Submitted:
02 July 2024
Posted:
02 July 2024
You are already at the latest version
Abstract
Keywords:
Introduction
The Regulation of Iron Hemostasis:
Evaluation of Iron Overload:
Genetic Modifiers in Hemoglobinopathies
HFE Gene
Hepcidin Gene (HAMP)
Transferrin Receptor 2 Gene (TFR2)
Ferroportin Gene (SLC40A1)
Clinical Studies Related to Iron Overload in SCD Patients:
Iron overload Imaging Studies in SCD Patients:
Iron Metabolism Studies in SCD:
Discussion:
| Genetic Modifier | Chromosome Location | Reported Mutations/ Variants |
Function/ Association |
Implication in Thalassemia/SCD |
|---|---|---|---|---|
| HFE (Homeostatic Iron Regulator) | 6p22.2 | C282Y (rs1800562) H63D (rs1799945) S65C (rs1800730) 5569G-A (rs1800758) V53M (rs28934889) V59M (rs111033557) Q127H (rs28934595) R330M (rs111033558) I105T (rs28934596) G93R (rs28934597) Q283P (rs111033563) |
Regulates iron homeostasis, interacts with TfR1, influences hepcidin expression | Mutations or variants can lead to hereditary hemochromatosis, associated with increased serum ferritin and hepatic iron accumulation |
| HAMP (Hepcidin) | 19q13.12 | 1-BP DEL, 93G (rs1189025914) R56X (rs104894695) 4-BP DEL, ATGG (rs142287964) G71D (rs104894696) +14G-A, 5-PRIME UTR (rs944843686) |
Key regulator of iron homeostasis, controls iron absorption and release from macrophages | Genetic variations associated with altered hepcidin levels and iron overload, potential target for therapeutic strategies |
| TFR2 (Transferrin Receptor 2) | 7q22.1 | Y250X (rs80338880) 1-BP INS, 84C (rs8033887) M172K (rs80338879) R455Q (rs41303501) Q690P (rs80338889) |
Regulator of iron homeostasis, interacts with transferrin, modulates iron uptake into cells | Mutations or dysregulation associated with iron overload, impacts hepcidin production |
| SLC40A1 (Ferroportin) | 2q32.2 | N144H (rs104893662) A77D (rs28939076) VAL162DEL (rs878854984) D157G (rs104893663) Q182H (rs104893670) G323V (rs104893671) D181V (rs104893672) G80V (rs104893673) G267D (rs104893664) |
Encodes transmembrane protein responsible for exporting iron from cells into the bloodstream | Mutations or variants associated with altered iron transport, may contribute to iron overload |
| HJV (Hemojuvelin) | 1q21.1 | G320V (rs74315323) R326X (rs74315324) I222N (rs74315325) I281T (rs74315326) C80R (rs28940586) L101P (rs74315327) C321X (rs121434374) 4-BP DEL, NT980 (rs786205063) R54X (rs121434375) |
Involved in iron metabolism, associated with juvenile hemochromatosis | Polymorphisms linked to altered hepcidin levels and iron overload, impact on cardiac iron overload |
| CP(Ceruloplasmin) | 3q24-q25.1 | IVSAS, G-A, -1 (rs386134142) 5-BP INS (rs386134145) W858X (rs121909579) 1-BP INS, 184A (rs386134143) |
Copper-binding protein involved in iron metabolism and oxidative stress regulation | Genetic variations associated with alterations in ceruloplasmin activity and iron overload |
| GST(Glutathione S-transferases) | 11q13.2 | miscellaneous | Enzymes involved in detoxification, implicated in antioxidant capacity and detoxification processes | Gene polymorphisms associated with higher serum iron and ferritin levels, liver and cardiac iron deposition |
References
- Muckenthaler, M.U.; Rivella, S.; Hentze, M.W.; Galy, B. A Red Carpet for Iron Metabolism. Cell 2017, 168, 344–361. [CrossRef]
- Hentze, M.W.; Muckenthaler, M.U.; Galy, B.; Camaschella, C. Two to Tango: Regulation of Mammalian Iron Metabolism. Cell 2010, 142, 24–38. [CrossRef]
- Rivella, S. Iron Metabolism under Conditions of Ineffective Erythropoiesis in β-Thalassemia. Blood 2019, 133, 51–58. [CrossRef]
- Origa, R. β-Thalassemia. Genetics in Medicine 2017, 19, 609–619. [CrossRef]
- Kattamis, A.; Kwiatkowski, J.L.; Aydinok, Y. Thalassaemia. The Lancet 2022, 399, 2310–2324. [CrossRef]
- Hokland, P.; Daar, S.; Khair, W.; Sheth, S.; Taher, A.T.; Torti, L.; Hantaweepant, C.; Rund, D. Thalassaemia—A Global View. Br J Haematol 2023, 201, 199–214. [CrossRef]
- Pantopoulos, K. Inherited Disorders of Iron Overload. Front Nutr 2018, 5. [CrossRef]
- Xu, F.; Peng, Y.; Xie, H.; Liang, B.; Yang, G.; Zhao, F.; Liu, Y.; Peng, P. A Multicenter Study on the Quantification of Liver Iron Concentration in Thalassemia Patients by Means of the MRI T2* Technique. Front Med (Lausanne) 2023, 10. [CrossRef]
- Basu, S.; Rahaman, M.; Dolai, T.K.; Shukla, P.C.; Chakravorty, N. Understanding the Intricacies of Iron Overload Associated With β-Thalassemia: A Comprehensive Review. 2023. [CrossRef]
- Sleiman, J.; Tarhini, A.; Bou-Fakhredin, R.; Saliba, A.; Cappellini, M.; Taher, A. Non-Transfusion-Dependent Thalassemia: An Update on Complications and Management. Int J Mol Sci 2018, 19, 182. [CrossRef]
- Gupta, R.; Musallam, K.M.; Taher, A.T.; Rivella, S. Ineffective Erythropoiesis: Anemia and Iron Overload. Hematol Oncol Clin North Am 2018, 32, 213–221. [CrossRef]
- Camaschella, C.; Nai, A. Ineffective Erythropoiesis and Regulation of Iron Status in Iron Loading Anaemias. Br J Haematol 2016, 172, 512–523. [CrossRef]
- Cazzola, M. Ineffective Erythropoiesis and Its Treatment. Blood 2022, 139, 2460–2470. [CrossRef]
- Longo, F.; Piolatto, A.; Ferrero, G.B.; Piga, A. Ineffective Erythropoiesis in β-Thalassaemia: Key Steps and Therapeutic Options by Drugs. Int J Mol Sci 2021, 22, 7229. [CrossRef]
- Asadov, C.; Aliyeva, G.; Shirinova, A.; Alimirzoyeva, Z. Rationale of Ferroportin Inhibition for Beta-Thalassemia Management. Drugs Future 2022, 47, 123. [CrossRef]
- Asadov, C.; Alimirzoeva, Z.; Mammadova, T.; Aliyeva, G.; Gafarova, S.; Mammadov, J. β-Thalassemia Intermedia: A Comprehensive Overview and Novel Approaches. Int J Hematol 2018, 108, 5–21. [CrossRef]
- Aliyeva, G.; Abdulalimov, E.; Asadov, C.; Mammadova, T.; Gafarova, S.; Guliyeva, Y. First Report of β-Thalassemia Intermedia in a Patient Compound Heterozygous for –92 (C>T) and Codons 36/37 (–T) Mutations. Hemoglobin 2021, 45, 347–348. [CrossRef]
- Musallam, K.M.; Cappellini, M.D.; Viprakasit, V.; Kattamis, A.; Rivella, S.; Taher, A.T. Revisiting the Non-transfusion-dependent (NTDT) vs. Transfusion-dependent (TDT) Thalassemia Classification 10 Years Later. Am J Hematol 2021, 96. [CrossRef]
- Kwiatkowski, J.L. Clinical Challenges with Iron Chelation in Beta Thalassemia. Hematol Oncol Clin North Am 2023, 37, 379–391. [CrossRef]
- Fung, E.B.; Harmatz, P.; Milet, M.; Ballas, S.K.; de Castro, L.; Hagar, W.; Owen, W.; Olivieri, N.; Smith-Whitley, K.; Darbari, D.; et al. Morbidity and Mortality in Chronically Transfused Subjects with Thalassemia and Sickle Cell Disease: A Report from the Multi-Center Study of Iron Overload. Am J Hematol 2007, 82, 255–265. [CrossRef]
- Vichinsky E; Butensky E; Fung E; Hudes M; Theil E; Ferrell L; Williams R; Louie L; Lee PD; Harmatz P Comparison of Organ Dysfunction in Transfused Patients with SCD or Beta Thalassemia. Am J Hematol 2005, 80, 70–74.
- Koren, A.; Fink, D.; Admoni, O.; Tennenbaum-Rakover, Y.; Levin, C. Non-Transferrin Bound Labile Plasma Iron and Iron Overload in Sickle Cell Disease: A Comparative Study between Sickle Cell Disease and β Thalassemic Patients. Eur J Haematol 2010, 84. [CrossRef]
- Weizer-Stern, O.; Adamsky, K.; Amariglio, N.; Levin, C.; Koren, A.; Breuer, W.; Rachmilewitz, E.; Breda, L.; Rivella, S.; Ioav Cabantchik, Z.; et al. Downregulation of Hepcidin and Haemojuvelin Expression in the Hepatocyte Cell-Line HepG2 Induced by Thalassaemic Sera. Br J Haematol 2006, 135. [CrossRef]
- Breuer, W.; Ronson, A.; Slotki, I.N.; Abramov, A.; Hershko, C.; Cabantchik, Z.I. The Assessment of Serum Nontransferrin-Bound Iron in Chelation Therapy and Iron Supplementation. Blood 2000, 95, 2975–2982. [CrossRef]
- Thein, S.L. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease. In; 2017; pp. 27–57.
- Asadov, C.; Aliyeva, G.; Shirinova, A.; Alimirzoyeva, Z. Rationale of Ferroportin Inhibition for Beta-Thalassemia Management. Drugs Future 2022, 47, 123. [CrossRef]
- Martins, R.; Picanço, I.; Fonseca, A.; Ferreira, L.; Rodrigues, O.; Coelho, M.; Seixas, T.; Miranda, A.; Nunes, B.; Costa, L.; et al. The Role of HFE Mutations on Iron Metabolism in Beta-Thalassemia Carriers. J Hum Genet 2004, 49, 651–655. [CrossRef]
- F Longo; G Zecchina; L Sbaiz; R Fisher; A Piga; C Camaschella The Influence of Hemochromatosis Mutations on Iron Overload of Thalassemia Major. Haematologica 1999, 84, 799–803.
- López-Escribano, H.; Ferragut, J.F.; Parera, M.M.; Guix, P.; Castro, J.A.; Ramon, M.M.; Picornell, A. Effect of Co-Inheritance of β-Thalassemia and Hemochromatosis Mutations on Iron Overload. Hemoglobin 2012, 36, 85–92. [CrossRef]
- Singh, M.M.; Kumar, R.; Tewari, S.; Agarwal, S. Association of GSTT1/GSTM1 and ApoE Variants with Left Ventricular Diastolic Dysfunction in Thalassaemia Major Patients. Hematology 2019, 24, 20–25. [CrossRef]
- Wu, K.-H.; Chang, J.-G.; Ho, Y.-J.; Wu, S.-F.; Peng, C.-T. Glutathione S-Transferase M1 Gene Polymorphisms Are Associated with Cardiac Iron Deposition in Patients with β-Thalassemia Major. Hemoglobin 2006, 30, 251–256. [CrossRef]
- Sharma, V.; Kumar, B.; Saxena, R. Glutathione S-Transferase Gene Deletions and Their Effect on Iron Status in HbE/β Thalassemia Patients. Ann Hematol 2010, 89, 411–414. [CrossRef]
- Mokhtar, G.M.; Sherif, E.M.; Habeeb, N.M.; Abdelmaksoud, A.A.; El-Ghoroury, E.A.; Ibrahim, A.S.; Hamed, E.M. Glutathione S -Transferase Gene Polymorphism: Relation to Cardiac Iron Overload in Egyptian Patients with Beta Thalassemia Major. Hematology 2016, 21, 46–53. [CrossRef]
- Girelli, D.; Corrocher, R.; Bisceglia, L.; Olivieri, O.; De Franceschi, L.; Zelante, L.; Gasparini, P. Molecular Basis for the Recently Described Hereditary Hyperferritinemia- Cataract Syndrome: A Mutation in the Iron-Responsive Element of Ferritin L-Subunit Gene (the “Verona Mutation”) [See Comments]. Blood 1995, 86, 4050–4053. [CrossRef]
- Girelli, D.; Corrocher, R.; Bisceglia, L.; Olivieri, O.; Zelante, L.; Panozzo, G.; Gasparini, P. Hereditary Hyperferritinemia-Cataract Syndrome Caused by a 29-Base Pair Deletion in the Iron Responsive Element of Ferritin L-Subunit Gene. Blood 1997, 90, 2084–2088. [CrossRef]
- Yoshida, K.; Furihata, K.; Takeda, S.; Nakamura, A.; Yamamoto, K.; Morita, H.; Hiyamuta, S.; Ikeda, S.; Shimizu, N.; Yanagisawa, N. A Mutation in the Ceruloplasmin Gene Is Associated with Systemic Hemosiderosis in Humans. Nat Genet 1995, 9, 267–272. [CrossRef]
- Valenti, L.; Rametta, R.; Dongiovanni, P.; Motta, B.M.; Canavesi, E.; Pelusi, S.; Pulixi, E.A.; Fracanzani, A.L.; Fargion, S. The A736V TMPRSS6 Polymorphism Influences Hepatic Iron Overload in Nonalcoholic Fatty Liver Disease. PLoS ONE 2012, 7, e48804. [CrossRef]
- Takahashi, Y.; Miyajima, H.; Shirabe, S.; Nagataki, S.; Suenaga, A.; Gitlin, J.D. Characterization of a Nonsense Mutation in the Ceruloplasmin Gene Resulting in Diabetes and Neurodegenerative Disease. Hum Mol Genet 1996, 5, 81–84. [CrossRef]
- Akira Hayashi; Yoshinao Wada; Tomokazu Suzuki; Akira Shimizu Studies on Familial Hypotransferrinemia: Unique Clinical Course and Molecular Pathology. Am.J. Hum. Genet. 1993, 53, 201–213.
- Hanson, E.H. HFE Gene and Hereditary Hemochromatosis: A HuGE Review. Am J Epidemiol 2001, 154, 193–206. [CrossRef]
- Katsarou, M.-S.; Papasavva, M.; Latsi, R.; Drakoulis, N. Hemochromatosis: Hereditary Hemochromatosis and HFE Gene. In; 2019; pp. 201–222.
- Barton, J.C.; Edwards, C.Q.; Acton, R.T. HFE Gene: Structure, Function, Mutations, and Associated Iron Abnormalities. Gene 2015, 574, 179–192. [CrossRef]
- Waheed, A.; Parkkila, S.; Saarnio, J.; Fleming, R.E.; Zhou, X.Y.; Tomatsu, S.; Britton, R.S.; Bacon, B.R.; Sly, W.S. Association of HFE Protein with Transferrin Receptor in Crypt Enterocytes of Human Duodenum. Proceedings of the National Academy of Sciences 1999, 96, 1579–1584. [CrossRef]
- Parkkila, S.; Niemelä, O.; Britton, R.S.; Fleming, R.E.; Waheed, A.; Bacon, B.R.; Sly, W.S. Molecular Aspects of Iron Absorption and HFE Expression. Gastroenterology 2001, 121, 1489–1496. [CrossRef]
- Hollerer, I.; Bachmann, A.; Muckenthaler, M.U. Pathophysiological Consequences and Benefits of HFE Mutations: 20 Years of Research. Haematologica 2017, 102, 809–817. [CrossRef]
- Rametta, R.; Meroni, M.; Dongiovanni, P. From Environment to Genome and Back: A Lesson from HFE Mutations. Int J Mol Sci 2020, 21, 3505. [CrossRef]
- MARIA ANTONIETTA MELIS; MILENA CAU; FEDERICA DEIDDA; SUSANNA BARELLA; ANTONIO CAO; RENZO GALANELLO H63D Mutation in the HFE Gene Increases Iron Overload in β-Thalassemia Carriers. Haematologica 2002, 87, 242–245.
- Papanikolaou, G.; Tzilianos, M.; Christakis, J.I.; Bogdanos, D.; Tsimirika, K.; MacFarlane, J.; Goldberg, Y.P.; Sakellaropoulos, N.; Ganz, T.; Nemeth, E. Hepcidin in Iron Overload Disorders. Blood 2005, 105, 4103–4105. [CrossRef]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron Metabolism and Iron Disorders Revisited in the Hepcidin Era. Haematologica 2020, 105, 260–272. [CrossRef]
- Nemeth, E.; Ganz, T. Hepcidin and Iron in Health and Disease. Annu Rev Med 2023, 74, 261–277. [CrossRef]
- Michael R. Jeng; Patricia Adams-Graves; Thad A. Howard; Matthew R. Whorton; Chin-Shang Li; Russell E. Ware Identification of Hemochromatosis Gene Polymorphisms in Chronically Transfused Patients with Sickle Cell Disease. Am J Hematol 2003, 74, 243–248.
- Ganz, T.; Nemeth, E. The Hepcidin-Ferroportin System as a Therapeutic Target in Anemias and Iron Overload Disorders. Hematology 2011, 2011, 538–542. [CrossRef]
- Jordan, J.B.; Poppe, L.; Haniu, M.; Arvedson, T.; Syed, R.; Li, V.; Kohno, H.; Kim, H.; Schnier, P.D.; Harvey, T.S.; et al. Hepcidin Revisited, Disulfide Connectivity, Dynamics, and Structure. Journal of Biological Chemistry 2009, 284, 24155–24167. [CrossRef]
- Gardenghi, S.; Marongiu, M.F.; Ramos, P.; Guy, E.; Breda, L.; Chadburn, A.; Liu, Y.; Amariglio, N.; Rechavi, G.; Rachmilewitz, E.A.; et al. Ineffective Erythropoiesis in β-Thalassemia Is Characterized by Increased Iron Absorption Mediated by down-Regulation of Hepcidin and up-Regulation of Ferroportin. Blood 2007, 109, 5027–5035. [CrossRef]
- Zarghamian, P.; Azarkeivan, A.; Arabkhazaeli, A.; Mardani, A.; Shahabi, M. Hepcidin Gene Polymorphisms and Iron Overload in β-Thalassemia Major Patients Refractory to Iron Chelating Therapy. BMC Med Genet 2020, 21, 75. [CrossRef]
- Pratummo, K.; Jetsrisuparb, A.; Fucharoen, S.; Tripatara, A. Hepcidin Expression from Monocyte of Splenectomized and Non-Splenectomized Patients with HbE-β-Thalassemia. Hematology 2014, 19, 175–180. [CrossRef]
- Radio, F.C.; Majore, S.; Aurizi, C.; Sorge, F.; Biolcati, G.; Bernabini, S.; Giotti, I.; Torricelli, F.; Giannarelli, D.; De Bernardo, C.; et al. Hereditary Hemochromatosis Type 1 Phenotype Modifiers in Italian Patients. The Controversial Role of Variants in HAMP, BMP2, FTL and SLC40A1 Genes. Blood Cells Mol Dis 2015, 55, 71–75. [CrossRef]
- Andreani, M.; Radio, F.C.; Testi, M.; De Bernardo, C.; Troiano, M.; Majore, S.; Bertucci, P.; Polchi, P.; Rosati, R.; Grammatico, P. Association of Hepcidin Promoter c.-582 A>G Variant and Iron Overload in Thalassemia Major. Haematologica 2009, 94, 1293–1296. [CrossRef]
- Parajes, S.; González-Quintela, A.; Campos, J.; Quinteiro, C.; Domínguez, F.; Loidi, L. Genetic Study of the Hepcidin Gene (HAMP) Promoter and Functional Analysis of the c.-582A > G Variant. BMC Genet 2010, 11, 110. [CrossRef]
- Island, M.-L.; Jouanolle, A.-M.; Mosser, A.; Deugnier, Y.; David, V.; Brissot, P.; Loreal, O. A New Mutation in the Hepcidin Promoter Impairs Its BMP Response and Contributes to a Severe Phenotype in HFE Related Hemochromatosis. Haematologica 2009, 94, 720–724. [CrossRef]
- Ghoti, H.; Goitein, O.; Koren, A.; Levin, C.; Kushnir, T.; Rachmilewitz, E.; Konen, E. No Evidence for Myocardial Iron Overload and Free Iron Species in Multitransfused Patients with Sickle/Β0-Thalassaemia. Eur J Haematol 2010, 84. [CrossRef]
- Jenkins, Z.A.; Hagar, W.; Bowlus, C.L.; Johansson, H.E.; Harmatz, P.; Vichinsky, E.P.; Theil, E.C. IRON HOMEOSTASIS DURING TRANSFUSIONAL IRON OVERLOAD IN β-THALASSEMIA AND SICKLE CELL DISEASE: Changes in Iron Regulatory Protein, Hepcidin, and Ferritin Expression. Pediatr Hematol Oncol 2007, 24, 237–243. [CrossRef]
- Casu, C.; Nemeth, E.; Rivella, S. Hepcidin Agonists as Therapeutic Tools. Blood 2018, 131, 1790–1794. [CrossRef]
- Longo, F.; Piga, A. Does Hepcidin Tuning Have a Role among Emerging Treatments for Thalassemia? J Clin Med 2022, 11, 5119. [CrossRef]
- Trinder, D.; Baker, E. Transferrin Receptor 2: A New Molecule in Iron Metabolism. Int J Biochem Cell Biol 2003, 35, 292–296. [CrossRef]
- Silva, A.M.N.; Moniz, T.; de Castro, B.; Rangel, M. Human Transferrin: An Inorganic Biochemistry Perspective. Coord Chem Rev 2021, 449, 214186. [CrossRef]
- Yu, Y.; Jiang, L.; Wang, H.; Shen, Z.; Cheng, Q.; Zhang, P.; Wang, J.; Wu, Q.; Fang, X.; Duan, L.; et al. Hepatic Transferrin Plays a Role in Systemic Iron Homeostasis and Liver Ferroptosis. Blood 2020, 136, 726–739. [CrossRef]
- Richard, C.; Verdier, F. Transferrin Receptors in Erythropoiesis. Int J Mol Sci 2020, 21, 9713. [CrossRef]
- Wallace, D.F.; Summerville, L.; Subramaniam, V.N. Targeted Disruption of the Hepatic Transferrin Receptor 2 Gene in Mice Leads to Iron Overload. Gastroenterology 2007, 132, 301–310. [CrossRef]
- Le Gac, G.; Mons, F.; Jacolot, S.; Scotet, V.; Férec, C.; Frébourg, T. Early Onset Hereditary Hemochromatosis Resulting from a Novel TFR2 Gene Nonsense Mutation (R105X) in Two Siblings of North French Descent. Br J Haematol 2004, 125, 674–678. [CrossRef]
- del-Castillo-Rueda, A.; Moreno-Carralero, M.-I.; Cuadrado-Grande, N.; Álvarez-Sala-Walther, L.-A.; Enríquez-de-Salamanca, R.; Méndez, M.; Morán-Jiménez, M.-J. Mutations in the HFE, TFR2, and SLC40A1 Genes in Patients with Hemochromatosis. Gene 2012, 508, 15–20. [CrossRef]
- Drake, S.F.; Morgan, E.H.; Herbison, C.E.; Delima, R.; Graham, R.M.; Chua, A.C.G.; Leedman, P.J.; Fleming, R.E.; Bacon, B.R.; Olynyk, J.K.; et al. Iron Absorption and Hepatic Iron Uptake Are Increased in a Transferrin Receptor 2 (Y245X) Mutant Mouse Model of Hemochromatosis Type 3. American Journal of Physiology-Gastrointestinal and Liver Physiology 2007, 292, G323–G328. [CrossRef]
- Di Modica, S.M.; Tanzi, E.; Olivari, V.; Lidonnici, M.R.; Pettinato, M.; Pagani, A.; Tiboni, F.; Furiosi, V.; Silvestri, L.; Ferrari, G.; et al. Transferrin Receptor 2 (Tfr2) Genetic Deletion Makes Transfusion-independent a Murine Model of Transfusion-dependent Β-thalassemia. Am J Hematol 2022, 97, 1324–1336. [CrossRef]
- Vinchi, F.; Ali, M.S. Targeting the Second Transferrin Receptor as Emerging Therapeutic Option for β-Thalassemia Major. Hemasphere 2022, 6, e799. [CrossRef]
- Ma ES; Lam KK; Chan AY; Ha S-Y; Au W-Y; Chan L-C Transferrin Receptor-2 Polymorphisms and Iron Overload in Transfusion Independent b-Thalassemia Intermedia. . Haematologica 2033, 88, 345–346.
- Cianetti, L.; Gabbianelli, M.; Sposi, N.M. Ferroportin and Erythroid Cells: An Update. Adv Hematol 2010, 2010, 1–12. [CrossRef]
- Rivard Sylvain R; Lanzara Carmela; Grimard Doria; Carella Massimo; Simard Hervey; Ficarella Romina; Simard Raynald; Pio D’Adamo Adamo; De Brakeleer Marc; Gasparini Paolo Autosomal Dominant Reticuloendothelial Iron Overload (HFE Type 4) Due to a New Missense Mutation in the FERROPORTIN 1 Gene (SLC11A3) in a Large French-Canadian Family. Haematologica 2003, 88, 824–826.
- El-Gharbawi, N.; Shaheen, I.; Hamdy, M.; Elgawhary, S.; Samir, M.; Hanna, B.M.; Ali, E.Y.; Youssef, E.A. Genetic Variations of Ferroportin-1(FPN1-8CG), TMPRSS6 (Rs855791) and Hemojuvelin (I222N and G320V) Among a Cohort of Egyptian β-Thalassemia Major Patients. Indian Journal of Hematology and Blood Transfusion 2023, 39, 258–265. [CrossRef]
- Politou, M.; Kalotychou, V.; Pissia, M.; Rombos, Y.; Sakellaropoulos, N.; Papanikolaou, G. The Impact of the Mutations of the HFE Gene and of the SLC11A3 Gene on Iron Overload in Greek Thalassemia Intermedia and Beta (s)/Beta (Thal) Anemia Patients. . Haematologica 2004, 89, 490–492.
- van Beers, E.J.; Yang, Y.; Raghavachari, N.; Tian, X.; Allen, D.T.; Nichols, J.S.; Mendelsohn, L.; Nekhai, S.; Gordeuk, V.R.; Taylor, J.G.; et al. Iron, Inflammation, and Early Death in Adults With Sickle Cell Disease. Circ Res 2015, 116, 298–306. [CrossRef]
- Gehrke, S.; Pietrangelo, A.; Kaščák, M.; Braner, A.; Eisold, M.; Kulaksiz, H.; Herrmann, T.; Hebling, U.; Bents, K.; Gugler, R.; et al. HJV Gene Mutations in European Patients with Juvenile Hemochromatosis. Clin Genet 2005, 67, 425–428. [CrossRef]
- Lee, P.L.; Beutler, E.; Rao, S. V.; Barton, J.C. Genetic Abnormalities and Juvenile Hemochromatosis: Mutations of the HJV Gene Encoding Hemojuvelin. Blood 2004, 103, 4669–4671. [CrossRef]
- Lanzara, C. Spectrum of Hemojuvelin Gene Mutations in 1q-Linked Juvenile Hemochromatosis. Blood 2004, 103, 4317–4321. [CrossRef]
- Strange, R.C.; Spiteri, M.A.; Ramachandran, S.; Fryer, A.A. Glutathione-S-Transferase Family of Enzymes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2001, 482, 21–26. [CrossRef]
- Hayes, J.D.; Strange, R.C. Glutathione S-Transferase Polymorphisms and Their Biological Consequences. Pharmacology 2000, 61, 154–166. [CrossRef]
- Sclafani, S.; Calvaruso, G.; Agrigento, V.; Maggio, A.; Lo Nigro, V.; D’Alcamo, E. Glutathione S Transferase Polymorphisms Influence on Iron Overload in β-Thalassemia Patients. Thalassemia Reports 2013, 3, e6. [CrossRef]
- Hellman, N.E.; Gitlin, J.D. C <scp>ERULOPLASMIN</Scp> M <scp>ETABOLISM AND</Scp> F <scp>UNCTION</Scp>. Annu Rev Nutr 2002, 22, 439–458. [CrossRef]
- Rydén, L. Ceruloplasmin. In Copper Proteins and Copper Enzymes; CRC Press, 2018; pp. 37–100.
- Bosio, S.; De Gobbi, M.; Roetto, A.; Zecchina, G.; Leonardo, E.; Rizzetto, M.; Lucetti, C.; Petrozzi, L.; Bonuccelli, U.; Camaschella, C. Anemia and Iron Overload Due to Compound Heterozygosity for Novel Ceruloplasmin Mutations. Blood 2002, 100, 2246–2248. [CrossRef]
- Fung, E.B.; Harmatz, P.; Milet, M.; Ballas, S.K.; De Castro, L.; Hagar, W.; Owen, W.; Olivieri, N.; Smith-Whitley, K.; Darbari, D.; et al. Morbidity and Mortality in Chronically Transfused Subjects with Thalassemia and Sickle Cell Disease: A Report from the Multi-Center Study of Iron Overload. Am J Hematol 2007, 82, 255–265. [CrossRef]
- Vichinsky E; Butensky E; Fung E; Hudes M; Theil E; Ferrell L; Williams R; Louie L; Lee PD; Harmatz P Comparison of Organ Dysfunction in Transfused Patients with SCD or Beta Thalassemia. Am J Hematol 2005, 80, 70–74.
- Badawy, S.M.; Liem, R.I.; Rigsby, C.K.; Labotka, R.J.; DeFreitas, R.A.; Thompson, A.A. Assessing Cardiac and Liver Iron Overload in Chronically Transfused Patients with Sickle Cell Disease. Br J Haematol 2016, 175, 705–713. [CrossRef]
- Wood, J.C.; Tyszka, J.M.; Carson, S.; Nelson, M.D.; Coates, T.D. Myocardial Iron Loading in Transfusion-Dependent Thalassemia and Sickle Cell Disease. Blood 2004, 103, 1934–1936. [CrossRef]
- Voskaridou, E.; Douskou, M.; Terpos, E.; Papassotiriou, I.; Stamoulakatou, A.; Ourailidis, A.; Loutradi, A.; Loukopoulos, D. Magnetic Resonance Imaging in the Evaluation of Iron Overload in Patients with Beta Thalassaemia and Sickle Cell Disease. Br J Haematol 2004, 126, 736–742. [CrossRef]
- Ghoti, H.; Goitein, O.; Koren, A.; Levin, C.; Kushnir, T.; Rachmilewitz, E.; Konen, E. No Evidence for Myocardial Iron Overload and Free Iron Species in Multitransfused Patients with Sickle/Β0-Thalassaemia. Eur J Haematol 2010, 84. [CrossRef]
- Pippard M Secondary Iron Overload, Iron Metabolism in Health and Disease. . In; Brock JH HJ, Pippard MJ, Powel LW, Eds.; WB Saunders: London, 1994; pp. 272–300.
- van Beers, E.J.; Yang, Y.; Raghavachari, N.; Tian, X.; Allen, D.T.; Nichols, J.S.; Mendelsohn, L.; Nekhai, S.; Gordeuk, V.R.; Taylor, J.G.; et al. Iron, Inflammation, and Early Death in Adults With Sickle Cell Disease. Circ Res 2015, 116, 298–306. [CrossRef]
- Kountouris, P.; Stephanou, C.; Archer, N.; Bonifazi, F.; Giannuzzi, V.; Kuo, K.H.M.; Maggio, A.; Makani, J.; Mañú-Pereira, M. del M.; Michailidou, K.; et al. The International Hemoglobinopathy Research Network: An International Initiative to Study the Role of Genetic Modifiers in Hemoglobinopathies. Am J Hematol 2021, 96. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).