrolase derived linoleic acid oxylipins and cognitive performance in type 2 diabetes[J]. Journal of Lipid Research, 2023, 64(7): 100395.
- NIEMAN D C, SHANELY R A, LUO B, et al. Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2014, 307(1): R68-R74.
- WANG W, YANG J, EDIN M L, et al. Targeted Metabolomics Identifies the Cytochrome P450 Monooxygenase Eicosanoid Pathway as a Novel Therapeutic Target of Colon Tumorigenesis[J]. Cancer Research, 2019, 79(8): 1822-1830.
- GILROY D W, EDIN M L, DE MAEYER R P H, et al. CYP450-derived oxylipins mediate inflammatory resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): E3240-E3249.
- WARNER D, VATSALYA V, ZIRNHELD K H, et al. Linoleic Acid-Derived Oxylipins Differentiate Early Stage Alcoholic Hepatitis From Mild Alcohol-Associated Liver Injury[J]. Hepatology Communications, 2021, 5(6): 947-960.
- JIAN W, LEE S H, WILLIAMS M V, et al. 5-Lipoxygenase-mediated endogenous DNA damage[J]. The Journal of Biological Chemistry, 2009, 284(25): 16799-16807.
- BADRANI J H, CAVAGNERO K, EASTMAN J J, et al. Lower serum 15-HETE level predicts nasal ILC2 accumulation during COX-1 inhibition in AERD[J]. The Journal of Allergy and Clinical Immunology, 2023, 152(5):.
- LI J, RAO J, LIU Y, et al. 15-Lipoxygenase promotes chronic hypoxia-induced pulmonary artery inflammation via positive interaction with nuclear factor-κB[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33(5): 971-979.
- MYER C, PEREZ J, ABDELRAHMAN L, et al. Differentiation of soluble aqueous humor metabolites in primary open angle glaucoma and controls[J]. Experimental Eye Research, 2020, 194: 108024.
- CABRERIZO J, URCOLA J A, VECINO E. Changes in the Lipidomic Profile of Aqueous Humor in Open-Angle Glaucoma[J]. Journal of Glaucoma, 2017, 26(4): 349-355.
- PULUKOOL S K, BHAGAVATHAM S K S, KANNAN V, et al. Elevated dimethylarginine, ATP, cytokines, metabolic remodeling involving tryptophan metabolism and potential microglial inflammation characterize primary open angle glaucoma[J]. Scientific Reports, 2021, 11(1): 9766.





| POAG (n = 17) | Control (n = 15) | P | |
| Age (years) | 64.71 ± 10.31 | 66.47 ± 7.74 | 0.593a |
| Sex (male/female) | 15/2 | 12/3 | 0.645 b |
| Height (m) | 1.61 ± 0.09 | 1.64 ± 0.05 | 0.307 a |
| Weight (kg) | 60.90 ± 8.22 | 64.20 ± 7.86 | 0.256 a |
| BMI(kg/m2) | 24.31 ± 2.50 | 23.51 ± 2.75 | 0.399 a |
| SBP (mmHg) | 137.88 ± 18.97 | 133.60 ± 15.56 | 0.494 a |
| DBP (mmHg) | 80.00 ± 12.83 | 85.73 ± 14.31 | 0.152 a |
| WBC (*109/L) | 7.48 ± 2.55 | 7.03 ± 2.09 | 0.738 c |
| Neu (*109/L) | 5.08 ± 1.57 | 4.65 ± 1.90 | 0.486 a |
| Lym (*109/L) | 1.95 ± 0.74 | 2.27 ± 0.68 | 0.225 a |
| Mono (*109/L) | 1.05 ± 1.91 | 0.54 ± 0.22 | 0.317 a |
| Eos (*109/L) | 0.13 ± 0.10 | 0.20 ± 0.14 | 0.178 a |
| Baso (*109/L) | 0.16 ± 0.24 | 0.07 ± 0.06 | 0.147 a |
| Glucose (mmol/L) | 6.59 ± 2.02 | 6.02 ± 0.94 | 0.992a |
| TC (mmol/L) | 4.96 ± 1.08 | 5.52 ± 0.59 | 0.090a |
| TG (mmol/L) | 1.18 ± 0.41 | 1.16 ± 0.50 | 0.942a |
| HDL (mmol/L) | 1.41 ± 0.29 | 1.65 ± 0.36 | 0.041a |
| LDL (mmol/L) | 3.14 ± 0.94 | 3.37 ± 0.71 | 0.442a |
| Apo-A1 (g/L) | 1.36 ± 0.27 | - | - |
| Apo-B (g/L) | 1.03 ± 0.22 | - | - |
| Apo-A1/Apo-B | 0.77 ± 0.14 | - | - |
| LPa (mg/L) | 124.58 ± 93.28 | - | - |
| POAG (n = 12) | Control (n = 15) | P | |
| Laterality (R/L) | 6/6 | 10/5 | 0.452 b |
| BCVA (logMAR) | 0.65 ± 0.85 | 0.24 ± 0.24 | 0.085 c |
| IOP (mmHg) | 23.52 ± 8.46 | 13.53 ± 1.99 | < 0.001 a* |
| AL (mm) | 23.31 ± 1.05 | 23.42 ± 0.79 | 0.751 a |
| CCT (µm) | 547.63 ± 46.01 | 536.46 ± 44.85 | 0.541 a |
| ACD (mm) | 3.10 ± 0.33 | 3.17 ± 0.27 | 0.557 a |
| Macular thickness (µm) | 237.40 ± 33.25 | - | - |
| RNFL thickness (µm) | 58.10 ± 7.99 | - | - |
| C/D | 0.78 ± 0.16 | - | - |
| S-pRNFL (µm) | 70.20 ± 12.24 | - | - |
| I-pRNFL (µm) | 60.50 ± 12.34 | - | - |
| N-pRNFL (µm) | 56.10 ± 8.56 | - | - |
| T-pRNFL (µm) | 48.40 ± 11.13 | - | - |
| Disc Rim Area (mm2) | 0.69 ± 0.34 | - | - |
| Disk area (mm2) | 1.95 ± 0.35 | - | - |
| Cup volume (mm3) | 0.53 ± 0.43 | - | - |
| VF-MD (dB) | -23.18 ± 5.49 | - | - |
| VF-PSD (dB) | 8.17 ± 2.16 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
