Submitted:
08 July 2024
Posted:
10 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Experimental Program
2.1. Materials
Hybrid Composite Laminates and Preparation Procedures
2.2. Test Methods
3. Results and Discussion
3.1. Mechanical Properties of the Laminates at Different Ageing Temperatures
3.1.1. Compressive Properties
3.1.2. Tensile and Stiffness Properties
3.2. Dynamic Mechanical Properties of Hybrid Laminates
4. Models of Temperature-Dependent Storage Modulus
Comparison of the Storage Modulus Results with Analytical Models
5. Conclusions
- The highest and the lowest compressive strength properties were obtained when the GCG laminates were tested at temperatures of -80°C and 100°C, respectively. The highest compressive values were obtained due to the prolonged swallow of moisture that increases the crosslinking of the polymer network and has the highest brittle property. The lowest value was obtained due to an increase in the mobility of the polymer material under increasing testing temperatures.
- The values of the tensile strength and tensile modulus of GCG composite laminates exhibited minor differences when testing the samples after being preserved over extended periods. Both properties were reduced at the test temperature of 50°C. This indicates the initial onset of the mobility of polymeric matrix material that reduces the transfer capacity of the loads to the fibres before reaching the glass transition temperature.
- The stiffness parameters such as storage modulus, loss modulus, and damping properties of the GCG laminates were decreased as the testing temperature approached the glass transition. The highest stiffness parameter was observed in the case of -80°C/GCG laminates. This might occur due to the existence of beta transition on the glassy regions.
- The storage modulus of GCG laminates is compared with empirical models. The model developed using the Arrhenius law was found to be accurate in predicting laminates tested under different temperatures and frequencies. The model developed using Gibson et al. [45] needs further research to predicate the storage modulus of laminates persevered at lower temperatures.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vieira, P.S.C.; de Souza, F.S.; Cardoso, D.C.T.; Vieira, J.D.; Silva, F.d.A. Influence of moderate/high temperatures on the residual flexural behavior of pultruded GFRP. Compos. Part B: Eng. 2020, 200. [Google Scholar] [CrossRef]
- Guermazi, N.; Ben Tarjem, A.; Ksouri, I.; Ayedi, H.F. On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos. Part B: Eng. 2016, 85, 294–304. [Google Scholar] [CrossRef]
- Bazli, M.; Jafari, A.; Ashrafi, H.; Zhao, X.-L.; Bai, Y.; Raman, R.S. Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles. Constr. Build. Mater. 2020, 231. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pacheco, E.; Cauich-Cupul, J.I.; Valadez-González, A.; Herrera-Franco, P.J. Effect of moisture absorption on the mechanical behavior of carbon fiber/epoxy matrix composites. J. Mater. Sci. 2012, 48, 1873–1882. [Google Scholar] [CrossRef]
- Wang, T.; Song, B.; Qiao, K.; Ding, C.; Wang, L. Influence of the hybrid ratio and stacking sequence on mechanical and damping properties of hybrid composites. Polym. Compos. 2018, 40, 2368–2380. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Vidal, M.; Jr, H. L. O.; Ornaghi, F. G.; Monticeli, F. M.; Hila, M. O. Effect of different stacking sequences on hybrid carbon/glass / epoxy composites laminate: Thermal, dynamic mechanical and long-term behavior. J. Compos. Mater. 2020, 54(6), 731–743. [Google Scholar]
- Correia, J. R.; Gomes, M. M.; Pires, J. M.; Branco, F. A. Mechanical behvaior of Pultruded glass fibre reinforced polymer composites at elevated temperature: Experiments and model assessment. Compos. Struct. 2013, 98, 303–313. [Google Scholar] [CrossRef]
- Sujon, A.S.; Habib, M.A.; Abedin, M.Z. Experimental investigation of the mechanical and water absorption properties on fiber stacking sequence and orientation of jute/carbon epoxy hybrid composites. J. Mater. Res. Technol. 2020, 9, 10970–10981. [Google Scholar] [CrossRef]
- Alessi, S.; Pitarresi, G.; Spadaro, G. Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites. Compos. Part B: Eng. 2014, 67, 145–153. [Google Scholar] [CrossRef]
- Liu, T.; Liu, X.; Feng, P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Compos. Part B: Eng. 2020, 191, 107958. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M. Durability Issues and Challenges for Material Advancements in FRP Employed in the Construction Industry. Polymers 2018, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Bazli, M.; Abolfazli, M. Mechanical Properties of Fibre Reinforced Polymers under Elevated Temperatures: An Overview. Polymers 2020, 12, 2600. [Google Scholar] [CrossRef] [PubMed]
- Mlyniec, A.; Korta, J.; Kudelski, R.; Uhl, T. The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites. Compos. Struct. 2014, 118, 208–216. [Google Scholar] [CrossRef]
- Aklilu, G.; Adali, S.; Bright, G. Tensile behaviour of hybrid and non-hybrid polymer composite specimens at elevated temperatures. Eng. Sci. Technol. Int. J. 2019, 23, 732–743. [Google Scholar] [CrossRef]
- Cao, S.; Wu, Z.; Wang, X. Tensile Properties of CFRP and Hybrid FRP Composites at Elevated Temperatures. J. Compos. Mater. 2009, 43, 315–330. [Google Scholar] [CrossRef]
- Jia, Z.; Li, T.; Chiang, F.-P.; Wang, L. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites. Compos. Sci. Technol. 2018, 154, 53–63. [Google Scholar] [CrossRef]
- Tefera, G.; Adali, S.; Bright, G. Mechanical behaviour of carbon fibre reinforced polymer composite material at different temperatures: Experimental and model assessment. Polym. Polym. Compos. 2022, 30. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, J.; Song, S.; Yang, D.; Wang, C. Effect of Temperature on Material Properties of Carbon Fiber Reinforced Polymer (CFRP) Tendons: Experiments and Model Assessment. Materials 2019, 12, 1025. [Google Scholar] [CrossRef]
- Bazli, M.; Ashrafi, H.; Oskouei, A.V. Effect of harsh environments on mechanical properties of GFRP pultruded profiles. Compos. Part B: Eng. 2016, 99, 203–215. [Google Scholar] [CrossRef]
- Wang, K.; Young, B.; Smith, S.T. Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures. Eng. Struct. 2011, 33, 2154–2161. [Google Scholar] [CrossRef]
- Jarrah, M.; Najafabadi, E.P.; Khaneghahi, M.H.; Oskouei, A.V. The effect of elevated temperatures on the tensile performance of GFRP and CFRP sheets. Constr. Build. Mater. 2018, 190, 38–52. [Google Scholar] [CrossRef]
- Jafari, A.; Bazli, M.; Ashrafi, H.; Oskouei, A.V.; Azhari, S.; Zhao, X.-L.; Gholipour, H. Effect of fibers configuration and thickness on tensile behavior of GFRP laminates subjected to elevated temperatures. Constr. Build. Mater. 2019, 202, 189–207. [Google Scholar] [CrossRef]
- Hawileh, R. A.; Obeidah, A. A.; Abdalla, J. A.; Tamimi, A. A. Temperature effect on the mechanical properties of carbon, glass and carbon-glass FRP laminates. Constr. Build. Mater. 2015, 75, 342–348. [Google Scholar] [CrossRef]
- Zafar, A.; Bertocco, F.; Schjødt-Thomsen, J.; Rauhe, J. Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites. Compos. Sci. Technol. 2012, 72, 656–666. [Google Scholar] [CrossRef]
- Aniskevich, K.; Aniskevich, A.; Arnautov, A.; Jansons, J. Mechanical properties of pultruded glass fiber-reinforced plastic after moistening. Compos. Struct. 2012, 94, 2914–2919. [Google Scholar] [CrossRef]
- Bazli, M.; Ashrafi, H.; Jafari, A.; Zhao, X.-L.; Raman, R.S.; Bai, Y. Effect of Fibers Configuration and Thickness on Tensile Behavior of GFRP Laminates Exposed to Harsh Environment. Polymers 2019, 11, 1401. [Google Scholar] [CrossRef] [PubMed]
- Reyes, L.Q.; Swan, S.R.; Gan, H.; Seraji, S.M.; Zhang, J.; Varley, R.J. The role of β relaxations in determining the compressive properties of an epoxy amine network modified with POSS and mono-functional epoxy resins. Polym. Test. 2020, 93, 106873. [Google Scholar] [CrossRef]
- Tefera, G.; Adali, S.; Bright, G. Mechanical Behavior of GFRP Laminates Exposed to Thermal and Moist Environmental Conditions: Experimental and Model Assessment. Polymers 2022, 14, 1523. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, S.; Meda, A.; Rinaldi, Z.; Nanni, A. Residual behaviour of glass FRP bars subjected to high temperatures. Compos. Struct. 2018, 203, 886–893. [Google Scholar] [CrossRef]
- Robert, M.; Benmokrane, B. Behavior of GFRP Reinforcing Bars Subjected to Extreme Temperatures. J. Compos. Constr. 2010, 14, 353–360. [Google Scholar] [CrossRef]
- Lundgren, J.-E.; Gudmundson, P. Moisture absorption in glass-fibre/epoxy laminates with transverse matrix cracks. Compos. Sci. Technol. 1999, 59, 1983–1991. [Google Scholar] [CrossRef]
- Ellyin, F.; Rohrbacher, C. Effect of aqueous environment and temperature on glass-fibre expoxy resin composites. J. Reinf. Plast. Compos, 2000, 17, 1405–1423. [Google Scholar] [CrossRef]
- Behera, A.; Vishwakarma, A.; Thawre, M.; Ballal, A. Effect of hygrothermal aging on static behavior of quasi-isotropic CFRP composite laminate. Compos. Commun. 2019, 17, 51–55. [Google Scholar] [CrossRef]
- Karvanis, K.; Rusnáková, S.; Žaludek, M.; Čapka, A. Preparation and Dynamic Mechanical Analysis of Glass or carbon Fiber/Polymer Composites. IOP Conf. Series: Mater. Sci. Eng. 2018, 362, 012005. [Google Scholar] [CrossRef]
- Trauth, A.; Kirchenbauer, K.; Weidenmann, K. Dynamic-mechanical-thermal analysis of hybrid continuous–discontinuous sheet molding compounds. Compos. Part C: Open Access 2021, 5, 100148. [Google Scholar] [CrossRef]
- Alvarez, V.; Valdez, M.; Vázquez, A. Dynamic mechanical properties and interphase fiber/matrix evaluation of unidirectional glass fiber/epoxy composites. Polym. Test. 2003, 22, 611–615. [Google Scholar] [CrossRef]
- Tsai, Y.; Bosze, E.; Barjasteh, E.; Nutt, S. Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Compos. Sci. Technol. 2008, 69, 432–437. [Google Scholar] [CrossRef]
- Bai, Y.; Keller, T. Time Dependence of Material Properties of FRP Composites in Fire. J. Compos. Mater. 2009, 43, 2469–2484. [Google Scholar] [CrossRef]
- Mouritz, A.; Feih, S.; Kandare, E.; Mathys, Z.; Gibson, A.; Jardin, P.D.; Case, S.; Lattimer, B. Review of fire structural modelling of polymer composites. Compos. Part A: Appl. Sci. Manuf. 2009, 40, 1800–1814. [Google Scholar] [CrossRef]
- Mahieux, C.A.; Reifsnider, K.L. Property modeling across transition temperatures in polymers: application to thermoplastic systems. J. Mater. Sci. 2002, 37, 911–920. [Google Scholar] [CrossRef]
- Bai, Y.; Keller, T. Modeling of post-fire stiffness of E-glass fiber-reinforced polyester composites. Compos. Part A: Appl. Sci. Manuf. 2007, 38, 2142–2153. [Google Scholar] [CrossRef]
- Aklilu, G.; Adali, S.; Bright, G. Long-term effects of low and high temperatures on the mechanical performance of hybrid FRP composite laminates: Experimental and model assessment. Compos. Part C: Open Access 2023, 11. [Google Scholar] [CrossRef]
- Bai, Y.; Keller, T. Modeling of Strength Degradation for Fiber-reinforced Polymer Composites in Fire. J. Compos. Mater. 2009, 43, 2371–2385. [Google Scholar] [CrossRef]
- Gibson, A.G.; Wu, Y.-S. Evans, J.T.; Mouritz, A.P. Laminate Theory Analysis of Composites under Load in Fire. J. Compos. Mater. 2005, 40, 639–658. [Google Scholar] [CrossRef]
- Bai, Y.; Keller, T.; Vallée, T. Modeling of stiffness of FRP composites under elevated and high temperatures. Compos. Sci. Technol. 2008, 68, 3099–3106. [Google Scholar] [CrossRef]
- Feng, J.; Guo, Z. Temperature-frequency-dependent mechanical properties model of epoxy resin and its composites. Compos. Part B: Eng. 2016, 85, 161–169. [Google Scholar] [CrossRef]
- Aklilu, G.; Adali, S.; Bright, G. Experimental Characterization of Hybrid and Non-Hybrid Polymer Composites at Elevated Temperatures. Int. J. Eng. Res. Afr. 2018, 36, 37–52. [Google Scholar] [CrossRef]
- ASTM D 695 standard test method for compressive properties of plastic materials SRM 1R-94, ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM 3039/D 3039M standard test method for tensile properties of polymer matrix composite materials, ASTM International: West Conshohocken, PA: USA, 2002.
- Menard, K. Dynamic mechanical analysis: a practical introduction; Boca Raton, FL: CRC Press, 2008. [Google Scholar]
- ASTM D 3171 Standard Test Methods for Constituent Content of Composite Materials, ASTM International: West Conshohocken, PA, USA, 2000.










| Materials | Young’s modulus [GPa] |
Tensile strength [MPa] |
Density [Kg/m3] |
Poisson’s ratio |
|---|---|---|---|---|
| T-300 carbon | 230 | 3530 | 1760 | 0.30 |
| E-glass | 72.5 | 2350 | 2570 | 0.25 |
| Epoxy resin | 3.3 | 69.9 | 1020 | 0.36 |
| Temperature (°C) |
Designation of GCG composite laminates | Maximum force during failure (N) |
Compressive strength (MPa) |
Standard deviation (SD) and coefficient of variation (CV) |
|---|---|---|---|---|
| -80 | -80/GCG | 14382.19 | 668.19 | (63.78, 9.54%) |
| -20 | -20/GCG | 12072.99 | 589.46 | (60.11, 9.83%) |
| 0 | 0/GCG | 12414.76 | 591.41 | (23.25, 3.93%) |
| 25 | 25/GCG | 9004.27 | 441.42 | (34.34, 7.78%) |
| 50 | 50/GCG | 5572.57 | 249.47 | (21.78, 8.73%) |
| 75 | 75/GCG | 4370.02 | 216.88 | (17.08, 7.87%) |
| 100 | 100/GCG | 1412.86 | 68.06 | (6.39, 9.40%) |
| Temperature (°C) |
Designation of GCG composite laminates | Force during failure (N) |
Tensile strength (MPa), SD, and CV |
Tensile modulus (GPa), SD, and (CV) |
|---|---|---|---|---|
| -80 | -80°C/GCG | 27234.64 | 1321.20 (37.53, 2.84%) | 74.63 (1.71, 2.29%) |
| -20 | -20°C/GCG | 23365.99 | 1125.01 (35.63, 3.17%) | 70.89 (0.53, 0.74%) |
| 0 | 0°C/GCG | 27437.70 | 1358.16 (29.54, 2.18%) | 74.35 (5.64, 7.58%) |
| 25 | 25°C/GCG | 20715.62 | 1005.39 (92.28, 9.18%) | 59.78 (5.14, 8.60%) |
| 50 | 50°C/GCG | 12958.90 | 637.66 (1.09, 0.17%) | 41.55 (3.31, 7.96%) |
| Activation energy (kJ/mol)Group of hybrid laminates | Tgmax (storage modulus) | Tgmax (loss modulus) | ) |
|---|---|---|---|
| Control GCG | 781.03 | 672.05 | 439.00 |
| 0°C/GCG | 981.15 | 933.28 | 534.95 |
| -20°C/GCG | 805.02 | 797.49 | 453.33 |
| -80°C/GCG | 1130.87 | 783.79 | 491.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).