Submitted:
19 July 2024
Posted:
22 July 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results
2.1. Antibacterial Activity
2.2. In Silico Calculations
2.2.1. Molinspiration Calculations
2.2.2. Osiris Calculations
2.2.3. SwissADME Calculations
3. Discussion
4. Materials and Methods
4.1. Antibacterial Activity
4.2. Molinspiration Calculations
4.3. SwissADME Calculations
4.4. Osiris Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, W.; Zhang, Y.; Riaz, L.; Yang, Q.; Du, B.; Wang, R. Multiple antibiotic resistance and DNA methylation in Enterobacteriaceae isolates from different environments. J. Hazard. Mater. 2021, 402, 123822. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: part 1: causes and threats. PT. 2015, 40b, 277–283. [Google Scholar] [PubMed]
- Behera, S.; Mohanty, P.; Behura, R.; Nath, B.; Barick, A.K.; Jali, B.R. Antibacterial Properties of Quinoline Derivatives: A Mini-Review. Biointerface Res. Appl. Chem. 2022, 12, 6078–6092. [Google Scholar] [CrossRef]
- Mistry, B.M.; Jauhari, S. Synthesis and in vitro antimicrobial and anti-tubercular evaluation of some quinoline-based azitidinone and thiazolidinone analogues. Med. Chem. Res. 2013, 22, 635–646. [Google Scholar] [CrossRef]
- Liu, B.; Li, F.; Zhou, T.; Tang, X.-Q.; Hu, G.-W. Quinoline Derivatives with Potential Activity Against Multidrug-resistant Tuberculosis. J. Heterocycl. Chem. 2018, 55, 1863–1873. [Google Scholar] [CrossRef]
- De la Guardia, C.; Stephens, D.E.; Dang, H.T.; Quijada, M.; Larionov, O.V.; Lleonart, R. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules 2018, 23, 672. [Google Scholar] [CrossRef]
- Krishna, P. Chemoselective synthesis of 5-amino-7-bromoquinolin-8-yl sulfonate derivatives and their antimicrobial evaluation. Phosphorus, Sulfur, Silicon Relat. Elem. 2018, 193, 685–690. [Google Scholar] [CrossRef]
- Rbaa, M.; Oubihi, A.; Anouar, E.H.; Ouhssine, M.; Almalki, F.; Ben Hadda, T.; Zarrouk, A.; Lakhrissi, B. Synthesis of new heterocyclic systems oxazino derivatives of 8-Hydroxyquinoline: Drug design and POM analyses of substituent effects on their potential antibacterial properties. Chem. Data Coll., 2019, 24, 100306. [Google Scholar] [CrossRef]
- Rbaa, M.; Jabli, S.; Lakhrissi, Y.; Ouhssine, M.; Almalki, F.; Ben Hadda, T.; Messgo-Moumene, S.; Zarrouk, A.; Lakhrissi, B. Synthesis, antibacterial properties and bioinformatics computational analyses of novel 8-hydroxyquinoline derivatives. Heliyon 2019, 5, e02689. [Google Scholar] [CrossRef]
- Yurttaş, L.; Kubilay, A.; Evren, A.E.; Kısacık, İ.; Karaca Gençer, H. Synthesis of some novel 3, 4, 5-trisubstituted Triazole derivatives bearing quinoline ring and evaluation of their antimicrobial activity. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195, 763–773. [Google Scholar] [CrossRef]
- El Faydy, M.; Djassinra, T.; Haida, S.; Rbaa, M.; Ounine, K.; Kribii, A.; Lakhrissi, B. Synthesis and investigation of antibacterial and antioxidants properties of some new 5-subsituted-8-Hydroxyquinoline derivatives. J. Mater. Environ. Sci. 2017, 8, 2028–2508. [Google Scholar]
- El Faydy, M.; Dahaieh, N.; Ounine, K.; Rastija, V.; Jamalis, J.; Zarrouk, A.; Ben Hadda, T.; Lakhrissi, B. Synthesis and antimicrobial activity evaluation of some new 7-substituted quinolin-8-ol derivatives: POM analyses, docking, and identification of antibacterial pharmacophore sites. Chem. Data Coll. 2021, 31, 100593. [Google Scholar] [CrossRef]
- Fekadu, M.; Zeleke, D.; Abdi, B.; Guttula, A.; Eswaramoorthy, R.; Melaku, Y. Synthesis, in silico molecular docking analysis, pharmacokinetic properties and evaluation of antibacterial and antioxidant activities of fluoroquinolines. BMC Chemistry 2022, 16, 1. [Google Scholar] [CrossRef]
- Shangguan, G.; Xing, F.; Qu, X.; Mao, J.; Zhao, D.; Zhao, X.; Ren, J. DNA binding specificity and cytotoxicity of novel antitumor agent Ge132 derivatives. Bioorg. Med. Chem. Lett. 2005, 15, 2962–2965. [Google Scholar] [CrossRef]
- Zhu, X.-F.; Zhang, J.; Sun, S.; Guo, Y.-C.; Cao, S.-X.; Zhao, Y.-F. Synthesis and structure-activity relationships study of A-Aminophosphonate derivatives containing a Quinoline moiety. Chin. Chem. Lett. 2017, 28, 1514–1518. [Google Scholar] [CrossRef]
- Wykowski, R.; Fuentefria, A.M.; de Andrade, S.F. Antimicrobial activity of clioquinol and nitroxoline: a scoping review. Arch Microbiol. 2022, 204, 535. [Google Scholar] [CrossRef]
- Mehra, R.; Khan, I. A.; Nargotra, A. Anti-tubercular drug discovery: in silico implications and challenges. Eur. J. Pharm. Sci. 2017, 104, 1–15. [Google Scholar] [CrossRef]
- Jarrahpour, A.; Motamedifar, M.; Zarei, M.; Youssoufi, M.H.; Mimouni, M.; Chohan, Z.H.; Ben Hadda, T. Petra, Osiris and Molinspiration together as a guide in drug design: predictions and correlation structure/antibacterial activity relationships of new N-sulfonyl monocyclic b-lactams (Part II). Phosphorus, Sulfur, Silicon Relat. Elem. 2010, 185, 491–497. [Google Scholar] [CrossRef]
- Bhat, A.R.; Dongre, R.S.; Ganie, P.A. Petra, Osiris and Molinspiration: A Computational Bioinformatic Platform for Experimental in vitro Antibacterial Activity of Annulated Uracil Derivatives. Organic Medicinal Chem I. J. 2017, 1, 555565. [Google Scholar] [CrossRef]
- MolinspirationCheminformatic. Available online: http://www.molinspiration.com (accessed on 10th January 2024).
- Lipinski, C.A. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Reich, J.R.; Rufener, C. OSIRIS, an Entirely In-House Developed Drug Discovery Informatics System. J. Chem. Inf. Model. 2009, 49, 232–246. [Google Scholar] [CrossRef]
- Gasteiger, J. Empirical Methods for the Calculation of Physicochemical Data of Organic Compounds. In Physical Property Prediction in Organic Chemistry; Jochum, C., Hicks, M.G., Sunkel, J., Eds.; Springer Verlag: Heidelberg, Germany, 1988; pp. 119–138. [Google Scholar]
- SwissDrugDesign. https://dev.molecular-modelling.ch/swiss-drug-design.html.
- Maliar, T.; Maliarová, M.; Purdešová, A.; Jankech, T.; Gerhardtová, I.; Beňovič, P.; Dvořáček, V.; Jágr, M.; Viskupičová, J. The Adapted POM Analysis of Avenanthramides In Silico. Pharmaceuticals 2023, 16, 717. [Google Scholar] [CrossRef]
- Ayar, A.; Aksahin, M.; Mesci, S.; Yazgan, B.; Gül, M.; Yıldırım, T. Antioxidant, Cytotoxic Activity and Pharmacokinetic Studies by Swiss Adme, Molinspiration, Osiris and DFT of PhTAD-substituted Dihydropyrrole Derivatives. Curr. Comput. Aided Drug Des. 2022, 18, 52–63. [Google Scholar] [CrossRef]
- Živković, J.V.; Kalauzović, S.G.; Milosavljević, M.R.; Kalauzović, K.G. In silico evaluation of selected benzimidazole derivatives in the discovery of new potent antimicrobial agents. Acta Med. Medianae 2019, 58, 106–115. [Google Scholar] [CrossRef]
- Apan, A.; Casoni, D.; Leonte, D.; Pop, C.; Iaru, I.; Mogoșan, C.; Zaharia, V. Heterocycles 52: The Drug-Likeness Analysis of Anti-Inflammatory Thiazolo[3,2-b][1,2,4]triazole and Imidazo[2,1-b][1,3,4]thiadiazole Derivatives. Pharmaceuticals 2024, 17, 295. [Google Scholar] [CrossRef]
- Srivastava, R. Theoretical Studies on the Molecular Properties, Toxicity, and Biological Efficacy of 21 New Chemical Entities. ACS Omega, 2489. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717–42730. [Google Scholar] [CrossRef]
- Osiris Property Explorer. Actelion Pharmaceuticals Ltd.: Allschwil, Switzerland, 2010. Available online: http://www.organic-chemistry.org/prog/peo/ (accessed on 12th January 2024).
- SwissAdme. http://www.swissadme.ch (accessed on 21th February 2024).
- CAS SciFinder®. https://scifinder-n.cas.org (accessed on 18th December 2023).
- Clark, D.E.; Pickett, S.D. Computational methods for the prediction of ‘drug-likeness’. Drug Discov. Today 2000, 5, 49–58. [Google Scholar] [CrossRef]
- Supuran, C.T. Special Issue: Sulfonamides. Molecules 2017, 22, 1642. [Google Scholar] [CrossRef]
- Supuran, C.T.; Casini, A.; Scozzafava, A. Protease inhibitors of the sulfonamide type: Anticancer, antiinflammatory, and antiviral agents (Review). Med. Res. Rev. 2003, 23, 535–558. [Google Scholar] [CrossRef]
- Hans, R.H.; Guantai, E.M.; Lategan, C.; Smith, P.J.; Wanc, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg Med Chem Lett. 2010, 20, 942–944. [Google Scholar] [CrossRef]
- Maretina, I.A.; Trofimov, B.A. Enediyne antibiotics and their models: new potential of acetylene chemistry. Russ. Chem. Rev. 2006, 75, 825–845. [Google Scholar] [CrossRef]
- Azerang, P.; Rezayan, A.H.; Sardari, S.; Kobarfard, F.; Bayat, M.; Tabib, K. Synthesis and biological evaluation of propargyl acetate derivatives as anti-mycobacterial agents. DARU J. Pharm. Sci. 2012, 20, 90. [Google Scholar] [CrossRef]
- Warner, V.D.; Sane, J.N.; Mirth, D.B.; Turesky, S.S.; Soloway, B. Synthesis and in vitro evaluation of 8-hydroxyquinoline analogs as inhibitors of dental plaque. J. Med. Chem. 1976, 19, 167–169. [Google Scholar] [CrossRef]
- Zurawski, V.R.; Stout, D.M.; Nitz, T.J.; Youdim, M.B.H.; Weinreb, O. Preparation of quinoline derivatives as neuroprotective iron chelators and monoamine oxidase inhibitors useful for treatment of neurodegenerative diseases, diabetes, and other disorders. US20140186280, 4.3.2014.
- Miao, W.; Zhang, L.; Wang, X.; Cao, H.; Jin, Q. and Liu; M. A Dual-Functional Metallogel of Amphiphilic Copper(II) Quinolinol: Redox Responsiveness and Enantioselectivity. Chem. Eur. J. 2013, 19, 3029–3036. [Google Scholar] [CrossRef]
- Cherdtrakulkiat, R.; Boonpangrak, S.; Sinthupoom, N.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Derivatives (halogen, nitro and amino) of 8-hydroxyquinoline with highly potent antimicrobial and antioxidant activities. Biochem. Biophys. Rep. 2016, 6, 135–141. [Google Scholar] [CrossRef]
- Lohse, M.B.; Laurie, M.T.; Levan, S.; Ziv, N.; Ennis, C. L.; Nobile, C. J.; DeRisi, J.; Johnson, A.D. Broad susceptibility of Candida auris strains to 8-hydroxyquinolines and mechanisms of resistance. mBio 2023, 14, e01376–23. [Google Scholar] [CrossRef]
- Awad, I.M.A.; Aly, A.A.M.; Abdel-Alim, A.M.; Abdel-Aal, R.A.; Ahmed, S.H. Synthesis of some 5-azo(4’-substituted benzene-sulphamoyl)-8-hydroxyquinolines with antidotal and antibacterial activities. J. Inorg. Biochem. 1988, 33, 77–89. [Google Scholar] [CrossRef]
- Dixit, R.B.; Vanparia, S.F.; Patel, T.S.; Jagani, C.L.; Doshi, H.V.; Dixit, B.C. Synthesis and antimicrobial activities of sulfonohydrazide-substituted 8-hydroxyquinoline derivative and its oxinates. Appl. Organomet. Chem. 2010, 24, 408–413. [Google Scholar] [CrossRef]
- Oliveri, V.; Vecchio, G. 8-Hydroxyquinolines in medicinal chemistry: A structural perspective. Eur. J. Med. Chem. 2016, 120, 252–274. [Google Scholar] [CrossRef]
- Shen, A.Y.; Chen, C.P.; Roffler, S.A. Chelating agent possessing cytotoxicity and antimicrobial activity: 7-morpholinomethyl-8-hydroxyquinoline. Life Sci. 1999, 64, 813–825. [Google Scholar] [CrossRef]
- Enquist, P.-A.; Gylfe, Å.; Hägglund, U.; Lindström, P.; Norberg-Scherman, H.; Sundin, C.; Elofsson, M. Bioorg Med Chem Lett. 2012, 22, 3550–3553. [CrossRef] [PubMed]
- Warner, V.D.; Musto, J.D.; Sane, J.N.; Kim, K.H.; Grunewald, G.L. Quantitative structure-activity relationships for 5-substituted 8-hydroxyquinolines as inhibitors of dental plaque. J Med Chem. 1977, 20, 92–96. [Google Scholar] [CrossRef]
- Shaw, A.Y.; Chang, C.Y.; Hsu, M.Y.; Lu, P.J.; Yang, C.N.; Chen, H.L.; Lo, C.W.; Shiau, C.W.; Chern, M.K. Synthesis and structure-activity relationship study of 8-hydroxyquinoline-derived Mannich bases as anticancer agents, Eur. J. Med. Chem. 2010, 45, 2860–2867. [Google Scholar] [CrossRef]
- Lohse, M.B.; Laurie, M. T.; Levan, S.; Ziv, N.; Ennis, C.L.; Nobile, C.J.; DeRisi, J.; Johnson, A.D. Broad susceptibility of Candida auris strains to 8-hydroxyquinolines and mechanisms of resistance. mBio 2023, 14, e01376–23. [Google Scholar] [CrossRef]
- Rbaa, M.; Haida, S.; Tuzun, B.; Hichar, A.; El Hassane, A.; Kribii, A.; Lakhrissi, Y.; Ben Hadda, T.; Zarrouk, A.; Lakhrissi, B.; Berdimurodov, E. Synthesis, characterization and bioactivity of novel 8-hydroxyquinoline derivatives: Experimental, molecular docking, DFT and POM analyses. J. Mol. Struct. 2022, 1258, 132688. [Google Scholar] [CrossRef]
- Sharma, C.S.; Mishra, S.S.; Singh, H.P.; Kumar, N. In silico ADME and Toxicity Study of Some Selected Antineoplastic Drugs. Int. J. Pharm. Sci. Drug Res. 2016, 8, 65–67. [Google Scholar] [CrossRef]
- Villamizar-Mogotocoro, A.-F.; Vargas-Méndez, L.Y.; Kouznetsov, V.V. Pyridine and quinoline molecules as crucial protagonists in the never-stopping discovery of new agents against tuberculosis. Eur. J. Pharm. Sci. 2020, 151, 105374. [Google Scholar] [CrossRef]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.S.; Kumar, N.; Singh, H.P.; Ranjan, S.; Sharma, C.S. In silico Pharmacokinetic, Bioactivity and Toxicity study of Some Selected Anti-asthmatic Agents. Int. J. Pharm. Sci. Drug Res. 2018, 10, 278–282. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V.A. BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Veith, H.; Southall, N.; Huang, R.; James, T.; Fayne, D.; Artemenko, N.; Shen, M.; Inglese, J.; Austin, C.P.; Lloyd, D.G.; Auld, D.S. Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nature Biotechnol. 2009, 27, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Mukhametov, A.; Raevsky, O.A. On the mechanism of substrate/non-substrate recognition by P-glycoprotein. J. Mol. Graph. Model. 2017, 71, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.K.; Viswanadhan, V.N. & Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef] [PubMed]
- Muegge, I.; Heald, S.L. & Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.O.; Guy, R.H. Predicting Skin Permeability. Pharm. Res. 1992, 09, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 2008, 3, 435–444. [Google Scholar] [CrossRef]
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef]
- Athar, M.; Sona, A.N.; Bekono, B.D.; Ntie-Kang, F. Fundamental physical and chemical concepts behind “drug-likeness” and “natural product-likeness”. Phys. Sci. Rev. 2019, 4, 20180101. [Google Scholar] [CrossRef]
- Martin, Y.C. A Bioavailability Score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef]

| Strain No.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| No. | 2151 | 3541 | 500 | 3396 | 3333 | 636 | 1942 | 3401 | MICav | ||
| R (or name) | MIC (mg/L) | ||||||||||
| 47 | 5-NO2 (NitroxolineTM) | 11.4 | 7.1 | 3.7 | 8.9 | 3.5 | 4.2 | 2.1 | 6.7 | 5.95 | |
| 14 | 5-CHO | 16 | 16 | 16 | 32 | 4 | 1 | 4 | 16 | 13.13 | |
| 48 | (Lithium 8-Quinolinolate) | 64 | 32 | 64 | 96 | 8 | 256 | 128 | 64 | 89.00 | |
| 28* | 5-NH3+Cl- | 128 | 128 | 128 | 64 | 48 | 64 | 64 | 128 | 94.00 | |
| 15* | 5-CH2Cl | 256 | 256 | 256 | 384 | 48 | 64 | 256 | 256 | 222.00 | |
| 33 | 5-CH=N-NHCO-(furan-2-yl) | 64 | 64 | 64 | 64 | 32 | 64 | 32 | over | 54.86 | |
| 46 | 7-Br | 48 | 32 | over | over | 16 | 12 | 2 | 48 | 26.33 | |
| 34 | 5-CH2(morpholin-4-yl) | 128 | over | over | 32 | 64 | over | 64 | over | 72.00 | |
| 31 | 5-N=N-(C6H4-4-SO3H) | over | over | over | 64 | 128 | 128 | 512 | over | 208.00 | |
| 1 | H | 48 | over | over | 384 | 48 | over | over | over | 160.00 | |
| 29 | 5-NH(2-oxo-2,5-dihydro-1H-pyrrol-4-yl) | over | over | over | 32 | over | over | 32 | over | 32.00 | |
| 49 | (8-Ethoxy-5-nitroquinoline) | over | over | over | over | over | 64 | 256 | over | 160.00 | |
| 17* | 5-CH2NH3+Cl- | over | over | over | over | over | 8 | over | over | 8.00 | |
| 16 | 5-CH2NH2 | over | over | over | 32 | over | over | over | over | 32.00 | |
| 13 | 5-SO3H.H2O | over | 128 | over | over | over | over | over | over | 128.00 | |
| 35 | 5-CH2NHCOPh | over | over | over | 32 | over | over | over | over | 32.00 | |
| 30 | 5-(3-oxo-7-CO2Me-pyrazolo [4,3-c]pyridin-5-yl) | over | over | over | over | over | over | over | over | - | |
| 32 | 5-N=N-(C6H4-3-COOH) | over | over | over | over | over | over | over | over | - | |
| 36 | 5-CH2NHCO(7-oxoazepan-2-yl) | over | over | over | over | over | over | over | over | - | |
| 37 | 5-CH2S(benzothiazol-2-yl) | over | over | over | over | over | over | over | over | - | |
| No. | R | LogP | TPSA | nAT | MW | nA | nD | nviol | nRB | Vol |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | H | 1.68 | 33.12 | 11 | 145.16 | 2 | 1 | 0 | 0 | 131.90 |
| 2 | 5-CH3 | 2.38 | 33.12 | 12 | 159.19 | 2 | 1 | 0 | 0 | 148.46 |
| 3 | 5-CH(CH3)2 | 2.97 | 33.12 | 14 | 187.24 | 2 | 1 | 0 | 1 | 181.85 |
| 4 | 5-C(CH3)3 | 3.64 | 33.12 | 15 | 201.27 | 2 | 1 | 0 | 1 | 198.08 |
| 5 | 7-CH2CH=CHCH3 | 2.70 | 33.12 | 15 | 199.25 | 2 | 1 | 0 | 2 | 192.68 |
| 6 | 5-(cyclopenthen-1-yl) | 2.83 | 33.12 | 16 | 211.26 | 2 | 1 | 0 | 1 | 198.88 |
| 7 | 5-cyclohexen-1-yl | 3.81 | 33.12 | 17 | 225.29 | 2 | 1 | 0 | 1 | 215.68 |
| 8 | 5-Ph | 3.73 | 33.12 | 17 | 221.26 | 2 | 1 | 0 | 1 | 203.31 |
| 9 | 7-Ph | 3.42 | 33.12 | 17 | 221.26 | 2 | 1 | 0 | 1 | 203.31 |
| 10 | 6-COOH | 1.54 | 70.42 | 14 | 189.17 | 4 | 2 | 0 | 1 | 158.90 |
| 11 | 7-COOH | 1.62 | 70.42 | 14 | 189.17 | 4 | 2 | 0 | 1 | 158.90 |
| 12 | 5-SO2NH2 | 0.62 | 93.28 | 15 | 224.24 | 5 | 3 | 0 | 1 | 174.62 |
| 13 | 5-SO3H.H2O | -1.08 | 87.49 | 15 | 225.22 | 5 | 2 | 0 | 1 | 171.35 |
| 14 | 5-CHO | 1.72 | 50.19 | 13 | 137.17 | 3 | 1 | 0 | 1 | 150.88 |
| 15* | 5-CH2Cl | -0.30 | 34.37 | 13 | 194.64 | 2 | 2 | 0 | 1 | 165.09 |
| 16 | 5-CH2NH2 | 1.11 | 59.14 | 13 | 174.20 | 3 | 3 | 0 | 1 | 159.99 |
| 17* | 5-CH2NH3+Cl- | -1.37 | 62.01 | 13 | 176.22 | 3 | 5 | 0 | 1 | 163.64 |
| 18 | 5-OH | 1.71 | 53.35 | 12 | 161.16 | 3 | 2 | 0 | 0 | 139.91 |
| 19 | 5-CH2OH | 1.27 | 53.35 | 13 | 175.19 | 3 | 2 | 0 | 1 | 156.72 |
| 20 | 5-(CH2)2OH | 1.47 | 53.35 | 14 | 189.52 | 3 | 2 | 0 | 2 | 173.52 |
| 21 | 5-CH2COOH | 1.35 | 70.42 | 15 | 203.20 | 4 | 2 | 0 | 2 | 175.70 |
| 22 | 5-(CH2)2COOH | 1.87 | 70.42 | 16 | 217.22 | 4 | 2 | 0 | 3 | 192.50 |
| 23 | 6-(C6H4-3-COOH) | 3.31 | 70.42 | 20 | 265.27 | 4 | 2 | 0 | 2 | 230.31 |
| 24 | 5-C≡C-(4-pyridyl) | 2.07 | 46.01 | 19 | 246.27 | 3 | 1 | 0 | 0 | 221.29 |
| 25 | 5-C≡C-[4,6-(OMe)2-1,3,5-triazin-2-yl] | 1.58 | 90.26 | 23 | 308.30 | 7 | 1 | 0 | 2 | 264.07 |
| 26 | 5-NH2 | 1.41 | 59.14 | 12 | 160.18 | 3 | 3 | 0 | 0 | 143.19 |
| 27 | 6-NH2 | 0.70 | 59.14 | 12 | 160.18 | 3 | 3 | 0 | 0 | 143.19 |
| 28* | 5-NH3+Cl- | -1.27 | 62.01 | 12 | 162.19 | 3 | 5 | 0 | 0 | 146.84 |
| 29 | 5-NH(2-oxo-2,5-dihydro-1H-pyrrol-4-yl) | 1.38 | 74.25 | 18 | 241.25 | 5 | 3 | 0 | 2 | 209.06 |
| 30 | 5-(3-oxo-7-CO2Me-pyrazolo[4,3-c]pyridin-5-yl) | 0.52 | 110.11 | 25 | 336.31 | 8 | 2 | 0 | 3 | 277.01 |
| 31 | 5-N=N-(C6H4-4-SO3H) | 1.11 | 112.22 | 23 | 329.34 | 7 | 2 | 0 | 1 | 261.86 |
| 32 | 5-N=N-(C6H4-3-COOH) | 4.01 | 95.15 | 22 | 293.28 | 6 | 2 | 0 | 3 | 249.41 |
| 33 | 5-CH=N-NHCO-(furan-2-yl) | 2.35 | 87.72 | 21 | 281.27 | 6 | 2 | 0 | 3 | 239.52 |
| 34 | 5-CH2(morpholin-4-yl) | 1.58 | 45.51 | 18 | 244.29 | 4 | 1 | 0 | 2 | 226.83 |
| 35 | 5-CH2NHCOPh | 2.52 | 62.22 | 21 | 278.31 | 4 | 2 | 0 | 3 | 251.49 |
| 36 | 5-CH2NHCO(7-oxoazepan-2-yl) | 1.32 | 91.32 | 32 | 313.36 | 6 | 3 | 0 | 3 | 284.66 |
| 37 | 5-CH2S(benzothiazol-2-yl) | 4.68 | 46.01 | 22 | 324.43 | 3 | 1 | 0 | 3 | 268.78 |
| 38 | 5-(benzimidazol-2-yl) | 3.54 | 61.80 | 20 | 261.28 | 4 | 2 | 0 | 1 | 228.13 |
| 39 | 5-(4-pyridyl) | 2.44 | 46.01 | 17 | 222.25 | 3 | 1 | 0 | 1 | 199.15 |
| 40 | 6-(3-pyridyl) | 2.35 | 46.01 | 17 | 222.25 | 3 | 1 | 0 | 1 | 199.15 |
| 41 | 5-(indol-2-yl) | 3.83 | 48.91 | 20 | 260.30 | 3 | 2 | 0 | 1 | 232.28 |
| 42 | 5-(imidazol-1-yl) | 1.47 | 50.95 | 16 | 211.22 | 4 | 1 | 0 | 1 | 184.52 |
| 43 | 6-(5-bromo-1H-pyrrolo[2,3-b]pyridin-3-yl) | 3.63 | 61.80 | 21 | 340.18 | 4 | 2 | 0 | 1 | 246.01 |
| 44 | 7-(2-NH2-1H-benzimidazol-1-yl) | 2.48 | 76.97 | 21 | 276.30 | 5 | 3 | 0 | 1 | 239.80 |
| 45 | 5-Cl | 2.61 | 33.12 | 12 | 179.61 | 2 | 1 | 0 | 0 | 145.43 |
| 46 | 7-Br | 2.44 | 33.12 | 12 | 224.06 | 2 | 1 | 0 | 0 | 149.78 |
| 47 | 5-NO2 | 1.89 | 78.94 | 14 | 190.16 | 5 | 1 | 0 | 1 | 155.23 |
| 48 | (Lithium 8-quinolate) | -1.38 | 35.95 | 11 | 144.15 | 2 | 0 | 0 | 0 | 129.15 |
| 49 | (8-ethoxy-5-nitroquinoline) | 2.54 | 67.95 | 16 | 218.21 | 5 | 0 | 0 | 3 | 189.56 |
| No. | R | GPCR | ICM | KI | NRL | PI | EI |
|---|---|---|---|---|---|---|---|
| 1 | H | -0.56 | -0.11 | -0.49 | -0.86 | -1.07 | -0.12 |
| 2 | 5-CH3 | -0.58 | -0.26 | -0.50 | -0.67 | -1.02 | -0.18 |
| 3 | 5-CH(CH3)2 | -0.26 | 0.04 | -0.29 | -0.31 | -0.64 | 0.07 |
| 4 | 5-C(CH3)3 | -0.15 | 0.23 | -0.10 | -0.19 | -0.58 | 0.15 |
| 5 | 7-CH2CH=CHCH3 | -0.23 | 0.08 | -0.30 | -0.31 | -0.56 | 0.33 |
| 6 | 5-cyclopenthen-1-yl | 0.36 | 0.36 | 0.34 | 0.17 | -0.42 | 0.66 |
| 7 | 5-cyclohexen-1-yl | 0.43 | 0.42 | 0.29 | 0.19 | -0.22 | 0.56 |
| 8 | 5-Ph | 0.03 | 0.19 | 0.26 | 0.05 | -0.42 | 0.29 |
| 9 | 7-Ph | 0.02 | 0.36 | 0.14 | -0.06 | -0.18 | 0.22 |
| 10 | 6-COOH | -0.26 | -0.03 | -0.30 | -0.23 | -0.66 | 0.15 |
| 11 | 7-COOH | -0.44 | -0.01 | -0.26 | -0.52 | -0.56 | 0.15 |
| 12 | 5-SO2NH2 | -0.34 | -0.16 | -0.13 | -0.84 | -0.39 | 0.36 |
| 13 | 5-SO3H.H2O | 0.03 | 0.12 | -0.35 | -0.93 | -0.33 | 0.45 |
| 14 | 5-CHO | -0.48 | -0.02 | -0.29 | -0.30 | -0.98 | -0.08 |
| 15* | 5-CH2Cl | -0.90 | -0.02 | -1.31 | -1.72 | -0.88 | -0.32 |
| 16 | 5-CH2NH2 | -0.19 | 0.16 | -0.10 | -0.88 | -0.36 | 0.20 |
| 17* | 5-CH2NH3+Cl- | -0.57 | 0.20 | -1.00 | -1.39 | -0.81 | 0.08 |
| 18 | 5-OH | -0.43 | 0.08 | -0.24 | -0.61 | -0.88 | 0.10 |
| 19 | 5-CH2OH | -0.33 | 0.09 | -0.28 | -0.40 | -0.50 | 0.15 |
| 20 | 5-(CH2)2OH | -0.17 | 0.18 | -0.06 | -0.22 | -0.50 | 0.25 |
| 21 | 5-CH2COOH | 0.02 | 0.20 | -0.20 | 0.13 | -0.29 | 0.32 |
| 22 | 5-(CH2)2COOH | 0.14 | 0.18 | -0.13 | 0.17 | -0.20 | 0.33 |
| 23 | 6-(C6H4-3-COOH) | 0.21 | 0.16 | 0.34 | 0.33 | -0.09 | 0.39 |
| 24 | 5-C≡C-(4-pyridyl) | 0.34 | 0.27 | 0.44 | 0.28 | -0.03 | 0.49 |
| 25 | 5-C≡C-[4,6-(OMe)2-1,3,5-triazin-2-yl] | 0.66 | 0.13 | 0.52 | 0.26 | -0.01 | 0.56 |
| 26 | 5-NH2 | -0.32 | 0.18 | -0.06 | -1.04 | -0.96 | 0.19 |
| 27 | 6-NH2 | -0.35 | 0.10 | -0.06 | -0.88 | -0.76 | 0.16 |
| 28* | 5-NH3+Cl- | -0.78 | -0.28 | -0.27 | -0.72 | -1.03 | -0.20 |
| 29 | 5-NH(2-oxo-2,5-dihydro-1H-pyrrol-4-yl) | -0.10 | 0.11 | -0.03 | -0.55 | -0.54 | 0.04 |
| 30 | 5-(3-oxo-7-CO2Me-pyrazolo[4,3-c]pyridin-5-yl) | 0.02 | 0.03 | 0.32 | -0.18 | -0.49 | 0.31 |
| 31 | 5-N=N-(C6H4-4-SO3H) | 0.19 | 0.14 | 0.15 | -0.65 | 0.07 | 0.36 |
| 32 | 5-N=N-(C6H4-3-COOH) | 0.06 | 0.02 | 0.22 | -0.25 | -0.15 | 0.24 |
| 33 | 5-CH=N-NHCO-(furan-2-yl) | -0.30 | -0.91 | -0.49 | -0.65 | -0.84 | -0.41 |
| 34 | 5-CH2(morpholin-4-yl) | 0.06 | 0.02 | 0.14 | -0.18 | -0.23 | 0.17 |
| 35 | 5-CH2NHCOPh | 0.12 | 0.01 | 0.17 | -0.05 | -0.03 | 0.17 |
| 36 | 5-CH2NHCO(7-oxoazepan-2-yl) | 0.34 | 0.10 | 0.09 | 0.01 | 0.36 | 0.27 |
| 37 | 5-CH2S(benzothiazol-2-yl) | -0.26 | -0.84 | -0.14 | -0.25 | -0.33 | 0.02 |
| 38 | 5-(benzimidazol-2-yl) | 0.33 | 0.18 | 0.56 | 0.07 | -0.26 | 0.42 |
| 39 | 5-(4-pyridyl) | 0.05 | 0.24 | 0.36 | 0.04 | -0.41 | 0.34 |
| 40 | 6-(3-pyridyl) | 0.19 | 0.39 | 0.53 | 0.05 | -0.22 | 0.46 |
| 41 | 5-(indol-2-yl) | 0.43 | 0.21 | 0.74 | 0.41 | -0.14 | 0.43 |
| 42 | 5-(imidazol-1-yl) | 0.05 | 0.27 | 0.10 | -0.63 | -0.61 | 0.37 |
| 43 | 6-(5-bromo-1H-pyrrolo[2,3-b]pyridin-3-yl) | 0.34 | 0.38 | 1.09 | 0.00 | -0.22 | 0.68 |
| 44 | 7-(2-NH2-1H-benzimidazol-1-yl) | 0.30 | 0.16 | 0.56 | -0.26 | -0.15 | 0.30 |
| 45 | 5-Cl | -0.59 | -0.04 | -0.64 | -0.70 | -0.97 | -0.10 |
| 46 | 7-Br | -0.74 | -0.27 | -0.56 | -0.97 | -1.15 | -0.27 |
| 47 | 5-NO2 | -0.61 | -0.04 | -0.37 | -0.66 | -0.99 | -0.09 |
| 48 | Lithium 8-quinolate | -0.72 | -0.12 | -0.58 | -1.08 | -1.02 | -0.30 |
| 49 | 8-ethoxy-5-nitroquinoline | -0.56 | -0.16 | -0.39 | -0.61 | -0.90 | -0.19 |
| No. | R | MUT | TUM | IRR | RE | clogP | solub | MW | TPSA | DL | DS |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | H | ● | ● | ● | ● | 1.63 | -2.03 | 145.0 | 33.12 | -1.55 | 0.12 |
| 2 | 5-CH3 | ● | ● | ● | ● | 1.97 | -2.37 | 159.0 | 33.12 | -1.78 | 0.54 |
| 3 | 5-CH(CH3)2 | ● | ● | ● | ● | 2.82 | -2.90 | 187.0 | 33.12 | -1.55 | 0.52 |
| 4 | 5-C(CH3)3 | ● | ● | ● | ● | 3.21 | -3.19 | 201.0 | 33.12 | -4.48 | 0.43 |
| 5 | 7-CH2CH=CHCH3 | ● | ● | ● | ● | 3.05 | -2.84 | 199.0 | 33.12 | -3.69 | 0.46 |
| 6 | 5-cyclopenthen-1-yl | ● | ● | ● | ● | 2.66 | -3.02 | 211.0 | 33.12 | -3.96 | 0.27 |
| 7 | 5-cyclohexen-1-yl | ● | ● | ● | ● | 3.0 | -3.29 | 225.0 | 33.12 | -6.29 | 0.26 |
| 8 | 5-Ph | ● | ● | ● | ● | 3.29 | -4.11 | 221.0 | 33.12 | -1.21 | 0.48 |
| 9 | 7-Ph | ● | ● | ● | ● | 3.29 | -4.11 | 221.0 | 33.12 | -1.21 | 0.29 |
| 10 | 6-COOH | ● | ● | ● | ● | 1.12 | -2.04 | 189.0 | 70.42 | -0.33 | 0.68 |
| 11 | 7-COOH | ● | ● | ● | ● | 1.12 | -2.04 | 189.0 | 70.42 | -1.16 | 0.35 |
| 12 | 5-SO2NH2 | ● | ● | ● | ● | 0.39 | -1.92 | 224.0 | 101.6 | -0.14 | 0.7 |
| 13 | 5-SO3H.H2O | ● | ● | ● | ● | -0.6 | -0.63 | 225.0 | 95.87 | -2.64 | 0.31 |
| 14 | 5-CHO | ● | ● | ● | ● | 1.56 | -2.35 | 173.0 | 50.19 | -3.4 | 0.29 |
| 15* | 5-CH2Cl | ● | ● | ● | ● | 2.16 | -3.14 | 193.0 | 33.12 | -1.44 | 0.12 |
| 16 | 5-CH2NH2 | ● | ● | ● | ● | 0.63 | -1.99 | 174.0 | 59.14 | -1.49 | 0.57 |
| 17* | 5-CH2NH3+Cl- | ● | ● | ● | ● | 0.63 | -1.99 | 174.0 | 59.14 | -1.49 | 0.57 |
| 18 | 5-OH | ● | ● | ● | ● | 1.28 | -1.73 | 161.0 | 53.35 | -1.74 | 0.55 |
| 19 | 5-CH2OH | ● | ● | ● | ● | 1.03 | -1.91 | 175.0 | 53.35 | -1.44 | 0.57 |
| 20 | 5-(CH2)2OH | ● | ● | ● | ● | 1.46 | -2.02 | 189.0 | 53.35 | -3.33 | 0.49 |
| 21 | 5-CH2COOH | ● | ● | ● | ● | 1.11 | -2.0 | 203.0 | 70.42 | -1.07 | 0.6 |
| 22 | 5-(CH2)2COOH | ● | ● | ● | ● | 1.57 | -2.27 | 217.0 | 70.42 | -2.12 | 0.52 |
| 23 | 6-(C6H4-3-COOH) | ● | ● | ● | ● | 2.77 | -4.12 | 265.0 | 70.42 | -3.97 | 0.4 |
| 24 | 5-C≡C-(4-pyridyl) | ● | ● | ● | ● | 2.81 | -2.27 | 246.0 | 46.01 | -5.2 | 0.45 |
| 25 | 5-C≡C-[4,6-(OMe)2-1,3,5-triazin-2-yl] | ● | ● | ● | ● | 2.62 | -2.03 | 308.0 | 90.25 | -5.05 | 0.27 |
| 26 | 5-NH2 | ● | ● | ● | ● | 0.95 | -2.1 | 160.0 | 59.14 | -1.73 | 0.55 |
| 27 | 6-NH2 | ● | ● | ● | ● | 0.95 | -2.1 | 160.0 | 59.14 | -1.26 | 0.47 |
| 28 | 5-NH3+Cl- | ● | ● | ● | ● | 0.95 | -2.1 | 160.0 | 59.14 | -1.73 | 0.55 |
| 29 | 5-NH(2-oxo-2,5-dihydro-1H-pyrrol-4-yl) | ● | ● | ● | ● | 0.69 | -2.45 | 241.0 | 74.25 | 0.52 | 0.76 |
| 30 | 5-(3-oxo-7-CO2Me-pyrazolo[4,3-c]pyridin-5-yl) | ● | ● | ● | ● | 0.15 | -3.13 | 336.0 | 104.1 | 2.64 | 0.84 |
| 31 | 5-N=N-(C6H4-4-SO3H) | ● | ● | ● | ● | 1.5 | -3.12 | 329.0 | 120.5 | -10.18 | 0.06 |
| 32 | 5-N=N-(C6H4-3-COOH) | ● | ● | ● | ● | 3.32 | -4.53 | 293.0 | 95.14 | -8.29 | 0.08 |
| 33 | 5-CH=N-NHCO-(furan-2-yl) | ● | ● | ● | ● | 2.36 | -3.81 | 291.0 | 87.72 | 4.55 | 0.82 |
| 34 | 5-CH2(morpholin-4-yl) | ● | ● | ● | ● | 1.22 | -1.61 | 244.0 | 45.59 | 1.52 | 0.87 |
| 35 | 5-CH2NHCOPh | ● | ● | ● | ● | 2.49 | -3.35 | 278.0 | 62.22 | 1.63 | 0.79 |
| 36 | 5-CH2NHCO(7-oxoazepan-2-yl) | ● | ● | ● | ● | 0.91 | -2.95 | 313.0 | 91.32 | -3.62 | 0.46 |
| 37 | 5-CH2S(benzothiazol-2-yl) | ● | ● | ● | ● | 4.09 | -5.29 | 324.0 | 99.55 | 0.91 | 0.5 |
| 38 | 5-(benzimidazol-2-yl) | ● | ● | ● | ● | 2.87 | -4.38 | 261.0 | 61.8 | 0.65 | 0.63 |
| 39 | 5-(4-pyridyl) | ● | ● | ● | ● | 2.29 | -3.32 | 222.0 | 46.01 | -1.47 | 0.52 |
| 40 | 6-(3-pyridyl) | ● | ● | ● | ● | 2.29 | -3.32 | 222.0 | 46.01 | 0.15 | 0.67 |
| 41 | 5-(indol-2-yl) | ● | ● | ● | ● | 3.42 | -4.33 | 260.0 | 48.91 | 1.7 | 0.41 |
| 42 | 5-(imidazol-1-yl) | ● | ● | ● | ● | 1.25 | -4.13 | 211.0 | 50.94 | 1.36 | 0.75 |
| 43 | 6-(5-bromo-1H-pyrrolo[2,3-b]pyridin-3-yl) | ● | ● | ● | ● | 3.34 | -5.52 | 339.0 | 61.80 | -1.58 | 0.35 |
| 44 | 7-(2-NH2-1H-benzimidazol-1-yl) | ● | ● | ● | ● | 2.38 | -5.87 | 276.0 | 7696 | 0.96 | 0.52 |
| 45 | 5-Cl | ● | ● | ● | ● | 2.24 | -2.76 | 179.0 | 33.12 | -1.58 | 0.32 |
| 46 | 7-Br | ● | ● | ● | ● | 2.36 | -2.86 | 223.0 | 33.12 | -3.53 | 0.46 |
| 47 | 5-NO2 | ● | ● | ● | ● | 0.71 | -2.49 | 190.0 | 78.94 | -6.95 | 0.47 |
| 48 | Lithium 8-quinolate | ● | ● | ● | ● | 0.05 | -2.03 | 151.0 | 35.95 | -5.03 | 0.49 |
| 49 | 8-ethoxy-5-nitroquinoline | ● | ● | ● | ● | 1.39 | -3.1 | 218.0 | 69.74 | -8.05 | 0.45 |
| No. | R | GI | BBB | Pgp | CYP | Lipinski | Ghose | Veber | Egan | Muegge | PAINS | Brenk | LL | SA | LogKp | BA |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | H | H | Y | N | Y,N,N,N,N | Y | N | Y | Y | N | 0 | 0 | N | 1.07 | -5.75 | 0.55 |
| 2 | 5-CH3 | H | Y | N | Y,N,N,N,N | Y | Y | Y | Y | N | 0 | 0 | N | 1.13 | -5.59 | 0.55 |
| 3 | 5-CH(CH3)2 | H | Y | N | Y,N,N,N,N | Y | Y | Y | Y | N | 0 | 0 | N | 1.38 | -5.22 | 0.55 |
| 4 | 5-C(CH3)3 | H | Y | N | Y,N,N,N,N | Y | Y | Y | Y | Y | 0 | 0 | N | 1.48 | -4.91 | 0.55 |
| 5 | 7-CH2CH=CHCH3 | H | Y | N | Y,N,N,N,N | Y | Y | Y | Y | N | 0 | 1 | N | 1.82 | -5.17 | 0.55 |
| 6 | 5-cyclopenthen-1-yl | H | Y | Y | Y,Y,N,Y,N | Y | Y | Y | Y | Y | 0 | 0 | N | 2.28 | -5.33 | 0.55 |
| 7 | 5-cyclohexen-1-yl | H | Y | Y | Y,Y,N,Y,N | Y | Y | Y | Y | Y | 0 | 0 | N | 2.35 | -5.03 | 0.55 |
| 8 | 5-Ph | H | Y | N | Y,Y,N,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | N | 1.57 | -5.07 | 0.55 |
| 9 | 7-Ph | H | Y | N | Y,Y,N,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | N | 1.67 | -5.19 | 0.55 |
| 10 | 6-COOH | H | Y | N | N,N,N,N,N | Y | Y | Y | Y | N | 0 | 0 | N | 1.30 | -6.49 | 0.85 |
| 11 | 7-COOH | H | Y | N | N,N,N,N,N | Y | N | Y | Y | N | 0 | 0 | N | 1.33 | -6.10 | 0.85 |
| 12 | 5-SO2NH2 | H | N | N | N,N,N,N,N | Y | Y | Y | Y | Y | 0 | 0 | N | 1.89 | -7.62 | 0.55 |
| 13 | 5-SO3H.H2O | H | N | N | N,N,N,N,N | Y | Y | Y | Y | Y | 0 | 1 | N | 1.94 | -7.30 | 0.56 |
| 14 | 5-CHO | H | Y | N | Y,N,N,N,N | Y | Y | Y | Y | N | 0 | 1 | N | 1.19 | -6.20 | 0.55 |
| 15* | 5-CH2Cl | L | N | N | N,N,N,N,N | Y | N | Y | Y | N | 0 | 1 | N | 1.57 | -5.04 | 0.55 |
| 16 | 5-CH2NH2 | H | Y | N | Y,N,N,N,N | Y | Y | Y | Y | N | 0 | 0 | N | 1.27 | -6.84 | 0.55 |
| 17* | 5-CH2NH3+Cl- | L | N | N | N,N,N,N,N | Y | N | Y | Y | Y | 0 | 0 | N | 1.42 | -6.14 | 0.55 |
| 18 | 5-OH | H | Y | N | Y,N,N,N,N | Y | N | Y | Y | N | 0 | 0 | N | 1.32 | -6.84 | 0.55 |
| 19 | 5-CH2OH | H | Y | N | Y,N,N,N,N | Y | Y | Y | Y | N | 0 | 0 | N | 1.27 | -6.66 | 0.55 |
| 20 | 5-(CH2)2OH | H | Y | N | Y,N,N,N,N | Y | Y | Y | Y | N | 0 | 0 | N | 1.42 | -6.33 | 0.55 |
| 21 | 5-CH2COOH | H | Y | N | N,N,N,N,N | Y | Y | Y | Y | Y | 0 | 0 | N | 1.48 | -6.64 | 0.85 |
| 22 | 5-(CH2)2COOH | H | Y | N | N,N,N,N,N | Y | Y | Y | Y | Y | 0 | 0 | N | 1.46 | -6.38 | 0.85 |
| 23 | 6-(C6H4-3-COOH) | H | Y | N | Y,N,N,N,N | Y | Y | Y | Y | Y | 0 | 0 | Y | 1.98 | -5.80 | 0.85 |
| 24 | 5-C≡C-(4-pyridyl) | H | Y | N | Y,N,N,Y,Y | Y | Y | Y | Y | Y | 0 | 1 | N | 2.20 | -5.70 | 0.55 |
| 25 | 5-C≡C-[4,6-(OMe)2-1,3,5-triazin-2-yl] | H | N | N | Y,N,Y,Y,Y | Y | Y | Y | Y | Y | 0 | 1 | Y | 2.95 | -6.25 | 0.55 |
| 26 | 5-NH2 | H | Y | N | Y,N,N,N,N | Y | Y | Y | Y | N | 0 | 2 | N | 1.39 | -7.36 | 0.55 |
| 27 | 6-NH2 | H | Y | N | Y,N,N,N,Y | Y | Y | Y | Y | N | 0 | 1 | N | 1.32 | -6.33 | 0.55 |
| 28* | 5-NH3+Cl- | L | N | N | N,N,N,N,N | Y | N | Y | Y | Y | 0 | 0 | N | 1.54 | -6.66 | 0.55 |
| 29 | 5-NH(2-oxo-2,5-dihydro-1H-pyrrol-4-yl) | H | N | N | Y,N,N,N,N | Y | Y | Y | Y | Y | 0 | 1 | N | 2.45 | -7.23 | 0.55 |
| 30 | 5-(3-oxo-7-CO2Me-pyrazolo[4,3-c]pyridin-5-yl) | H | N | N | N,N,N,N,N | Y | Y | Y | Y | Y | 0 | 0 | Y | 2.56 | -7.40 | 0.55 |
| 31 | 5-N=N-(C6H4-4-SO3H) | L | N | N | N,N,N,N,N | Y | Y | Y | Y | Y | 1 | 2 | Y | 2.79 | -6.68 | 0.56 |
| 32 | 5-N=N-(C6H4-3-COOH) | H | N | N | Y,N,N,N,N | Y | Y | Y | Y | Y | 1 | 1 | Y | 2.35 | -5.90 | 0.56 |
| 33 | 5-CH=N-NHCO-(furan-2-yl) | H | N | N | Y,N,N,Y,N | Y | Y | Y | Y | Y | 1 | 1 | Y | 2.68 | -6.25 | 0.55 |
| 34 | 5-CH2(morpholin-4-yl) | H | Y | Y | Y,N,N,N,N | Y | Y | Y | Y | Y | 0 | 0 | N | 1.81 | -6.83 | 0.55 |
| 35 | 5-CH2NHCOPh | H | Y | N | Y,N,N,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | Y | 1.68 | -6.11 | 0.55 |
| 36 | 5-CH2NHCO(7-oxoazepan-2-yl) | H | N | Y | N,N,N,N,N | Y | Y | Y | Y | Y | 0 | 0 | Y | 2.55 | -7.42 | 0.55 |
| 37 | 5-CH2S(benzothiazol-2-yl) | H | N | N | Y,Y,Y,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | N | 3.01 | -5.33 | 0.55 |
| 38 | 5-(benzimidazol-2-yl) | H | Y | Y | Y,N,N,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | Y | 1.87 | -5.72 | 0.55 |
| 39 | 5-(4-pyridyl) | H | Y | Y | Y,N,N,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | N | 1.54 | -5.84 | 0.55 |
| 40 | 6-(3-pyridyl) | H | Y | Y | Y,N,N,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | N | 1.99 | -5.96 | 0.55 |
| 41 | 5-(indol-2-yl) | H | Y | Y | Y,N,N,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | N | 2.01 | -5.32 | 0.55 |
| 42 | 5-(imidazol-1-yl) | H | Y | N | Y,N,N,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | N | 1.74 | -6.51 | 0.55 |
| 43 | 6-(5-bromo-1H-pyrrolo[2,3-b]pyridin-3-yl) | H | Y | Y | Y,Y,N,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | N | 2.18 | -5.86 | 0.55 |
| 44 | 7-(2-NH2-1H-benzimidazol-1-yl) | H | Y | Y | Y,Y,N,Y,Y | Y | Y | Y | Y | Y | 0 | 0 | Y | 2.22 | -6.10 | 0.55 |
| 45 | 5-Cl | H | Y | N | Y,N,N,N,N | Y | N | Y | Y | N | 0 | 0 | N | 1.34 | -5.35 | 0.55 |
| 46 | 7-Br | H | Y | N | Y,N,N,N,N | Y | N | Y | Y | Y | 0 | 0 | N | 1.49 | -5.87 | 0.55 |
| 47 | 5-NO2 | H | N | N | Y,N,N,N,N | Y | Y | Y | Y | N | 0 | 1 | N | 1.67 | -6.05 | 0.55 |
| 48 | lithium 8-quinolate | H | Y | Y | N,N,N,N,N | Y | Y | Y | Y | N | 0 | 0 | N | 1.26 | -5.53 | 0.55 |
| 49 | 8-ethoxy-5-nitroquinoline | H | Y | N | Y,Y,N,N,N | Y | Y | Y | Y | Y | 0 | 1 | N | 1.99 | -5.73 | 0.55 |
| Strain No. | Bacterial strain | Mechanism of resistance | Type | |||
|---|---|---|---|---|---|---|
| 2151 | Klebsiella pneumoniae | producing carbapenemase /NDM/ | G- | |||
| 3541 | Klebsiella. oxytoca | producing carbapenemase /KPC/ | G- | |||
| 500 | Klebsiella aerogenes | producing extended-spectrum beta-lactamase /ESBL/ | G+ | |||
| 3396 | Pseudomonas aeruginosa | multidrug-resistance /MDR/, carbapenem resistance | G- | |||
| 3333 | Acinetobaceter baumannii | MDR, carbapenem resistance | G- | |||
| 636 | Enterococcus faecium | vancomycin-resistant enterococcus /VRE/ | G+ | |||
| 1942 | Staphylococcus aureus | methicillin-resistant S. aureus /MRSA/ | G+ | |||
| 3401 | Klebsiella pneumoniae | producing ESBL | G- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
