Submitted:
03 July 2024
Posted:
04 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Cosmetics Contain Neurotoxins
1.2. Neurotoxins Pass the Placental Barrier and Accumulate in Breast Milk
2. Prenatal Exposure and Risk of Enteric Neuropathies
3. Overview of Main Neurotoxins Contained in Cosmetics and PCPs
3.1. Microplastics and Nanoparticles
3.2. Parabens
3.3. Benzophenones
3.4. Phthalates
3.5. Metals
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Blanco-Davila, F. Beauty and the Body: The Origins of Cosmetics. Plast Reconstr Surg 2000, 105, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N. An Insight into Toxicity and Human-Health-Related Adverse Consequences of Cosmeceuticals — A Review. Science of The Total Environment 2019, 670, 555–568. [Google Scholar] [CrossRef]
- Borowska, S.; Brzóska, M.M. Metals in Cosmetics: Implications for Human Health. Journal of Applied Toxicology 2015, 35, 551–572. [Google Scholar] [CrossRef]
- Prüst, M.; Meijer, J.; Westerink, R.H.S. The Plastic Brain: Neurotoxicity of Micro- and Nanoplastics. Part Fibre Toxicol 2020, 17, 24. [Google Scholar] [CrossRef] [PubMed]
- Pahwa R, K.J. A Critical Review of the Neurotoxicity of Styrene in Humans. Vet Hum Toxicol. 1993, 35, 516–520. [Google Scholar]
- Zheng, Y.; Xu, S.; Liu, J.; Liu, Z. The Effects of Micro- and Nanoplastics on the Central Nervous System: A New Threat to Humanity? Toxicology 2024, 504, 153799. [Google Scholar] [CrossRef]
- Sökmen, T.Ö.; Sulukan, E.; Türkoğlu, M.; Baran, A.; Özkaraca, M.; Ceyhun, S.B. Polystyrene Nanoplastics (20 Nm) Are Able to Bioaccumulate and Cause Oxidative DNA Damages in the Brain Tissue of Zebrafish Embryo (Danio Rerio). Neurotoxicology 2020, 77, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Wang, D. Toxicity Comparison between Pristine and Sulfonate Modified Nanopolystyrene Particles in Affecting Locomotion Behavior, Sensory Perception, and Neuronal Development in Caenorhabditis Elegans. Science of The Total Environment 2020, 703, 134817. [Google Scholar] [CrossRef]
- Cubas, A.L.V.; Bianchet, R.T.; Reis, I.M.A.S. dos; Gouveia, I.C. Plastics and Microplastic in the Cosmetic Industry: Aggregating Sustainable Actions Aimed at Alignment and Interaction with UN Sustainable Development Goals. Polymers (Basel) 2022, 14, 4576. [Google Scholar] [CrossRef]
- Leppert, B.; Strunz, S.; Seiwert, B.; Schlittenbauer, L.; Schlichting, R.; Pfeiffer, C.; Röder, S.; Bauer, M.; Borte, M.; Stangl, G.I.; et al. Maternal Paraben Exposure Triggers Childhood Overweight Development. Nat Commun 2020, 11, 561. [Google Scholar] [CrossRef]
- Xiang, J.; Lv, B.-R.; Shi, Y.; Chen, W.; Zhang, J. Environmental Pollution of Paraben Needs Attention: A Study of Methylparaben and Butylparaben Co-Exposure Trigger Neurobehavioral Toxicity in Zebrafish. Environmental Pollution 2024, 356, 124370. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.L.; Kim, S.S.; Hwang, K.-S.; Park, H.-C.; Cho, S.-H.; Bae, M.A.; Kim, K.-T. Chronic Exposure to Butyl-Paraben Causes Photosensitivity Disruption and Memory Impairment in Adult Zebrafish. Aquatic Toxicology 2022, 251, 106279. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, H.G.; Ali, E.H.A.; Elgoly, A.H.M. Interplay between Pro-Inflammatory Cytokines and Brain Oxidative Stress Biomarkers: Evidence of Parallels between Butyl Paraben Intoxication and the Valproic Acid Brain Physiopathology in Autism Rat Model. Cytokine 2015, 71, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Shi, X.; Mu, J.; Liu, S.; Qian, X.; Pei, W.; Ni, S.; Zhang, Z.; Li, L.; Zhang, Z. Chronic Exposure to Parabens Promotes Non-Alcoholic Fatty Liver Disease in Association with the Changes of the Gut Microbiota and Lipid Metabolism. Food Funct 2024, 15, 1562–1574. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.; Cai, P.; Chen, M.; Li, H.; Tang, J.; Xu, C.; Zhu, D.; Tang, W.; Xia, Y. The Relationship between Prenatal Exposure to BP-3 and Hirschsprung’s Disease. Chemosphere 2016, 144, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, X.; Feng, C.; Xiao, J.; Zhao, X.; Xiong, B.; Feng, J. Benzophenone-3 Induced Abnormal Development of Enteric Nervous System in Zebrafish through MAPK/ERK Signaling Pathway. Chemosphere 2021, 280, 130670. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.L.P.; Souza, J.A.C.R.; de Souza, J.F.; Mamede, J.P.M.; Farias, D.; Luchiari, A.C. Long-Term Effects of Embryonic Exposure to Benzophenone-3 on Neurotoxicity and Behavior of Adult Zebrafish. Science of The Total Environment 2024, 908, 168403. [Google Scholar] [CrossRef] [PubMed]
- Wnuk, A.; Rzemieniec, J.; Staroń, J.; Litwa, E.; Lasoń, W.; Bojarski, A.; Kajta, M. Prenatal Exposure to Benzophenone-3 Impairs Autophagy, Disrupts RXRs/PPARγ Signaling, and Alters Epigenetic and Post-Translational Statuses in Brain Neurons. Mol Neurobiol 2019, 56, 4820–4837. [Google Scholar] [CrossRef] [PubMed]
- Tseng, I.-L.; Yang, Y.-F.; Yu, C.-W.; Li, W.-H.; Liao, V.H.-C. Phthalates Induce Neurotoxicity Affecting Locomotor and Thermotactic Behaviors and AFD Neurons through Oxidative Stress in Caenorhabditis Elegans. PLoS One 2013, 8, e82657. [Google Scholar] [CrossRef]
- Wójtowicz, A.K.; Szychowski, K.A.; Wnuk, A.; Kajta, M. Dibutyl Phthalate (DBP)-Induced Apoptosis and Neurotoxicity Are Mediated via the Aryl Hydrocarbon Receptor (AhR) but Not by Estrogen Receptor Alpha (ERα), Estrogen Receptor Beta (ERβ), or Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Mouse Cortical Neurons. Neurotox Res 2017, 31, 77–89. [Google Scholar] [CrossRef]
- Kassab, R.B.; Lokman, M.S.; Essawy, E.A. Neurochemical Alterations Following the Exposure to Di-n-Butyl Phthalate in Rats. Metab Brain Dis 2019, 34, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, P.; Pal, N.; Kumawat, M.; Shubham, S.; Sarma, D.K.; Tiwari, R.R.; Kumar, M.; Nagpal, R. Impact of Environmental Pollutants on Gut Microbiome and Mental Health via the Gut–Brain Axis. Microorganisms 2022, 10, 1457. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-M.; Schmidt, R.J.; Tancredi, D.; Barkoski, J.; Ozonoff, S.; Bennett, D.H.; Hertz-Picciotto, I. Prenatal Exposure to Phthalates and Autism Spectrum Disorder in the MARBLES Study. Environmental Health 2018, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, R.; Cai, T.; Aschner, M.; Zhao, F.; Yao, T.; Chen, Y.; Cao, Z.; Luo, W.; Chen, J. The Role of Autophagy Dysregulation in Manganese-Induced Dopaminergic Neurodegeneration. Neurotox Res 2013, 24, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Hottinger, A.F.; Fine, E.G.; Gurney, M.E.; Zurn, A.D.; Aebischer, P. The Copper Chelator D-Penicillamine Delays Onset of Disease and Extends Survival in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis. European Journal of Neuroscience 1997, 9, 1548–1551. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Bornhorst, J.; Diana Neely, M.; Avila, D.S. Mechanisms and Disease Pathogenesis Underlying Metal-Induced Oxidative Stress. Oxid Med Cell Longev 2018, 2018, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Copper, Aluminum, Iron and Calcium Inhibit Human Acetylcholinesterase in Vitro. Environ Toxicol Pharmacol 2014, 37, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.C.M.; Ang, E.-T.; Tai, Y.K.; Tsang, F.; Lo, S.Q.; Ong, E.; Ong, W.-Y.; Shen, H.-M.; Lim, K.-L.; Dawson, V.L.; et al. Enhanced Autophagy from Chronic Toxicity of Iron and Mutant A53T α-Synuclein. Journal of Biological Chemistry 2011, 286, 33380–33389. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-J.; Jiang, L.; Chen, L.; Chen, H.-S.; Li, X. Neurotoxicity of Dibutyl Phthalate in Brain Development Following Perinatal Exposure: A Study in Rats. Environ Toxicol Pharmacol 2013, 36, 392–402. [Google Scholar] [CrossRef]
- Hidalgo, C.; Núñez, M.T. Calcium, Iron and Neuronal Function. IUBMB Life 2007, 59, 280–285. [Google Scholar] [CrossRef]
- Garza, A.; Vega, R.; Soto, E. Cellular Mechanisms of Lead Neurotoxicity. 2006. [Google Scholar]
- Braga, M.F.M.; Pereira, E.F.R.; Marchioro, M.; Albuquerque, E.X. Lead Increases Tetrodotoxin-Insensitive Spontaneous Release of Glutamate and GABA from Hippocampal Neurons. Brain Res 1999, 826, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Bocca, B.; Pino, A.; Alimonti, A.; Forte, G. Toxic Metals Contained in Cosmetics: A Status Report. Regulatory Toxicology and Pharmacology 2014, 68, 447–467. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, G.J.; Antignac, E.; Re, T.; Toutain, H. Safety Assessment of Personal Care Products/Cosmetics and Their Ingredients. Toxicol Appl Pharmacol 2010, 243, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Williams, F.M.; Rothe, H.; Barrett, G.; Chiodini, A.; Whyte, J.; Cronin, M.T.D.; Monteiro-Riviere, N.A.; Plautz, J.; Roper, C.; Westerhout, J.; et al. Assessing the Safety of Cosmetic Chemicals: Consideration of a Flux Decision Tree to Predict Dermally Delivered Systemic Dose for Comparison with Oral TTC (Threshold of Toxicological Concern). Regulatory Toxicology and Pharmacology 2016, 76, 174–186. [Google Scholar] [CrossRef]
- Kiran, N.S.; Yashaswini, C.; Chatterjee, A. Noxious Ramifications of Cosmetic Pollutants on Gastrointestinal Microbiome: A Pathway to Neurological Disorders. Life Sci 2024, 336, 122311. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W. Neurotoxicology of the Brain Barrier System: New Implications. J Toxicol Clin Toxicol 2001, 39, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Vela-Soria, F.; Gallardo-Torres, M.E.; Ballesteros, O.; Díaz, C.; Pérez, J.; Navalón, A.; Fernández, M.F.; Olea, N. Assessment of Parabens and Ultraviolet Filters in Human Placenta Tissue by Ultrasound-Assisted Extraction and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J Chromatogr A 2017, 1487, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Rodier, P.M. Developing Brain as a Target of Toxicity. Environ Health Perspect 1995, 103, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Amaya, E.; Gil, F.; Murcia, M.; LLop, S.; Casas, M.; Vrijheid, M.; Lertxundi, A.; Irizar, A.; Fernández-Tardón, G.; et al. Placental Metal Concentrations and Birth Outcomes: The Environment and Childhood (INMA) Project. Int J Hyg Environ Health 2019, 222, 468–478. [Google Scholar] [CrossRef]
- Freire, C.; Amaya, E.; Gil, F.; Fernández, M.F.; Murcia, M.; Llop, S.; Andiarena, A.; Aurrekoetxea, J.; Bustamante, M.; Guxens, M.; et al. Prenatal Co-Exposure to Neurotoxic Metals and Neurodevelopment in Preschool Children: The Environment and Childhood (INMA) Project. Science of The Total Environment 2018, 621, 340–351. [Google Scholar] [CrossRef]
- Trasande, L.; Nelson, M.E.; Alshawabkeh, A.; Barrett, E.S.; Buckley, J.P.; Dabelea, D.; Dunlop, A.L.; Herbstman, J.B.; Meeker, J.D.; Naidu, M.; et al. Prenatal Phenol and Paraben Exposures and Adverse Birth Outcomes: A Prospective Analysis of U.S. Births. Environ Int 2024, 183, 108378. [Google Scholar] [CrossRef] [PubMed]
- Iribarne-Durán, L.M.; Peinado, F.M.; Freire, C.; Castillero-Rosales, I.; Artacho-Cordón, F.; Olea, N. Concentrations of Bisphenols, Parabens, and Benzophenones in Human Breast Milk: A Systematic Review and Meta-Analysis. Science of The Total Environment 2022, 806, 150437. [Google Scholar] [CrossRef] [PubMed]
- Aengenheister, L.; Keevend, K.; Muoth, C.; Schönenberger, R.; Diener, L.; Wick, P.; Buerki-Thurnherr, T. An Advanced Human in Vitro Co-Culture Model for Translocation Studies across the Placental Barrier. Sci Rep 2018, 8, 5388. [Google Scholar] [CrossRef] [PubMed]
- Campanale; Massarelli; Savino; Locaputo; Uricchio A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int J Environ Res Public Health 2020, 17, 1212. [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ Int 2021, 146, 106274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xiao, J.; Xiao, Q.; Chen, Y.; Li, X.; Zheng, Q.; Ma, J.; Xu, J.; Fu, J.; Shen, J.; et al. Infant Exposure to Parabens, Triclosan, and Triclocarban via Breastfeeding and Formula Supplementing in Southern China. Science of The Total Environment 2023, 858, 159820. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, J.C.; Downs, C.A. Can Oxybenzone Cause Hirschsprung’s Disease? Reproductive Toxicology 2019, 86, 98–100. [Google Scholar] [CrossRef] [PubMed]
- van Raamsdonk, L.W.D.; van der Zande, M.; Koelmans, A.A.; Hoogenboom, R.L.A.P.; Peters, R.J.B.; Groot, M.J.; Peijnenburg, A.A.C.M.; Weesepoel, Y.J.A. Current Insights into Monitoring, Bioaccumulation, and Potential Health Effects of Microplastics Present in the Food Chain. Foods 2020, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue Accumulation of Microplastics in Mice and Biomarker Responses Suggest Widespread Health Risks of Exposure. Sci Rep 2017, 7, 46687. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, J.Y.; Lee, D.Y.; Park, K.J.; Kim, G.H.; Kim, J.E.; Roh, G.S.; Lim, J.Y.; Koo, S.; Lim, N.K.; et al. Alcohol Consumption before Pregnancy Causes Detrimental Fetal Development and Maternal Metabolic Disorders. Sci Rep 2020, 10, 10054. [Google Scholar] [CrossRef]
- Masood, M.I.; Naseem, M.; Warda, S.A.; Tapia-Laliena, M.Á.; Rehman, H.U.; Nasim, M.J.; Schäfer, K.H. Environment Permissible Concentrations of Glyphosate in Drinking Water Can Influence the Fate of Neural Stem Cells from the Subventricular Zone of the Postnatal Mouse. Environmental Pollution 2021, 270. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Yang, J.; Chang, L.; Qu, Y.; Wang, S.; Zhang, K.; Xiong, Z.; Zhang, J.; Tan, Y.; Wang, X.; et al. Maternal Glyphosate Exposure Causes Autism-like Behaviors in Offspring through Increased Expression of Soluble Epoxide Hydrolase. Proceedings of the National Academy of Sciences 2020, 117, 11753–11759. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Zhang, Y.; Wang, C.; Wang, X.; Zhou, J.; Shen, M.; Zhao, Y.; Fu, Z.; Jin, Y. Maternal Exposure to Different Sizes of Polystyrene Microplastics during Gestation Causes Metabolic Disorders in Their Offspring. Environmental Pollution 2019, 255, 113122. [Google Scholar] [CrossRef] [PubMed]
- Kwok, J.; Hall, H.A.; Murray, A.L.; Auyeung, B. The Association between Analgesic Drug Use in Pregnancy and Neurodevelopmental Disorders: Protocol for an Umbrella Review. Syst Rev 2020, 9, 202. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Wu, R.; Chen, L.; Wang, T. Maternal Use of Antidepressants during Pregnancy and Risks for Adverse Perinatal Outcomes: A Meta-Analysis. J Psychosom Res 2020, 137, 110231. [Google Scholar] [CrossRef] [PubMed]
- Maalouli, W.M.; Hilliard, B.S. Venlafaxine-Induced Encephalopathy in Term Newborn. SAGE Open Med Case Rep 2020, 8, 2050313X2095298. [Google Scholar] [CrossRef] [PubMed]
- LaPlante, C.D.; Bansal, R.; Dunphy, K.A.; Jerry, D.J.; Vandenberg, L.N. Oxybenzone Alters Mammary Gland Morphology in Mice Exposed During Pregnancy and Lactation. J Endocr Soc 2018, 2, 903–921. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zheng, J.; Wang, H.; Huang, G.; Huang, Q.; Feng, N.; Xiao, J. Maternal Cosmetics Use during Pregnancy and Risks of Adverse Outcomes: A Prospective Cohort Study. Sci Rep 2019, 9, 8030. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Preston, E. V.; Fruh, V.; Quinn, M.R.; Hacker, M.R.; Wylie, B.J.; O’Brien, K.; Williams, P.L.; Hauser, R.; James-Todd, T.; et al. Use of Personal Care Products during Pregnancy and Birth Outcomes – A Pilot Study. Environ Res 2023, 225, 115583. [Google Scholar] [CrossRef]
- Marie, C.; Cabut, S.; Vendittelli, F.; Sauvant-Rochat, M.-P. Changes in Cosmetics Use during Pregnancy and Risk Perception by Women. Int J Environ Res Public Health 2016, 13, 383. [Google Scholar] [CrossRef]
- Heuckeroth, R.O. Hirschsprung Disease — Integrating Basic Science and Clinical Medicine to Improve Outcomes. Nat Rev Gastroenterol Hepatol 2018, 15, 152–167. [Google Scholar] [CrossRef]
- Lake, J.I.; Heuckeroth, R.O. Enteric Nervous System Development: Migration, Differentiation, and Disease. American Journal of Physiology-Gastrointestinal and Liver Physiology 2013, 305, G1–G24. [Google Scholar] [CrossRef]
- Menezes, M.; Puri, P. Long-Term Outcome of Patients with Enterocolitis Complicating Hirschsprung’s Disease. Pediatr Surg Int 2006, 22, 316–318. [Google Scholar] [CrossRef]
- Luzón-Toro, B.; Villalba-Benito, L.; Torroglosa, A.; Fernández, R.M.; Antiñolo, G.; Borrego, S. What Is New about the Genetic Background of Hirschsprung Disease? Clin Genet 2020, 97, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.S.; Li, P.; Lai, F.P.-L.; Fu, A.X.; Lau, S.-T.; So, M.T.; Lui, K.N.-C.; Li, Z.; Zhuang, X.; Yu, M.; et al. Identification of Genes Associated With Hirschsprung Disease, Based on Whole-Genome Sequence Analysis, and Potential Effects on Enteric Nervous System Development. Gastroenterology 2018, 155, 1908–1922. [Google Scholar] [CrossRef] [PubMed]
- Heuckeroth, R.O. Even When You Know Everything, There Is Still More to Learn About Hirschsprung Disease. Gastroenterology 2018, 155, 1681–1684. [Google Scholar] [CrossRef] [PubMed]
- Heuckeroth, R.O. Hirschsprung’s Disease, Down Syndrome, and Missing Heritability: Too Much Collagen Slows Migration. Journal of Clinical Investigation 2015, 125, 4323–4326. [Google Scholar] [CrossRef] [PubMed]
- Niesler, B.; Kuerten, S.; Demir, I.E.; Schäfer, K.-H. Disorders of the Enteric Nervous System — a Holistic View. Nat Rev Gastroenterol Hepatol 2021, 18, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Lu, L.; Tu, W.; Luo, T.; Fu, Z. Impacts of Polystyrene Microplastic on the Gut Barrier, Microbiota and Metabolism of Mice. Science of The Total Environment 2019, 649, 308–317. [Google Scholar] [CrossRef]
- Jin, Y.; Xia, J.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z. Polystyrene Microplastics Induce Microbiota Dysbiosis and Inflammation in the Gut of Adult Zebrafish. Environmental Pollution 2018, 235, 322–329. [Google Scholar] [CrossRef]
- Lu, L.; Luo, T.; Zhao, Y.; Cai, C.; Fu, Z.; Jin, Y. Interaction between Microplastics and Microorganism as Well as Gut Microbiota: A Consideration on Environmental Animal and Human Health. Science of The Total Environment 2019, 667, 94–100. [Google Scholar] [CrossRef]
- Huo, W.; Cai, P.; Chen, M.; Li, H.; Tang, J.; Xu, C.; Zhu, D.; Tang, W.; Xia, Y. The Relationship between Prenatal Exposure to BP-3 and Hirschsprung’s Disease. Chemosphere 2016, 144, 1091–1097. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, H.; Xia, W.; Li, Y.; Liu, H.; Hao, K.; Chen, J.; Sun, X.; Liu, W.; Li, J.; et al. Prenatal Exposure to Benzophenones, Parabens and Triclosan and Neurocognitive Development at 2 years. Environ Int 2019, 126, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, H.G.; Ali, E.H.A.; Elgoly, A.H.M. Interplay between Pro-Inflammatory Cytokines and Brain Oxidative Stress Biomarkers: Evidence of Parallels between Butyl Paraben Intoxication and the Valproic Acid Brain Physiopathology in Autism Rat Model. Cytokine 2015, 71, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.-J.; Chen, M.-H.; Lin, C.-C.; Chen, P.-C. Association between Parabens Exposure and Neurodevelopment in Children. Environ Int 2024, 188, 108671. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, H.; Xia, W.; Li, Y.; Liu, H.; Hao, K.; Chen, J.; Sun, X.; Liu, W.; Li, J.; et al. Prenatal Exposure to Benzophenones, Parabens and Triclosan and Neurocognitive Development at 2 years. Environ Int 2019, 126, 413–421. [Google Scholar] [CrossRef]
- Masuo, Y.; Morita, M.; Oka, S.; Ishido, M. Motor Hyperactivity Caused by a Deficit in Dopaminergic Neurons and the Effects of Endocrine Disruptors: A Study Inspired by the Physiological Roles of PACAP in the Brain. Regul Pept 2004, 123, 225–234. [Google Scholar] [CrossRef]
- Yan, B.; Guo, J.; Liu, X.; Li, J.; Yang, X.; Ma, P.; Wu, Y. Oxidative Stress Mediates Dibutyl Phthalateinduced Anxiety-like Behavior in Kunming Mice. Environ Toxicol Pharmacol 2016, 45, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Hozumi, I.; Hasegawa, T.; Honda, A.; Ozawa, K.; Hayashi, Y.; Hashimoto, K.; Yamada, M.; Koumura, A.; Sakurai, T.; Kimura, A.; et al. Patterns of Levels of Biological Metals in CSF Differ among Neurodegenerative Diseases. J Neurol Sci 2011, 303, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Shah-Kulkarni, S.; Lee, S.; Jeong, K.S.; Hong, Y.-C.; Park, H.; Ha, M.; Kim, Y.; Ha, E.-H. Prenatal Exposure to Mixtures of Heavy Metals and Neurodevelopment in Infants at 6 Months. Environ Res 2020, 182, 109122. [Google Scholar] [CrossRef]
- Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative Diseases and Oxidative Stress. Nat Rev Drug Discov 2004, 3, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Roos, P.M.; Vesterberg, O.; Syversen, T.; Flaten, T.P.; Nordberg, M. Metal Concentrations in Cerebrospinal Fluid and Blood Plasma from Patients with Amyotrophic Lateral Sclerosis. Biol Trace Elem Res 2013, 151, 159–170. [Google Scholar] [CrossRef]
- Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in Cosmetics: Environmental Issues and Needs for Global Bans. Environ Toxicol Pharmacol 2019, 68, 75–79. [Google Scholar] [CrossRef]
- Sun, Q.; Ren, S.-Y.; Ni, H.-G. Incidence of Microplastics in Personal Care Products: An Appreciable Part of Plastic Pollution. Science of The Total Environment 2020, 742, 140218. [Google Scholar] [CrossRef]
- Gelbke, H.-P.; Banton, M.; Block, C.; Dawkins, G.; Eisert, R.; Leibold, E.; Pemberton, M.; Puijk, I.M.; Sakoda, A.; Yasukawa, A. Risk Assessment for Migration of Styrene Oligomers into Food from Polystyrene Food Containers. Food and Chemical Toxicology 2019, 124, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.Y.; Hyun, S.-A.; Jang, S.; Seo, J.-W.; Rho, J.; Lee, B.-S.; Ka, M. Butylparaben Induces the Neuronal Death Through the ER Stress-Mediated Apoptosis of Primary Cortical Neurons. Neurotox Res 2022, 40, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Tran, C.M.; Ra, J.-S.; Rhyu, D.Y.; Kim, K.-T. Transcriptome Analysis Reveals Differences in Developmental Neurotoxicity Mechanism of Methyl-, Ethyl-, and Propyl- Parabens in Zebrafish Embryos. Ecotoxicol Environ Saf 2023, 268, 115704. [Google Scholar] [CrossRef]
- Chang, C.-H.; Lu, C.-T.; Chen, T.-L.; Huang, W.-T.; Torng, P.-C.; Chang, C.-W.; Chen, Y.-C.; Yu, Y.-L.; Chuang, Y.-N. The Association of Bisphenol A and Paraben Exposure with Sensorineural Hearing Loss in Children. Environmental Science and Pollution Research 2023, 30, 100552–100561. [Google Scholar] [CrossRef]
- Fischer, F.; Kretschmer, T.; Seifert, P.; Howanski, J.; Krieger, E.; Rödiger, J.; Fink, B.; Yin, Z.; Bauer, M.; Zenclussen, M.L.; et al. Single and Combined Exposures to Bisphenol A and Benzophenone-3 during Early Mouse Pregnancy Have Differential Effects on Fetal and Placental Development. Science of The Total Environment 2024, 922, 171386. [Google Scholar] [CrossRef]
- Hauser, R.; Calafat, A.M. PHTHALATES AND HUMAN HEALTH. Occup Environ Med 2005, 62, 806–818. [Google Scholar] [CrossRef]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and Exposure. Int J Hyg Environ Health 2007, 210, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Ghisari, M.; Bonefeld-Jorgensen, E.C. Effects of Plasticizers and Their Mixtures on Estrogen Receptor and Thyroid Hormone Functions. Toxicol Lett 2009, 189, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, D.; Zhou, Y.; Ma, M.; Li, J.; Wang, Z. Dibutyl Phthalate Contributes to the Thyroid Receptor Antagonistic Activity in Drinking Water Processes. Environ Sci Technol 2010, 44, 6863–6868. [Google Scholar] [CrossRef] [PubMed]
- Åberg, F.; Zhang, Y.; Appelkvist, E.-L.; Dallner, G. Effects of Clofibrate, Phthalates and Probucol on Ubiquinone Levels. Chem Biol Interact 1994, 91, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-N.; Cho, S.-C.; Kim, Y.; Shin, M.-S.; Yoo, H.-J.; Kim, J.-W.; Yang, Y.H.; Kim, H.-W.; Bhang, S.-Y.; Hong, Y.-C. Phthalates Exposure and Attention-Deficit/Hyperactivity Disorder in School-Age Children. Biol Psychiatry 2009, 66, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.M.; Miodovnik, A.; Canfield, R.L.; Zhu, C.; Silva, M.J.; Calafat, A.M.; Wolff, M.S. Prenatal Phthalate Exposure Is Associated with Childhood Behavior and Executive Functioning. Environ Health Perspect 2010, 118, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Dunford, R.; Salinaro, A.; Cai, L.; Serpone, N.; Horikoshi, S.; Hidaka, H.; Knowland, J. Chemical Oxidation and DNA Damage Catalysed by Inorganic Sunscreen Ingredients. FEBS Lett 1997, 418, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.J.; Chu, A.W.; Lu, Z.F.; Pan, M.H.; Che, D.F.; Zhou, X.J. Ultraviolet B-induced Alterations of the Skin Barrier and Epidermal Calcium Gradient. Exp Dermatol 2007, 16, 985–992. [Google Scholar] [CrossRef]
- Raj, S.; Jose, S.; Sumod, U.; Sabitha, M. Nanotechnology in Cosmetics: Opportunities and Challenges. J Pharm Bioallied Sci 2012, 4, 186. [Google Scholar] [CrossRef]
- Betteridge, D.J. What Is Oxidative Stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Sayre, L.M.; Perry, G.; Smith, M.A. Oxidative Stress and Neurotoxicity. Chem Res Toxicol 2008, 21, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; O, W.; Li, W.; Jiang, Z.-G.; Ghanbari, H. Oxidative Stress and Neurodegenerative Disorders. Int J Mol Sci 2013, 14, 24438–24475. [Google Scholar] [CrossRef] [PubMed]
- Barber, C.N.; Raben, D.M. Lipid Metabolism Crosstalk in the Brain: Glia and Neurons. Front Cell Neurosci 2019, 13. [Google Scholar] [CrossRef] [PubMed]
| Compound | Types | Found in* | Mechanisms | References |
|---|---|---|---|---|
| Microplastics Nanoplastics |
Polyethene (PE) Polypropylene (PP) Polyvinylchloride (PVC) Polystyrene (PS) Polylactic (PLA) |
Exfoliating Mosturizes Toothpaste Lipsticks Nail polish Packages |
Inflammation Neurotransmitters disruption ↑Oxidative stress AChE Inhibition Cellular toxicity Lipid peroxidation Endocrine disruptors |
[4] [4,5,6] [4,5,6,7,8] [4] [4,9] [5] [6] |
| Parabenes | Methylparaben (MtP) Butylparaben (BuP) Ethylparaben (EtP) Propyl paraben (PrP) |
Shower gel Body cream Hair products Deodorant Fragances |
Endocrine disruption Neurotoxicity ↑Oxidative stress Microbiote alterations |
[9,10] [10,11,12,13] [13] [14] |
| Benzophenones | BP-1 BP-2 Oxybenzone-3/BP-3 |
Sun blockers Fragances |
Neuronal migration MAPK/ERK signaling AChE Inhibition |
[15] [16] [17] |
| BP-4 | Neurotransmitters disruption | [18] | ||
| Phthalates | Di-ethyl-phthalate (DEP) Di-n-butyl phthalate (DBP) Dimethyl-phthalate (DMP) |
Eyeshadows Fragances Nail polish Moisturizers |
Endocrine disruption ↑Oxidative stress AChE Inhibition Microbiote alterations |
[19,20,21] [4] [4] [22] [20,23] |
| Hair products | Cellular apoptosis | |||
| Metals Trace metals |
Lead (Ld) Aluminium (Al) Cadmium (Cd) Nickel (Ni) Arsenic (As) Mercury (Hg) Manganese (Mn) Titanium dioxide (TiO2) Chromium (Cr) Iron (Fe) Copper (Cu) Cobalt (Co) |
Lipsticks Eyeshadows Lotions Powders Additives Mascaras Foundations Sun blockers Toothpaste Eye products Additives |
↑Oxidative stress AChE Inhibition Autophagia Apoptosis Microbiota alterations Blocking Ca2+/K+ channels Neurotransmitters disruption Endocrine disruption |
[4,24,25,26] [4,27] [24,28] [29,30] [22] [31] [32] [33] |
| Detected in | Compound | References |
|---|---|---|
| Placenta barrier | Microplastics Parabens Benzophenones Metals |
[44,45,46] [38] [38] [40] |
| Breast milk | Microplastics Bisphenol Parabens Benzophenones |
[43] [43] [43,47] [43] |
| Maternal Urine/Blood | Benzophenones Parabens |
[15,48] [10] |
| Umbilical cord | Benzophenones | [48] |
| Intestine | Microplastics Parabens Phthalates Metals |
[6,45,49,50] [36] [22,36] [22 |
| Brain | Microplastics Parabens Benzophenones Phthalates Metals |
[4,6,45] [13] [18] [22] [22] |
| Compound | Impairment | Complications | References |
|---|---|---|---|
| Microplastics | Endocrine Disruption Neurotoxicity Inflammation Oxidative stress |
Neurodevelopment Cognitive Behavioral Microbiota dysbiosis PLD |
[6,50,70,71,72] [6,50,70,71,72] [6] [50,70,71,72] [6] |
| Benzophenones | Cellular migration Neurotoxicity |
HSCR Cognitive |
[73] [74] |
| Parabenes | Endocrine Disruption | Children overweight | [10] |
| Oxidative stress Mitochondrial dysfunction Neuroinflammation |
ASD Cognitive |
[75] [76,77] |
|
| Phthalates | Endocrine disruption | ADHD behavioral profile | [78] |
| Apoptosis Oxidative stress Microbiota dysbiosis |
Anxiety Mental disorders |
[79] [22] |
|
| Metals | Autophagia Apoptosis Oxidative stress Microbiota dysbiosis |
Memory, motor skills PD, AD |
[24] [24,80] |
| Cognitive impairment ALS Mental disorders |
[33,81] [25,82,83] [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
