Submitted:
06 July 2024
Posted:
09 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. Standardized Precipitation Evapotranspiration Index
2.3. Multifractal Detrended Fluctuation Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meza, I.; Siebert, S.; Döll, P.; Kusche, J.; Herbert, C.; Eyshi Rezaei, E.; ...; Hagenlocher, M. Global-scale drought risk assessment for agricultural systems. Natural Hazards and Earth System Sciences 2020, 20(2), 695-712. [CrossRef]
- Scanlon, B.R.; Duncan, I.; Reedy, R.C. Drought and the water–energy nexus in Texas. Environmental Research Letters 2013, 8(4), 045033. [CrossRef]
- Sun, S.; Sun, G.; Caldwell, P.; McNulty, S.; Cohen, E.; Xiao, J.; Zhang, Y. Drought impacts on ecosystem functions of the US National Forests and Grasslands: Part II assessment results and management implications. Forest Ecology and Management 2015, 353, 269-279. [CrossRef]
- Lozano, Y.M.; Aguilar-Trigueros, C.A.; Onandia, G.; Maaß, S.; Zhao, T.; Rillig, M.C. Effects of microplastics and drought on soil ecosystem functions and multifunctionality. Journal of Applied Ecology 2021, 58(5), 988-996. [CrossRef]
- Keshavarz, M.; Maleksaeidi, H.; Karami, E. Livelihood vulnerability to drought: A case of rural Iran. International Journal of Disaster Risk Reduction 2017, 21, 223-230. [CrossRef]
- Stanke, C.; Kerac, M.; Prudhomme, C.; Medlock, J.; Murray, V. Health effects of drought: a systematic review of the evidence. PLoS currents 2013, 5. [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. Journal of Hydrology 2010, 391(1-2), 202-216. [CrossRef]
- Yildirim, G.; Rahman, A.; Singh, V.P. A Bibliometric analysis of drought indices, risk, and forecast as components of drought early warning systems. Water 2022, 14(2), 253. [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Vol. 17, No. 22, 179-183, 1993.
- Palmer, W.C. Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index. Weatherwise 1968, 21, 156-161. [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate 2010, 23(7), 1696-1718. [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology 2014, 34(8), 2792-2804. [CrossRef]
- Yao, N.; Li, Y.; Lei, T.; Peng, L. Drought evolution, severity and trends in mainland China over 1961–2013. Science of the Total Environment 2018, 616, 73-89. [CrossRef]
- Ionita, M.; Nagavciuc, V. Changes in drought features at the European level over the last 120 years. Natural Hazards and Earth System Sciences 2021, 21(5), 1685-1701. [CrossRef]
- Nooni, I.K.; Hagan, D.F.T.; Wang, G.; Ullah, W.; Li, S.; Lu, J.; ... Zhu, C. Spatiotemporal characteristics and trend analysis of two evapotranspiration-based drought products and their mechanisms in sub-Saharan Africa. Remote Sensing 2021, 13(3), 533. [CrossRef]
- Vicente-Serrano, S.M.; Peña-Angulo, D.; Beguería, S.; Domínguez-Castro, F.; Tomás-Burguera, M.; Noguera, I.; ...; El Kenawy, A. Global drought trends and future projections. Philosophical Transactions of the Royal Society A 2022, 380(2238), 20210285. [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? International Journal of Climatology 2018, 38(4), 1718-1736. [CrossRef]
- Khan, M.I.; Liu, D.; Fu, Q.; Saddique, Q.; Faiz, M.A.; Li, T.; ...; Cheng, C. Projected changes of future extreme drought events under numerous drought indices in the Heilongjiang Province of China. Water Resources Management 2017, 31, 3921-3937. [CrossRef]
- Stricevic, R.; Djurovic, N.; Djurovic, Z. Drought classification in Northern Serbia based on SPI and statistical pattern recognition. Meteorological Applications 2011, 18(1), 60-69. [CrossRef]
- Tošić, I; Unkašević, M. Analysis of wet and dry periods in Serbia. International Journal of Climatology 2014, 34(5), 1357-1368. [CrossRef]
- Gocic, M.; Trajkovic, S. Spatiotemporal characteristics of drought in Serbia. Journal of Hydrology 2014, 510, 110-123. [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of precipitation and drought data in Serbia over the period 1980–2010. Journal of Hydrology 2013, 494, 32-42. [CrossRef]
- Amiri, M.A.; Gocic, M. Analysis of temporal and spatial variations of drought over Serbia by investigating the applicability of precipitation-based drought indices. Theoretical and Applied Climatology 2023, 1-14. [CrossRef]
- Caloiero, T.; Veltri, S.; Caloiero, P.; Frustaci, F. Drought analysis in Europe and in the Mediterranean basin using the standardized precipitation index. Water 2018, 10(8), 1043. [CrossRef]
- Yan, Z.; Zhang, Y.; Zhou, Z.; Han, N. The spatio-temporal variability of droughts using the standardized precipitation index in Yunnan, China. Natural Hazards 2017, 88, 1023-1042. [CrossRef]
- Santos, C.A.G.; Brasil Neto, R.M.; Passos, J.S.D.A.; da Silva, R.M. Drought assessment using a TRMM-derived standardized precipitation index for the upper São Francisco River basin, Brazil. Environmental Monitoring and Assessment 2017, 189, 1-19. [CrossRef]
- Kalisa, W.; Zhang, J.; Igbawua, T.; Ujoh, F.; Ebohon, O.J.; Namugize, J.N.; Yao, F. Spatio-temporal analysis of drought and return periods over the East African region using Standardized Precipitation Index from 1920 to 2016. Agricultural Water Management 2020, 237, 106195. [CrossRef]
- Gao, X.; Zhao, Q.; Zhao, X.; Wu, P.; Pan, W.; Gao, X.; Sun, M. Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Science of the Total Environment 2017, 595, 191-200. [CrossRef]
- Das, P.K.; Dutta, D.; Sharma, J.R.; Dadhwal, V.K. Trends and behaviour of meteorological drought (1901–2008) over Indian region using standardized precipitation–evapotranspiration index. International Journal of Climatology 2016, 36(2), 909-916. [CrossRef]
- Hari, V.; Rakovec, O.; Markonis, Y.; Hanel, M.; Kumar, R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Scientific Reports 2020, 10(1), 12207. [CrossRef]
- Meza, F.J. Recent trends and ENSO influence on droughts in Northern Chile: An application of the Standardized Precipitation Evapotranspiration Index. Weather and Climate Extremes 2013, 1, 51-58. [CrossRef]
- Manatsa, D.; Mushore, T.; Lenouo, A. Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO. Theoretical and Applied Climatology 2017, 127, 259-274. [CrossRef]
- Bezdan, J.; Bezdan, A.; Blagojević, B.; Mesaroš, M.; Pejić, B.; Vranešević, M.; ...; Nikolić-Đorić, E.). SPEI-based approach to agricultural drought monitoring in Vojvodina region. Water 2019, 11(7), 1481. [CrossRef]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rybski, D.; Braun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of precipitation and river runoff records. Journal of Geophysical Research: Atmospheres 2006, 111(D1), . [CrossRef]
- Lana, X.; Rodríguez-Solà, R.; Martínez, M.D.; Casas-Castillo, M.C.; Serra, C.; Kirchner, R. Multifractal structure of the monthly rainfall regime in Catalonia (NE Spain): Evaluation of the non-linear structural complexity. Chaos: An Interdisciplinary Journal of Nonlinear Science 2020, 30(7). [CrossRef]
- Kalamaras, N.; Tzanis, C.G.; Deligiorgi, D.; Philippopoulos, K.; Koutsogiannis, I. Distribution of air temperature multifractal characteristics over Greece. Atmosphere 2019, 10(2), 45. [CrossRef]
- Gomez-Gomez, J.; Carmona-Cabezas, R.; Ariza-Villaverde, A.B.; de Ravé, E.G.; Jiménez-Hornero, F.J. Multifractal detrended fluctuation analysis of temperature in Spain (1960–2019). Physica A: Statistical Mechanics and its Applications 2021, 578, 126118. [CrossRef]
- da Silva, H.S.; Silva, J.R.S.; Stosic, T. Multifractal analysis of air temperature in Brazil. Physica A: Statistical Mechanics and its Applications 2020, 549, 124333. [CrossRef]
- Schmitt, F.; Schertzer, D.; Lovejoy, S.; Brunet, Y. Estimation of universal multifractal indices for atmospheric turbulent velocity fields. Fractals in Natural Sciences 1994, 1, 274-281. [CrossRef]
- Laib, M.; Golay, J.; Telesca, L.; Kanevski, M. Multifractal analysis of the time series of daily means of wind speed in complex regions. Chaos, Solitons & Fractals 2018, 109, 118-127. [CrossRef]
- Li-Hao, G.; Zun-Tao, F. Multi-fractal behaviors of relative humidity over China. Atmospheric and Oceanic Science Letters 2013, 6(2), 74-78. [CrossRef]
- Adarsh, S.; Kumar, D.N.; Deepthi, B.; Gayathri, G.; Aswathy, S.S.; Bhagyasree, S. Multifractal characterization of meteorological drought in India using detrended fluctuation analysis. International Journal of Climatology 2019, 39(11), 4234-4255. [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications 2002, 316(1-4), 87-114. [CrossRef]
- Ogunjo, S.T. Multifractal properties of meteorological drought at different time scales in a tropical location. Fluctuation and Noise Letters 2021, 20(01), 2150007. [CrossRef]
- da Silva, A.S.A.; Stosic, T.; Arsenić, I.; Menezes, R.S.C.; Stosic, B. Multifractal analysis of standardized precipitation index in Northeast Brazil. Chaos, Solitons & Fractals 2023, 172, 113600. [CrossRef]
- Zhan, C.; Liang, C.; Zhao, L.; Jiang, S.; Niu, K.; Zhang, Y. Multifractal characteristics of multiscale drought in the Yellow River Basin, China. Physica A: Statistical Mechanics and its Applications 2023, 609, 128305. [CrossRef]
- Bajat, B.; Blagojević, D.; Kilibarda, M.; Luković, J.; Tošić, I. Spatial analysis of the temperature trends in Serbia during the period 1961–2010. Theoretical and Applied Climatology 2015, 121, 289-301. [CrossRef]
- Vujadinović Mandić, M.; Vuković Vimić, A.; Ranković-Vasić, Z.; Đurović, D.; Ćosić, M.; Sotonica, D.; ...; Đurđević, V. Observed Changes in Climate Conditions and Weather-Related Risks in Fruit and Grape Production in Serbia. Atmosphere 2022, 13(6), 948. [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. Journal of Geophysical Research: Atmospheres 2018, 123, 9391–9409. [CrossRef]
- Klok, L.; Klein Tank, A.M.G. Updated and extended European dataset of daily climate observations. International Journal of Climatology 2008, 29, 1182–1191. [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geographical Review 1948, 38(1), 55-94. [CrossRef]
- Adams J. Climate_indices, an open source Python library providing reference implementations of commonly used climate indices. https://github.com/monocongo/climate_indices, 2017.
- Oswiecimka, P.; Kwapien, J.; Drozd, S. Wavelet versus detrended fluctuation analysis of multifractal structures. Physical Review E 2006, 74, 016103. [CrossRef]
- Matic, V.; Cherian, P.J.; Koolen, N.; Ansari, A.H.; Naulaers, G.; Govaert, P.; ...; Vanhatalo, S. Objective differentiation of neonatal EEG background grades using detrended fluctuation analysis. Frontiers in Human Neuroscience 2015, 9, 189. [CrossRef]
- Tan, X.; Gan, T.Y. Multifractality of Canadian precipitation and streamflow. International Journal of Climatology 2017, 37, 1221-1236. [CrossRef]
- Telesca, L.; Lovallo, M.; Mammadov, S.; Kadirov, F.; Babayev, G. Power spectrum analysis and multifractal detrended fluctuation analysis of Earth’s gravity time series. Physica A: Statistical Mechanics and its Applications 2015, 428, 426-434.
- Feng, J.; Men, Y.; Zhu, G.; Li, Y.; Luo, X. Cavitation detection in a Kaplan turbine based on multifractal detrended fluctuation analysis of vibration signals. Ocean Engineering 2022, 263, 112232. [CrossRef]
- Ba, R.; Lovallo, M.; Song, W.; Zhang, H.; Telesca, L. Multifractal Analysis of MODIS Aqua and Terra Satellite Time Series of Normalized Difference Vegetation Index and Enhanced Vegetation Index of Sites Affected by Wildfires. Entropy 2022, 24(12), 1748. [CrossRef]
- Tiwari, A.K.; Aye, G.C.; Gupta, R. Stock market efficiency analysis using long spans of data: A multifractal detrended fluctuation approach. Finance Research Letters 2019, 28, 398-411. [CrossRef]
- Shimizu, Y.U.; Thurner, S.; Ehrenberger, K. Multifractal spectra as a measure of complexity in human posture. Fractals 2002, 10(01), 103-116. [CrossRef]
- Drożdż, S.; Oświȩcimka, P. Detecting and interpreting distortions in hierarchical organization of complex time series. Physical Review E 2015, 91(3), 030902. [CrossRef]
- Stosic, T.; Nejad, S.A.; Stosic, B. Multifractal analysis of Brazilian agricultural market. Fractals 2020, 28(05), 2050076. [CrossRef]
- Stosic, T.; Stosic, B.; Tošić, M.; Lazić, I.; Djurdjević, V.; Tošić, I. Climate change effects through MFDFA study of temperature in Serbia. Atmosphere 2023, 14(10), 1532. [CrossRef]





| Drought category | SPEI values |
|---|---|
| Extremely dry | SPEI ≤ –2.0 |
| Severely dry | −2.0 < SPEI ≤ −1.5 |
| Moderately dry | −1.5 < SPEI ≤ −1.0 |
| Near Normal | −1.0 < SPEI < 1.0 |
| Moderately wet | 1.0 ≤ SPEI < 1.5 |
| Severely wet | 1.5 ≤ SPEI < 2.0 |
| Extreme wet | SPEI ≥ 2.0 |
| Title 1 | Mean | Minimum | Maximum | Standard deviation | Q1 | Median | Q3 |
|---|---|---|---|---|---|---|---|
| SPEI-1 1961-1990 | |||||||
| 0.551 | 0.485 | 0.646 | 0.037 | 0.522 | 0.541 | 0.578 | |
| 0.676 | 0.380 | 1.158 | 0.127 | 0.575 | 0.676 | 0.762 | |
| 0.268 | -0.156 | 0.689 | 0.137 | 0.176 | 0.254 | 0.356 | |
| SPEI-1 1991-2020 | |||||||
| 0.615 | 0.538 | 0.724 | 0.037 | 0.587 | 0.608 | 0.644 | |
| 0.532 | 0.242 | 0.842 | 0.093 | 0.471 | 0.527 | 0.588 | |
| 0.301 | -0.005 | 0.708 | 0.119 | 0.222 | 0.298 | 0.371 | |
| SPEI-3 1961-1990 | |||||||
| 0.802 | 0.704 | 0.927 | 0.055 | 0.755 | 0.790 | 0.852 | |
| 0.886 | 0.572 | 1.311 | 0.123 | 0.805 | 0.885 | 0.963 | |
| 0.215 | -0.073 | 0.521 | 0.109 | 0.141 | 0.215 | 0.290 | |
| SPEI-3 1991-2020 | |||||||
| 0.879 | 0.793 | 0.982 | 0.042 | 0.845 | 0.873 | 0.914 | |
| 0.806 | 0.504 | 1.246 | 0.112 | 0.730 | 0.802 | 0.878 | |
| 0.262 | -0.032 | 0.751 | 0.100 | 0.198 | 0.261 | 0.319 | |
| SPEI-6 1961-1990 | |||||||
| 1.039 | 0.927 | 1.185 | 0.060 | 0.992 | 1.030 | 1.081 | |
| 0.904 | 0.548 | 1.256 | 0.103 | 0.834 | 0.899 | 0.965 | |
| 0.167 | -0.223 | 0.491 | 0.102 | 0.097 | 0.175 | 0.242 | |
| SPEI-6 1991-2020 | |||||||
| 1.089 | 1.017 | 1.227 | 0.032 | 1.065 | 1.084 | 1.107 | |
| 0.820 | 0.457 | 1.628 | 0.123 | 0.749 | 0.823 | 0.897 | |
| 0.235 | -0.093 | 0.677 | 0.105 | 0.168 | 0.226 | 0.299 | |
| SPEI-12 1961-1990 | |||||||
| 1.267 | 1.146 | 1.429 | 0.068 | 1.208 | 1.259 | 1.326 | |
| 0.725 | 0.325 | 1.209 | 0.132 | 0.636 | 0.726 | 0.808 | |
| 0.195 | -0.277 | 0.606 | 0.132 | 0.104 | 0.191 | 0.283 | |
| SPEI-12 1991-2020 | |||||||
| 1.368 | 1.266 | 1.507 | 0.037 | 1.340 | 1.365 | 1.394 | |
| 0.767 | 0.247 | 1.447 | 0.148 | 0.679 | 0.765 | 0.853 | |
| 0.158 | -0.577 | 0.875 | 0.187 | 0.037 | 0.145 | 0.277 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
