Submitted:
26 June 2024
Posted:
27 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant collection and processing
2.2. Determination of proximate composition
2.3. Minerals
2.4. Total Phenolics and Total Flavonoids
2.5. Functional Properties
2.6. Statistical Analysis
3. Results and Discussion
3.1. Nutritional content and variation within orchid species
3.2. Mineral content
3.3. Total phenolics and total flavonoids
3.4. Functional properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgements
Conflict of Interest
References
- H. T. Duguma, “Wild Edible Plant Nutritional Contribution and Consumer Perception in Ethiopia,” Int. J. Food Sci., vol. 2020, p. e2958623, Sep. 2020. [CrossRef]
- J. O. Unuofin, G. A. Otunola, and A. J. Afolayan, “Nutritional evaluation of Kedrostis africana (L.) Cogn: An edible wild plant of South Africa,” Asian Pac. J. Trop. Biomed., vol. 7, no. 5, pp. 443–449, May 2017. [CrossRef]
- P. Tiwari, A. Sharma, S. K. Bose, and K.-I. Park, “Advances in Orchid Biology: Biotechnological Achievements, Translational Success, and Commercial Outcomes,” Horticulturae, vol. 10, no. 2, Art. no. 2, Feb. 2024. [CrossRef]
- A. Hinsley et al., “A review of the trade in orchids and its implications for conservation,” Bot. J. Linn. Soc., vol. 186, no. 4, pp. 435–455, Mar. 2018. [CrossRef]
- D. Fonmboh et al., “An Overview of the Ethnobotanic, Ethnopharmacological and Medicinal Importance of Edible Wild Root Tuber Orchids in Cameroon,” Asian J. Biotechnol. Bioresour. Technol., Aug. 2021. [CrossRef]
- E. S. Teoh, “Medicinal Orchid Usage in Rural Africa,” in Orchids as Aphrodisiac, Medicine or Food, E. S. Teoh, Ed., Cham: Springer International Publishing, 2019, pp. 305–362. [CrossRef]
- A. Kreziou, H. de Boer, and B. Gravendeel, “Harvesting of salep orchids in north-western Greece continues to threaten natural populations,” Oryx, vol. 50, no. 3, pp. 393–396, Jul. 2016. [CrossRef]
- P. M. Ndaki, F. Erick, and V. Moshy, “CHALLENGES POSED BY CLIMATE CHANGE AND NON- CLIMATE FACTORS ON CONSERVATION OF EDIBLE ORCHID IN SOUTHERN HIGHLANDS OF TANZANIA: THE CASE OF MAKETE DISTRICT,” p. 25, 2021.
- D. John Fonmboh, R. Marcel Nguimbou, F. Charles Ntungwen, and D. Bup Nde, “Potentials of Neglected Wild Foods: Nutritional Composition of a ‘Plant Meat’ (Nyam Ngub) Prepared From Wild Edible Orchid Tubers,” Sumerianz J. Biotechnol., no. 310, pp. 93–98, Oct. 2020. [CrossRef]
- S. Mahonya, C. M. Shackleton, and K. Schreckenberg, “Non-timber Forest Product Use and Market Chains Along a Deforestation Gradient in Southwest Malawi,” Front. For. Glob. Change, vol. 2, 2019, Accessed: Oct. 18, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/ffgc.2019.00071.
- M. Namoto, “Status of chikanda orchids on Nyika - DRAFT REPORT, 2018,” p. 81, 2018.
- V. Kasulo, L. Mwabumba, and M. Cry, “A review of edible orchids in Malawi,” vol. 1, no. 7, pp. 133–139, 2009.
- AOAC International, Official Methods of Analyses of AOAC International, 17th Edition, Revision 1. in Revision 1. Gaithersburg, MD, USA: AOAC International, 2002.
- T. Birhanu, T. Adiko, and R. Duraisamy, “Phytochemical Screening and Multivariate Analysis on Physicochemical and Nutraceutical Value of Kocho from False Banana (Enset),” Int. J. Food Sci., vol. 2023, p. e6666635, Mar. 2023. [CrossRef]
- P. Masoko and M. V. Masiphephethu, “Phytochemical Investigation, Antioxidant and Antimycobacterial Activities of Schkuhria pinnata (Lam) Thell Extracts Against Mycobacterium smegmatis,” J. Evid.-Based Integr. Med., vol. 24, p. 2515690X19866104, Jan. 2019. [CrossRef]
- T. Pokhrel, D. Shrestha, K. Dhakal, P. M. Yadav, and A. Adhikari, “Comparative Analysis of the Antioxidant and Antidiabetic Potential of Nelumbo nucifera Gaertn. and Nymphaea lotus L. var. pubescens (Willd.),” J. Chem., vol. 2022, p. e4258124, Mar. 2022. [CrossRef]
- A. D. Melese and E. O. Keyata, “Effects of blending ratios and baking temperature on physicochemical properties and sensory acceptability of biscuits prepared from pumpkin, common bean, and wheat composite flour,” Heliyon, vol. 8, no. 10, p. e10848, Oct. 2022. [CrossRef]
- E. O. Keyata, Y. B. Tola, G. Bultosa, and S. F. Forsido, “Bioactive compounds, antioxidant capacity, functional and sensory properties of optimized complementary weaning flour processed from sorghum, soybean, and karkade (Hibiscus sabdariffa L.) seeds,” Sci. Afr., vol. 19, p. e01457, Mar. 2023. [CrossRef]
- R. a. T. Nilusha, J. M. J. K. Jayasinghe, O. D. a. N. Perera, P. I. P. Perera, and C. V. L. Jayasinghe, “Proximate Composition, Physicochemical, Functional, and Antioxidant Properties of Flours from Selected Cassava (Manihot esculenta Crantz) Varieties,” Int. J. Food Sci., vol. 2021, p. e6064545, Dec. 2021. [CrossRef]
- R Core Team, “R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing.” Vienna, Austria, 2023. [Online]. Available: https://www.R-project.org/.
- E. G. Tsehay, S. A. Emire, H. Admassu, and T. A. Gebeyehu, “Nutritional composition and phytochemical content of wild edible tuber (amorphophallus abyssinicus) crop,” Int. J. Food Prop., vol. 26, no. 1, pp. 974–990, Sep. 2023. [CrossRef]
- K. Ngoma, M. E. Mashau, and H. Silungwe, “Physicochemical and Functional Properties of Chemically Pretreated Ndou Sweet Potato Flour,” Int. J. Food Sci., vol. 2019, p. e4158213, Nov. 2019. [CrossRef]
- O. S. Ola, “Preliminary Proximate Analysis, Chemical Composition and Phytoconstituents of Eulophia gracilis Orchid,” Int. J. Sci., vol. 36, no. 8, 2017.
- M. C. S. Lalika, H. M. Dorah, P. Urio, D. M. Gimbi, S. J. Mwanyika, and G. Donati, “Domestication potential and nutrient composition of wild orchids from two Southern regions in Tanzania,” 2013, Accessed: Nov. 11, 2023. [Online]. Available: http://www.suaire.sua.ac.tz/handle/123456789/5163.
- A. Chandrasekara and T. Josheph Kumar, “Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits,” Int. J. Food Sci., vol. 2016, p. e3631647, Apr. 2016. [CrossRef]
- A. Misra et al., “Nutritional potential of an edible terrestrial orchid Eulophia nuda LINDL and validation of its traditional claim in arthritis,” J. Ethnopharmacol., vol. 306, p. 116123, Apr. 2023. [CrossRef]
- K. K. Olatoye and G. L. Arueya, “Nutrient and phytochemical composition of flour made from selected cultivars of Aerial yam (Dioscorea bulbifera) in Nigeria,” J. Food Compos. Anal., vol. 79, pp. 23–27, Jun. 2019. [CrossRef]
- E. Wada, T. Feyissa, and K. Tesfaye, “Proximate, Mineral and Antinutrient Contents of Cocoyam (Xanthosoma sagittifolium (L.) Schott) from Ethiopia,” Int. J. Food Sci., vol. 2019, p. e8965476, Nov. 2019. [CrossRef]
- N. O. Boadi, M. Degbevi, S. A. Saah, M. Badu, L. S. Borquaye, and N. K. Kortei, “Antimicrobial properties of metal piperidine dithiocarbamate complexes against Staphylococcus aureus and Candida albicans,” Sci. Afr., vol. 12, p. e00846, Jul. 2021. [CrossRef]
- S. Kumar, G. Das, H.-S. Shin, and J. K. Patra, “Dioscorea spp. (A Wild Edible Tuber): A Study on Its Ethnopharmacological Potential and Traditional Use by the Local People of Similipal Biosphere Reserve, India,” Front. Pharmacol., vol. 8, 2017, Accessed: Nov. 14, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fphar.2017.00052.
- R. T. Tharmabalan, “Nutritional Analysis of Five Wild Edible Vegetables Traditionally Consumed by the Orang Asli in Perak,” Int. J. Food Sci., vol. 2021, p. e8823565, Jun. 2021. [CrossRef]
- V. Ferraro, C. Piccirillo, K. Tomlins, and M. E. Pintado, “Cassava (Manihot esculenta Crantz) and Yam (Dioscorea spp.) Crops and Their Derived Foodstuffs: Safety, Security and Nutritional Value,” Crit. Rev. Food Sci. Nutr., vol. 56, no. 16, pp. 2714–2727, Dec. 2016. [CrossRef]
- Q. D. Do et al., “Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica,” J. Food Drug Anal., vol. 22, no. 3, pp. 296–302, Sep. 2014. [CrossRef]
- M. Bhebhe, T. N. Füller, B. Chipurura, and M. Muchuweti, “Effect of Solvent Type on Total Phenolic Content and Free Radical Scavenging Activity of Black Tea and Herbal Infusions,” Food Anal. Methods, vol. 9, no. 4, pp. 1060–1067, Apr. 2016. [CrossRef]
- A. Dalar, Y. Guo, N. Esim, A. S. Bengu, and I. Konczak, “Health attributes of an endemic orchid from Eastern Anatolia, Dactylorhiza chuhensis Renz&Taub. – In vitro investigations,” J. Herb. Med., vol. 5, no. 2, pp. 77–85, Jun. 2015. [CrossRef]
- A. Rachkeeree, K. Kantadoung, R. Suksathan, R. Puangpradab, P. A. Page, and S. R. Sommano, “Nutritional Compositions and Phytochemical Properties of the Edible Flowers from Selected Zingiberaceae Found in Thailand,” Front. Nutr., vol. 5, 2018, Accessed: Nov. 22, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnut.2018.00003.
- M. Chand, M. Paudel, and B. Pant, “The antioxidant activity of selected wild orchids of Nepal,” J. Coast. Life Med., vol. 4, pp. 731–736, Sep. 2016. [CrossRef]
- B. Dereje, A. Girma, D. Mamo, and T. Chalchisa, “Functional properties of sweet potato flour and its role in product development: a review,” Int. J. Food Prop., vol. 23, no. 1, pp. 1639–1662, Jan. 2020. [CrossRef]
| Orchid | Moisture (%) | Ash (%) | Protein (%) | Fat (%) | Fibre (%) | Carbohydrate (%) | Energy (kcal/100 g) |
|---|---|---|---|---|---|---|---|
| Disa zombica | 11.84 ± 0.04d | 1.75 ± 0.02c | 3.28 ± 0.00b | 0.27 ± 0.03d | 3.33 ± 0.03b | 79.50 ± 0.11a | 331.13 ± 0.43a |
| Satyrium trinerve | 12.30 ± 0.09c | 2.12 ± 0.01a | 2.19 ± 0.00c | 1.49 ± 0.06a | 1.74 ± 0.01c | 80.22 ± 0.03a | 329.65 ± 0.12a |
| Satyrium buchananii | 15.01 ± 0.08a | 1.28 ± 0.01d | 3.28 ± 0.00b | 1.02 ± 0.05b | 14.06 ± 0.01a | 65.42 ± 0.12b | 274.81 ± 0.47c |
| Satyrium carsonii | 13.73 ± 0.11b | 1.81 ± 0.01b | 4.65± 0.16a | 0.54 ± 0.04c | 14.00 ± 0.39a | 65.24 ± 0.40b | 279.55 ± 0.95b |
| p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
| Orchid species | Fe | Cu | Na | Ca | K | P |
|---|---|---|---|---|---|---|
| Disa zombica | 16.67 ± 0.96a | 0.49 ± 0.12b | 15.50 ± 0.77 | 36.66 ± 1.27c | 169.90 ± 17.64a | 72.13 ± 3.59b |
| Satyrium buchananii | 7.94 ± 2.41b | 0.62 ± 0.22b | 16.98 ± 0.51 | 93.14 ± 9.58a | 107.52 ± 11.55ab | 55.70 ± 0.28c |
| Satyrium carsonii | 8.66 ± 0.31b | 1.56 ± 0.03a | 16.84 ± 0.23 | 64.50 ± 0.50b | 167.40 ± 18.75ab | 92.20 ± 3.64a |
| Satyrium trinerve | 6.63 ± 0.71b | 0.89 ± 0.07b | 14.94 ± 0.11 | 18.76 ± 2.16c | 98.75 ± 13.27b | 42.07 ± 3.09d |
| p-value | 0.0031 | 0.0016 | 0.0413 | <0.0001 | 0.0196 | <0.0001 |
| Orchid species | Solvent | Total phenolic concentration (mg GAE/100 g) |
| Disa zombica | Water | 500.00 ± 35.95 |
| Methanol | 309.52 ± 53.02 | |
| Satyrium trinerve | Water | 414.29 ± 28.57 |
| Methanol | 452.38 ± 17.17 | |
| Satyrium buchananii | Water | 252.19 ± 71.26 |
| Methanol | 447.62 ± 81.37 | |
| Satyrium carsonii | Water | 228.56 ± 57.74 |
| Methanol | 295.24 ± 56.14 | |
| p-value = 0.0192 |
| Orchid species | Flavonoid content (mg QE/100 g) |
|---|---|
| Disa zombica | 72.8788 ± 7.47b |
| Satyrium trinerve | 31.4646 ± 1.34c |
| Satyrium buchananii | 91.5657 ± 1.01a |
| Satyrium carsonii | 68.8384 ± 2.67b |
| p-value <0.0001 | |
| Orchid | Bulk density (g/mL) | Solubility index (%) | Swelling power (g/100 g) | Oil absorption capacity (g/g) | Water absorption capacity (g/g) |
|---|---|---|---|---|---|
| Disa zombica | 0.45 ± 0.03c | 0.71 ± 0.04b | 8.50 ± 0.48a | 1.22 ± 0.04a | 9.68 ± 0.15b |
| Satyrium trinerve | 0.74 ± 0.02a | 0.38 ± 0.03c | 8.71 ± 0.42a | 0.53 ± 0.02b | 10.89 ± 0.11a |
| Satyrium buchananii | 0.63 ± 0.002b | 0.69 ± 0.12b | 6.67 ± 0.05b | 0.48 ± 0.20b | 5.11 ± 0.10c |
| Satyrium carsonii | 0.63 ± 0.001b | 1.22 ± 0.02a | 5.67 ± 0.02b | 0.58 ± 0.004b | 4.10 ± 0.07d |
| p-value | <0.0001 | 0.0001 | 0.0004 | 0.0033 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
