Submitted:
25 June 2024
Posted:
26 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Non-Genetic Models of ASD-Like Behavior in Rodents
2.1. Biological Models of Autistic-Like Behavior: Maternal Immune Activation (MIA)
2.2. Chemical Models of Autistic-Like Behavior
3. Description of the Behavioral Assays That Define ASD-Like Behaviors in Rodents
3.1. Test Batteries for Social Interaction
3.1.1. The Three-Chamber Test for Sociability and Novel Social Preference
3.1.2. The Partition Test for Abnormalities in Social Behavior
3.1.3. Reciprocal Social Interactions
3.1.4. Social Motivation
3.2. Test Batteries for Social Communication
3.2.1. Scent Marking Test
3.2.2. Olfactory Habituation Test
3.2.3. Ultrasonic Vocalization (USVs Communication)
3.3. Test Batteries for Restricted Repetitive Behavior
3.3.1. Marble Burying
3.3.2. Repetitive and Stereotypic Behavior
3.3.3. Restricted Repetitive Interest
3.4. Tests for Comorbidities in Autism Spectrum Disorders: Cognitive Impairment
3.4.1. Y-Maze Spontaneous Alternation
3.4.2. Novel Object Recognition (NOR)
3.4.3. Morris Water Maze (MWM)
3.4.4. Fear Conditioning
3.4.5. Motor Coordination and Balance Assays
3.4.6. Tests for Anxiety-Like Behavior
3.4.7. Open Fields (OF) Locomotory Test
3.4.8. The Hot-Plate and Tail-Flick Tests for Nociception
5. Examples of the Use of Animal Models to Study the Etiology and Pathogenesis of ASD
5.1. Studies in Animal Models of Maternal Immune Activation-ASD-Like Behavior (Table 2)
5.2. Studies in Animal Models of Chemically Induced-ASD-Like Behavior (Summarized in Table 3).
6. Genetic Models in Rodents for ASD-Like Behavior
6.1. Animals with Single Gene Mutations
6.1.1. X-Linked Methyl CpG Binding Protein 2 (MECP2) Gene
6.1.2. X-Linked Mental Retardation FMR1 Gene (Fragile X Syndrome, FMR1)
6.1.3. SH and Multiple Ankyrin Repeat Domains Proteins (SHANK)
6.1.4. Neuroligin Genes, Nlgn:
6.1.5. Inbred Model of Idiopathic ASD: BTBR Mice
7. Genetic Models in Nonhuman Primates (NHP)
8. Need for a Behavioral Scoring System to Define Animal Models of ASD-Like Behaviors
5. Conclusions
Author Contributions
Conflicts of Interest
List of Abbreviations
| ADI-R | Autism Diagnostic Interview-Revised |
| ADOS | Autism Diagnostic Observation Schedule |
| AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
| ASD | Autism spectrum disorder |
| BM | Barnes maze |
| BTBR | Black and Tan BRachyury |
| CARS | Child Autism Rating Scale |
| Cas9 | CRISPR-associated protein 9 |
| CNV | number variation |
| CPF | Chlorpyrifos |
| CRISPR/ | Clustered regularly interspaced short palindromic repeats |
| DNMs | De novo mutations |
| DSM-5 | Diagnostic and Statistical Manual |
| DTI | Diffusion tensor imaging |
| EDCs | Endocrine disruptors |
| EHMT | Euchromatic histone-lysine N-methyltransferase |
| EPM | Elevated plus maze |
| FMR1 | Fragile X-linked Mental Retardation gene |
| FMRP | Fragile X Mental Retardation Protein |
| FXS | Fragile X Syndrome |
| GABA | γ-aminobutyric acid |
| Gad | Glutamic acid decarboxylase 1 |
| Gad2 | Glutamic acid decarboxylase 2 |
| GD | Gestational day |
| GKAP | Guanylate kinase-associated protein |
| GluR | Glutamate receptor subunits |
| HDAC | Histone deacetylase |
| IgG | Immunoglobulin G |
| IL-6 | interleukin 6 |
| IV | Intravenous |
| KOs | knock out |
| LPS | Lipopolysaccharide |
| MECP2 | Methyl CpG Binding Protein 2 |
| mEPSCs | Miniature excitatory postsynaptic currents |
| MIA | Maternal immune activation |
| MRI | Magnetic resonance imaging |
| MWM | Morris Water Maze |
| NLGL | Neuroglin |
| NMDA | N-methyl-D-aspertate |
| NOR | Novel Object Recognition |
| NR2 | NMDA receptor subunit |
| OF | Open Fields |
| P2Y | Purinergic receptor |
| PCB | Polychlorinated biphenyls |
| PFC | Prefrontal cortex |
| PMDS | Phelan-McDermid syndrome |
| PND | Post-natal day |
| PolyIC | Polyinosinic-polycytidylic acid |
| RNA | Ribonucleic acid |
| RTT | Rett Syndrome |
| SFARI | Simons Foundation Autism Research Initiative |
| SHANK | SH3 And Multiple Ankyrin Repeat Domain |
| TALENs | Transcription Activator-Like Effector Nucleases |
| USVs | Ultrasonic vocalizations |
| VPA | Valproic acid |
| WT | Wild type |
| WTM | Water T-maze |
References
- Lange, S.; Inal, J.M. Animal Models of Human Disease. International Journal of Molecular Sciences 2023, 24, 15821. [CrossRef]
- Becker, M.; Pinhasov, A.; Ornoy, A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics (Basel) 2021, 11, 123. [CrossRef]
- Mukherjee, P.; Roy, S.; Ghosh, D.; Nandi, S.K. Role of animal models in biomedical research: a review. Laboratory animal research 2022, 38, 18. [CrossRef]
- American Psychiatric Association (APA), Diagnostic and statistical manual of mental disorders, 5th ed.; American Psychiatric Press,: Washington, DC, 2013.
- Nestler, E.J.; Hyman, S.E. Animal models of neuropsychiatric disorders. Nat Neurosci 2010, 13, 1161–1169. [CrossRef] [PubMed]
- Sarovic, D. A Unifying Theory for Autism: The Pathogenetic Triad as a Theoretical Framework. Frontiers in psychiatry 2021, 12, 767075. [CrossRef]
- Frye, R.E.; Vassall, S.; Kaur, G.; Lewis, C.; Karim, M.; Rossignol, D. Emerging biomarkers in autism spectrum disorder: a systematic review. Annals of translational medicine 2019, 7, 792. [CrossRef] [PubMed]
- Crawley, J.N. Mouse Behavioral Assays Relevant to the Symptoms of Autism*. Brain Pathology 2007, 17, 448–459. [CrossRef] [PubMed]
- Ornoy, A.; Echefu, B.; Becker, M. Valproic Acid in Pregnancy Revisited: Neurobehavioral, Biochemical and Molecular Changes Affecting the Embryo and Fetus in Humans and in Animals: A Narrative Review. Int J Mol Sci 2023, 25. [CrossRef]
- Ornoy, A.; Weinstein-Fudim, L.; Tfilin, M.; Ergaz, Z.; Yanai, J.; Szyf, M.; Turgeman, G. S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice. Neurotoxicology and Teratology 2019, 71, 64–74. [CrossRef] [PubMed]
- Ornoy, A.; Weinstein-Fudim, L.; Ergaz, Z. Prevention or Amelioration of Autism-Like Symptoms in Animal Models: Will it Bring Us Closer to Treating Human ASD? International Journal of Molecular Sciences 2019, 20, 1074. [CrossRef]
- Brimberg, L.; Mader, S.; Jeganathan, V.; Berlin, R.; Coleman, T.R.; Gregersen, P.K.; Huerta, P.T.; Volpe, B.T.; Diamond, B. Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice. Mol Psychiatry 2016, 21, 1663–1671. [CrossRef] [PubMed]
- Jeon, S.J.; Gonzales, E.L.; Mabunga, D.F.N.; Valencia, S.T.; Kim, D.G.; Kim, Y.; Adil, K.J.L.; Shin, D.; Park, D.; Shin, C.Y. Sex-specific Behavioral Features of Rodent Models of Autism Spectrum Disorder. Experimental neurobiology 2018, 27, 321–343. [CrossRef]
- Patel, S.; Dale, R.C.; Rose, D.; Heath, B.; Nordahl, C.W.; Rogers, S.; Guastella, A.J.; Ashwood, P. Maternal immune conditions are increased in males with autism spectrum disorders and are associated with behavioural and emotional but not cognitive co-morbidity. Transl Psychiatry 2020, 10, 286. [CrossRef]
- Bruce, M.R.; Couch, A.C.M.; Grant, S.; McLellan, J.; Ku, K.; Chang, C.; Bachman, A.; Matson, M.; Berman, R.F.; Maddock, R.J.; et al. Altered behavior, brain structure, and neurometabolites in a rat model of autism-specific maternal autoantibody exposure. Molecular psychiatry 2023, 28, 2136–2147. [CrossRef] [PubMed]
- Careaga, M.; Murai, T.; Bauman, M.D. Maternal Immune Activation and Autism Spectrum Disorder: From Rodents to Nonhuman and Human Primates. Biological psychiatry 2017, 81, 391–401. [CrossRef] [PubMed]
- Haida, O.; Al Sagheer, T.; Balbous, A.; Francheteau, M.; Matas, E.; Soria, F.; Fernagut, P.O.; Jaber, M. Sex-dependent behavioral deficits and neuropathology in a maternal immune activation model of autism. Transl Psychiatry 2019, 9, 124. [CrossRef] [PubMed]
- Tartaglione, A.M.; Villani, A.; Ajmone-Cat, M.A.; Minghetti, L.; Ricceri, L.; Pazienza, V.; De Simone, R.; Calamandrei, G. Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Transl Psychiatry 2022, 12, 384. [CrossRef]
- Zhang, H.L.; Hu, S.; Qu, S.T.; Lv, M.D.; Wang, J.J.; Liu, X.T.; Yao, J.H.; Ding, Y.Y.; Xu, G.Y. Inhibition of NKCC1 Ameliorates Anxiety and Autistic Behaviors Induced by Maternal Immune Activation in Mice. Current issues in molecular biology 2024, 46, 1851–1864. [CrossRef]
- Carlezon, W.A., Jr.; Kim, W.; Missig, G.; Finger, B.C.; Landino, S.M.; Alexander, A.J.; Mokler, E.L.; Robbins, J.O.; Li, Y.; Bolshakov, V.Y.; et al. Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice. Sci Rep 2019, 9, 16928. [CrossRef]
- Dutra, M.L.; Dias, P.; Freiberger, V.; Ventura, L.; Comim, C.M.; Martins, D.F.; Bobinski, F. Maternal immune activation induces autism-like behavior and reduces brain-derived neurotrophic factor levels in the hippocampus and offspring cortex of C57BL/6 mice. Neurosci Lett 2023, 793, 136974. [CrossRef]
- Wu, J.; Lin, X.; Wu, D.; Yan, B.; Bao, M.; Zheng, P.; Wang, J.; Yang, C.; Li, Z.; Jin, X.; et al. Poly(I:C)-exposed zebrafish shows autism-like behaviors which are ameliorated by fabp2 gene knockout. Front Mol Neurosci 2022, 15, 1068019. [CrossRef]
- Zeng, X.; Fan, L.; Li, M.; Qin, Q.; Pang, X.; Shi, S.; Zheng, D.; Jiang, Y.; Wang, H.; Wu, L.; et al. Resveratrol regulates Thoc5 to improve maternal immune activation-induced autism-like behaviors in adult mouse offspring. J Nutr Biochem 2024, 129, 109638. [CrossRef]
- Manjeese, W.; Mvubu, N.E.; Steyn, A.J.C.; Mpofana, T. Mycobacterium tuberculosis-Induced Maternal Immune Activation Promotes Autism-Like Phenotype in Infected Mice Offspring. International journal of environmental research and public health 2021, 18. [CrossRef]
- Kaminski, V.L.; Michita, R.T.; Ellwanger, J.H.; Veit, T.D.; Schuch, J.B.; Riesgo, R.D.S.; Roman, T.; Chies, J.A.B. Exploring potential impacts of pregnancy-related maternal immune activation and extracellular vesicles on immune alterations observed in autism spectrum disorder. Heliyon 2023, 9, e15593. [CrossRef]
- Ornoy, A.; Weinstein-Fudim, L.; Becker, M. SAMe, Choline, and Valproic Acid as Possible Epigenetic Drugs: Their Effects in Pregnancy with a Special Emphasis on Animal Studies. Pharmaceuticals 2022, 15. [CrossRef]
- Ornoy, A.; Becker, M.; Weinstein-Fudim, L.; Ergaz, Z. S-Adenosine Methionine (SAMe) and Valproic Acid (VPA) as Epigenetic Modulators: Special Emphasis on their Interactions Affecting Nervous Tissue during Pregnancy. Int J Mol Sci 2020, 21. [CrossRef]
- Ornoy, A.; Gorobets, D.; Weinstein-Fudim, L.; Becker, M. Sex-Related Changes in the Clinical, Genetic, Electrophysiological, Connectivity, and Molecular Presentations of ASD: A Comparison between Human and Animal Models of ASD with Reference to Our Data. International Journal of Molecular Sciences 2023, 24, 3287–3287. [CrossRef]
- Berg, E.L.; Silverman, J.L. Chapter 8 - Animal models of autism. In The Neuroscience of Autism, Kana, R.K., Ed.; Academic Press: 2022; pp. 157-196.
- Panesar, H.K.; Kennedy, C.L.; Keil Stietz, K.P.; Lein, P.J. Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? Toxics 2020, 8. [CrossRef]
- Bell, M.R.; Thompson, L.M.; Rodriguez, K.; Gore, A.C. Two-hit exposure to polychlorinated biphenyls at gestational and juvenile life stages: 1. Sexually dimorphic effects on social and anxiety-like behaviors. Horm Behav 2016, 78, 168–177. [CrossRef]
- Jolous-Jamshidi, B.; Cromwell, H.C.; McFarland, A.M.; Meserve, L.A. Perinatal exposure to polychlorinated biphenyls alters social behaviors in rats. Toxicol Lett 2010, 199, 136–143. [CrossRef]
- Lan, A.; Kalimian, M.; Amram, B.; Kofman, O. Prenatal chlorpyrifos leads to autism-like deficits in C57Bl6/J mice. Environmental health : a global access science source 2017, 16, 43. [CrossRef] [PubMed]
- Shekel, I.; Giladi, S.; Raykin, E.; Weiner, M.; Chalifa-Caspi, V.; Lederman, D.; Kofman, O.; Golan, H.M. Isolation-Induced Ultrasonic Vocalization in Environmental and Genetic Mice Models of Autism. Frontiers in neuroscience 2021, 15, 769670. [CrossRef] [PubMed]
- Berg, E.L.; Ching, T.M.; Bruun, D.A.; Rivera, J.K.; Careaga, M.; Ellegood, J.; Lerch, J.P.; Wöhr, M.; Lein, P.J.; Silverman, J.L. Translational outcomes relevant to neurodevelopmental disorders following early life exposure of rats to chlorpyrifos. Journal of neurodevelopmental disorders 2020, 12, 40. [CrossRef] [PubMed]
- De Felice, A.; Scattoni, M.L.; Ricceri, L.; Calamandrei, G. Prenatal exposure to a common organophosphate insecticide delays motor development in a mouse model of idiopathic autism. PLoS One 2015, 10, e0121663. [CrossRef]
- Venerosi, A.; Ricceri, L.; Scattoni, M.L.; Calamandrei, G. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups. Environmental health : a global access science source 2009, 8, 12. [CrossRef] [PubMed]
- Morales-Navas, M.; Castaño-Castaño, S.; Pérez-Fernández, C.; Sánchez-Gil, A.; Teresa Colomina, M.; Leinekugel, X.; Sánchez-Santed, F. Similarities between the Effects of Prenatal Chlorpyrifos and Valproic Acid on Ultrasonic Vocalization in Infant Wistar Rats. International journal of environmental research and public health 2020, 17. [CrossRef]
- Kaidanovich-Beilin, O.; Lipina, T.; Vukobradovic, I.; Roder, J.; Woodgett, J.R. Assessment of social interaction behaviors. Journal of Visualized Experiments: JoVE 2011, 2473. [CrossRef]
- Takumi, T.; Tamada, K.; Hatanaka, F.; Nakai, N.; Bolton, P.F. Behavioral neuroscience of autism. Neuroscience and biobehavioral reviews 2020, 110, 60–76. [CrossRef]
- Chao, O.Y.; Yunger, R.; Yang, Y.M. Behavioral assessments of BTBR T+Itpr3tf/J mice by tests of object attention and elevated open platform: Implications for an animal model of psychiatric comorbidity in autism. Behav Brain Res 2018, 347, 140–147. [CrossRef] [PubMed]
- Hrabovska, S.V.; Salyha, Y.T. Animal Models of Autism Spectrum Disorders and Behavioral Techniques of their Examination. Neurophysiology 2016, 48, 380–388. [CrossRef]
- Jabarin, R.; Netser, S.; Wagner, S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism 2022, 13, 41. [CrossRef]
- Luhach, K.; Kulkarni, G.T.; Singh, V.P.; Sharma, B. Attenuation of neurobehavioural abnormalities by papaverine in prenatal valproic acid rat model of ASD. European journal of pharmacology 2021, 890, 173663. [CrossRef]
- Brunner, D.; Kabitzke, P.; He, D.; Cox, K.; Thiede, L.; Hanania, T.; Sabath, E.; Alexandrov, V.; Saxe, M.; Peles, E.; et al. Comprehensive Analysis of the 16p11.2 Deletion and Null Cntnap2 Mouse Models of Autism Spectrum Disorder. PLoS One 2015, 10, e0134572. [CrossRef]
- Hirsch, M.M.; Deckmann, I.; Fontes-Dutra, M.; Bauer-Negrini, G.; Nunes, G.D.-F.; Nunes, W.; Rabelo, B.; Riesgo, R.; Margis, R.; Bambini-Junior, V. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA. Food and Chemical Toxicology 2018, 115, 336–343.
- Jones, K.L.; Pride, M.C.; Edmiston, E.; Yang, M.; Silverman, J.L.; Crawley, J.N.; Van de Water, J. Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Mol Psychiatry 2020, 25, 2994–3009. [CrossRef]
- Moy, S.S.; Nadler, J.J.; Perez, A.; Barbaro, R.P.; Johns, J.M.; Magnuson, T.R.; Piven, J.; Crawley, J.N. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes, brain, and behavior 2004, 3, 287–302. [CrossRef]
- Maloney, S.E.; Sarafinovska, S.; Weichselbaum, C.; McCullough, K.B.; Swift, R.G.; Liu, Y.; Dougherty, J.D. A comprehensive assay of social motivation reveals sex-specific roles of autism-associated genes and oxytocin. Cell reports methods 2023, 3, 100504. [CrossRef]
- Martin, L.; Sample, H.; Gregg, M.; Wood, C. Validation of operant social motivation paradigms using BTBR T+tf/J and C57BL/6J inbred mouse strains. Brain and behavior 2014, 4, 754–764. [CrossRef]
- Pearson, B.L.; Bettis, J.K.; Meyza, K.Z.; Yamamoto, L.Y.; Blanchard, D.C.; Blanchard, R.J. Absence of social conditioned place preference in BTBR T+tf/J mice: relevance for social motivation testing in rodent models of autism. Behav Brain Res 2012, 233, 99–104. [CrossRef]
- Kabitzke, P.; Morales, D.; He, D.; Cox, K.; Sutphen, J.; Thiede, L.; Sabath, E.; Hanania, T.; Biemans, B.; Brunner, D. Mouse model systems of autism spectrum disorder: Replicability and informatics signature. Genes, brain, and behavior 2020, 19, e12676. [CrossRef]
- Wöhr, M.; Roullet, F.I.; Hung, A.Y.; Sheng, M.; Crawley, J.N. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One 2011, 6, e20631. [CrossRef]
- Wöhr, M.; Roullet, F.I.; Crawley, J.N. Reduced scent marking and ultrasonic vocalizations in the BTBR T+tf/J mouse model of autism. Genes, brain, and behavior 2011, 10, 35–43. [CrossRef] [PubMed]
- Becker, M.; Gorobets, D.; Shmerkin, E.; Weinstein-Fudim, L.; Pinhasov, A.; Ornoy, A. Prenatal SAMe Treatment Changes via Epigenetic Mechanism/s USVs in Young Mice and Hippocampal Monoamines Turnover at Adulthood in a Mouse Model of Social Hierarchy and Depression. Int J Mol Sci 2023, 24. [CrossRef]
- Gzielo, K.; Potasiewicz, A.; Hołuj, M.; Litwa, E.; Popik, P.; Nikiforuk, A. Valproic acid exposure impairs ultrasonic communication in infant, adolescent and adult rats. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 2020, 41, 52–62. [CrossRef] [PubMed]
- Möhrle, D.; Yuen, M.; Zheng, A.; Haddad, F.L.; Allman, B.L.; Schmid, S. Characterizing maternal isolation-induced ultrasonic vocalizations in a gene-environment interaction rat model for autism. Genes, brain, and behavior 2023, 22, e12841. [CrossRef] [PubMed]
- Premoli, M.; Bonini, S.A.; Mastinu, A.; Maccarinelli, G.; Aria, F.; Paiardi, G.; Memo, M. Specific profile of ultrasonic communication in a mouse model of neurodevelopmental disorders. Sci Rep 2019, 9, 15912. [CrossRef] [PubMed]
- Carmel, J.; Ghanayem, N.; Mayouf, R.; Saleev, N.; Chaterjee, I.; Getselter, D.; Tikhonov, E.; Turjeman, S.; Shaalan, M.; Khateeb, S.; et al. Bacteroides is increased in an autism cohort and induces autism-relevant behavioral changes in mice in a sex-dependent manner. NPJ biofilms and microbiomes 2023, 9, 103. [CrossRef]
- Dunn, J.T.; Guidotti, A.; Grayson, D.R. Behavioral and Molecular Characterization of Prenatal Stress Effects on the C57BL/6J Genetic Background for the Study of Autism Spectrum Disorder. eNeuro 2024, 11. [CrossRef]
- Eshraghi, A.A.; Memis, I.; Wang, F.; White, I.; Furar, E.; Mittal, J.; Moosa, M.; Atkins, C.M.; Mittal, R. Genetic ablation of metabotropic glutamate receptor 5 in rats results in an autism-like behavioral phenotype. PLoS One 2022, 17, e0275937. [CrossRef]
- Sato, A.; Ikeda, K. Genetic and Environmental Contributions to Autism Spectrum Disorder Through Mechanistic Target of Rapamycin. Biological psychiatry global open science 2022, 2, 95–105. [CrossRef]
- Avraham, Y.; Berry, E.M.; Donskoy, M.; Ahmad, W.A.; Vorobiev, L.; Albeck, A.; Mankuta, D. Beta-carotene as a novel therapy for the treatment of "Autistic like behavior" in animal models of Autism. Behav Brain Res 2019, 364, 469–479. [CrossRef]
- Hirsch, M.M.; Deckmann, I.; Santos-Terra, J.; Staevie, G.Z.; Fontes-Dutra, M.; Carello-Collar, G.; Körbes-Rockenbach, M.; Brum Schwingel, G.; Bauer-Negrini, G.; Rabelo, B.; et al. Effects of single-dose antipurinergic therapy on behavioral and molecular alterations in the valproic acid-induced animal model of autism. Neuropharmacology 2020, 167, 107930. [CrossRef]
- Zhang, Y.; Xiang, Z.; Jia, Y.; He, X.; Wang, L.; Cui, W. The Notch signaling pathway inhibitor Dapt alleviates autism-like behavior, autophagy and dendritic spine density abnormalities in a valproic acid-induced animal model of autism. Progress in neuro-psychopharmacology & biological psychiatry 2019, 94, 109644. [CrossRef]
- Lyu, T.J.; Ma, J.; Zhang, X.Y.; Xie, G.G.; Liu, C.; Du, J.; Xu, Y.N.; Yang, D.C.; Cen, C.; Wang, M.Y.; et al. Deficiency of FRMD5 results in neurodevelopmental dysfunction and autistic-like behavior in mice. Mol Psychiatry, 2024. [CrossRef]
- Miao, Z.; Chen, L.; Zhang, Y.; Zhang, J.; Zhang, H. Bifidobacterium animalis subsp. lactis Probio-M8 alleviates abnormal behavior and regulates gut microbiota in a mouse model suffering from autism. mSystems 2024, 9, e0101323. [CrossRef] [PubMed]
- Barnhart, C.D.; Yang, D.; Lein, P.J. Using the Morris Water Maze to Assess Spatial Learning and Memory in Weanling Mice. PLOS ONE 2015, 10, e0124521. [CrossRef]
- Lanjewar, A.L.; Levitt, P.; Eagleson, K.L. Developmental and molecular contributions to contextual fear memory emergence in mice. Neuropsychopharmacology 2024. [CrossRef]
- Markram, K.; Rinaldi, T.; La Mendola, D.; Sandi, C.; Markram, H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology 2008, 33, 901–912. [CrossRef]
- Zhang, W.; Huang, J.; Gao, F.; You, Q.; Ding, L.; Gong, J.; Zhang, M.; Ma, R.; Zheng, S.; Sun, X.; et al. Lactobacillus reuteri normalizes altered fear memory in male Cntnap4 knockout mice. EBioMedicine 2022, 86, 104323. [CrossRef]
- Cording, K.R.; Bateup, H.S. Altered motor learning and coordination in mouse models of autism spectrum disorder. Frontiers in cellular neuroscience 2023, 17, 1270489. [CrossRef] [PubMed]
- Li, Z.; Zhu, Y.X.; Gu, L.J.; Cheng, Y. Understanding autism spectrum disorders with animal models: applications, insights, and perspectives. Zoological research 2021, 42, 800–824. [CrossRef]
- Li, L.; Maire, C.L.; Bilenky, M.; Carles, A.; Heravi-Moussavi, A.; Hong, C.; Tam, A.; Kamoh, B.; Cho, S.; Cheung, D.; et al. Epigenomic programming in early fetal brain development. Epigenomics 2020, 12, 1053–1070. [CrossRef]
- Ellegood, J.; Crawley, J.N. Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism. Neurotherapeutics 2015, 12, 521–533. [CrossRef]
- Kudryavtseva, N.N. Use of the "partition" test in behavioral and pharmacological experiments. Neuroscience and behavioral physiology 2003, 33, 461–471. [CrossRef] [PubMed]
- Silverman, J.L.; Yang, M.; Lord, C.; Crawley, J.N. Behavioural phenotyping assays for mouse models of autism. Nature Reviews Neuroscience 2010, 11, 490–502. [CrossRef]
- Lawande, N.V.; Ujjainwala, A.L.; Christian, C.A. A Single Test to Study Social Behavior and Repetitive Self-grooming in Mice. Bio-protocol 2020, 10. [CrossRef]
- Spencer, C.M.; Graham, D.F.; Yuva-Paylor, L.A.; Nelson, D.L.; Paylor, R. Social behavior in Fmr1 knockout mice carrying a human FMR1 transgene. Behavioral neuroscience 2008, 122, 710–715. [CrossRef]
- Chang, Y.-C.; Cole, T.B.; Costa, L.G. Behavioral Phenotyping for Autism Spectrum Disorders in Mice. Current protocols in toxicology 2017, 72, 11.22.11–11.22.21. [CrossRef]
- Fischer, J.; Hammerschmidt, K. Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication. Genes, Brain and Behavior 2011, 10, 17–27. [CrossRef]
- Premoli, M.; Pietropaolo, S.; Wöhr, M.; Simola, N.; Bonini, S.A. Mouse and rat ultrasonic vocalizations in neuroscience and neuropharmacology: State of the art and future applications. European Journal of Neuroscience 2023, n/a. [CrossRef]
- Simola, N.; Granon, S. Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. The Neuropharmacology of Social Behavior: From Bench to Bedside 2019, 159, 107420. [CrossRef]
- Zippelius, H.-M.; Schleidt, W.M. Ultraschall-Laute bei jungen Mäusen. Naturwissenschaften 1956, 43, 502–502. [CrossRef]
- D'Amato, F.R.; Scalera, E.; Sarli, C.; Moles, A. Pups call, mothers rush: does maternal responsiveness affect the amount of ultrasonic vocalizations in mouse pups? Behavior genetics 2005, 35, 103–112. [CrossRef] [PubMed]
- Lahvis, G.P.; Alleva, E.; Scattoni, M.L. Translating mouse vocalizations: prosody and frequency modulation. Genes, brain, and behavior 2011, 10, 4–16. [CrossRef] [PubMed]
- Fereshetyan, K.; Chavushyan, V.; Danielyan, M.; Yenkoyan, K. Assessment of behavioral, morphological and electrophysiological changes in prenatal and postnatal valproate induced rat models of autism spectrum disorder. Sci Rep 2021, 11, 23471. [CrossRef]
- Martin, L.J.; Poulson, S.J.; Mannan, E.; Sivaselvachandran, S.; Cho, M.; Setak, F.; Chan, C. Altered nociceptive behavior and emotional contagion of pain in mouse models of autism. Genes, brain, and behavior 2022, 21, e12778. [CrossRef] [PubMed]
- Becker, M.; Benromano, T.; Shahar, A.; Nevo, Z.; Pick, C.G. Changes in the basal membrane of dorsal root ganglia Schwann cells explain the biphasic pattern of the peripheral neuropathy in streptozotocin-induced diabetic rats. J Mol Neurosci 2014, 54, 704–713. [CrossRef] [PubMed]
- Guo, Q.; Yin, X.; Qiao, M.; Jia, Y.; Chen, D.; Shao, J.; Lebaron, T.W.; Gao, Y.; Shi, H.; Jia, B. Hydrogen-Rich Water Ameliorates Autistic-Like Behavioral Abnormalities in Valproic Acid-Treated Adolescent Mice Offspring. Front Behav Neurosci 2018, 12, 170. [CrossRef]
- Bauman, M.D.; Iosif, A.M.; Ashwood, P.; Braunschweig, D.; Lee, A.; Schumann, C.M.; Van de Water, J.; Amaral, D.G. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry 2013, 3, e278. [CrossRef] [PubMed]
- Wu, Y.; Qi, F.; Song, D.; He, Z.; Zuo, Z.; Yang, Y.; Liu, Q.; Hu, S.; Wang, X.; Zheng, X.; et al. Prenatal influenza vaccination rescues impairments of social behavior and lamination in a mouse model of autism. Journal of neuroinflammation 2018, 15, 228. [CrossRef]
- Chen, J.; Lei, L.; Tian, L.; Hou, F.; Roper, C.; Ge, X.; Zhao, Y.; Chen, Y.; Dong, Q.; Tanguay, R.L.; et al. Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): An aquatic model for autism. Neurotoxicol Teratol 2018, 66, 8–16. [CrossRef]
- Watanabe, S.; Kurotani, T.; Oga, T.; Noguchi, J.; Isoda, R.; Nakagami, A.; Sakai, K.; Nakagaki, K.; Sumida, K.; Hoshino, K.; et al. Functional and molecular characterization of a non-human primate model of autism spectrum disorder shows similarity with the human disease. Nat Commun 2021, 12, 5388. [CrossRef]
- Messina, A.; Sovrano, V.A.; Baratti, G.; Musa, A.; Gobbo, A.; Adiletta, A.; Sgadò, P. Valproic acid exposure affects social visual lateralization and asymmetric gene expression in zebrafish larvae. Sci Rep 2024, 14, 4474. [CrossRef] [PubMed]
- Weinstein – Fudim L. ; Ergaz Z. ; Turgeman G. ; Yanai J.; Szyf M.; A., O. Gender Related Changes in Gene Expression Induced by Valproic Acid in A Mouse Model of Autism and the Correction by S-adenosyl Methionine. Does It Explain the Gender Differences in Autistic Like Behavior? Int. J. Mol. Sciences 2019, 20(21), 5278. [CrossRef]
- Werling, D.M.; Geschwind, D.H. Sex differences in autism spectrum disorders. Current opinion in neurology 2013, 26, 146–153. [CrossRef] [PubMed]
- Bailey, A.; Le Couteur, A.; Gottesman, I.; Bolton, P.; Simonoff, E.; Yuzda, E.; Rutter, M. Autism as a strongly genetic disorder: evidence from a British twin study. Psychological medicine 1995, 25, 63–77. [CrossRef] [PubMed]
- Zuko, A.; Kleijer, K.T.E.; Oguro-Ando, A.; Kas, M.J.H.; van Daalen, E.; van der Zwaag, B.; Burbach, J.P.H. Contactins in the neurobiology of autism. European journal of pharmacology 2013, 719, 63–74. [CrossRef]
- Abrahams, B.S.; Geschwind, D.H. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008, 9, 341–355. [CrossRef] [PubMed]
- Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience 2015, 16, 551–563. [CrossRef] [PubMed]
- Weiner, D.J.; Wigdor, E.M.; Ripke, S.; Walters, R.K.; Kosmicki, J.A.; Grove, J.; Samocha, K.E.; Goldstein, J.I.; Okbay, A.; Bybjerg-Grauholm, J.; et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat Genet 2017, 49, 978–985. [CrossRef]
- Zhao, X.; Leotta, A.; Kustanovich, V.; Lajonchere, C.; Geschwind, D.H.; Law, K.; Law, P.; Qiu, S.; Lord, C.; Sebat, J.; et al. A unified genetic theory for sporadic and inherited autism. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, 12831–12836. [CrossRef]
- Parikshak, N.N.; Luo, R.; Zhang, A.; Won, H.; Lowe, J.K.; Chandran, V.; Horvath, S.; Geschwind, D.H. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2013, 155, 1008–1021. [CrossRef]
- Basu, S.N.; Kollu, R.; Banerjee-Basu, S. AutDB: a gene reference resource for autism research. Nucleic Acids Res 2009, 37, D832–836. [CrossRef] [PubMed]
- Möhrle, D.; Fernández, M.; Peñagarikano, O.; Frick, A.; Allman, B.; Schmid, S. What we can learn from a genetic rodent model about autism. Neuroscience & Biobehavioral Reviews 2020, 109, 29–53. [CrossRef]
- Pasciuto, E.; Borrie, S.C.; Kanellopoulos, A.K.; Santos, A.R.; Cappuyns, E.; D’Andrea, L.; Pacini, L.; Bagni, C. Autism Spectrum Disorders: Translating human deficits into mouse behavior. Neurobiology of Learning and Memory 2015, 124, 71–87. [CrossRef] [PubMed]
- Provenzano, G.; Chelini, G.; Bozzi, Y. Genetic control of social behavior: Lessons from mutant mice. Behavioural Brain Research 2017, 325, 237–250. [CrossRef] [PubMed]
- Kumar, A.; Wadhawan, R.; Swanwick, C.C.; Kollu, R.; Basu, S.N.; Banerjee-Basu, S. Animal model integration to AutDB, a genetic database for autism. BMC medical genomics 2011, 4, 15. [CrossRef]
- Vorstman, J.; Staal, W.; Hochstenbach, P.; Franke, L.; Van Daalen, E.; Van Engeland, H. Overview of cytogenetic regions of interest (CROIs) associated with the autism phenotype across the human genome. Molecular Psychiatry 2006, 11, 1–1. [CrossRef] [PubMed]
- Flores Gutiérrez, J.; De Felice, C.; Natali, G.; Leoncini, S.; Signorini, C.; Hayek, J.; Tongiorgi, E. Protective role of mirtazapine in adult female Mecp2(+/-) mice and patients with Rett syndrome. Journal of neurodevelopmental disorders 2020, 12, 26. [CrossRef]
- Vermudez, S.A.D.; Gogliotti, R.G.; Arthur, B.; Buch, A.; Morales, C.; Moxley, Y.; Rajpal, H.; Conn, P.J.; Niswender, C.M. Profiling beneficial and potential adverse effects of MeCP2 overexpression in a hypomorphic Rett syndrome mouse model. Genes, brain, and behavior 2022, 21, e12752. [CrossRef] [PubMed]
- Guy, J.; Hendrich, B.; Holmes, M.; Martin, J.E.; Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 2001, 27, 322–326. [CrossRef] [PubMed]
- Bittolo, T.; Raminelli, C.A.; Deiana, C.; Baj, G.; Vaghi, V.; Ferrazzo, S.; Bernareggi, A.; Tongiorgi, E. Pharmacological treatment with mirtazapine rescues cortical atrophy and respiratory deficits in MeCP2 null mice. Sci Rep 2016, 6, 19796. [CrossRef]
- Chen, R.Z.; Akbarian, S.; Tudor, M.; Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 2001, 27, 327–331. [CrossRef] [PubMed]
- Shahbazian, M.D.; Young, J.I.; Yuva-Paylor, L.A.; Spencer, C.M.; Antalffy, B.A.; Noebels, J.L.; Armstrong, D.L.; Paylor, R.; Zoghbi, H.Y. Mice with Truncated MeCP2 Recapitulate Many Rett Syndrome Features and Display Hyperacetylation of Histone H3. Neuron 2002, 35, 243–254. [CrossRef] [PubMed]
- Wu, Y.; Zhong, W.; Cui, N.; Johnson, C.M.; Xing, H.; Zhang, S.; Jiang, C. Characterization of Rett Syndrome-like phenotypes in Mecp2-knockout rats. Journal of neurodevelopmental disorders 2016, 8, 23. [CrossRef] [PubMed]
- Chao, H.-T.; Chen, H.; Samaco, R.C.; Xue, M.; Chahrour, M.; Yoo, J.; Neul, J.L.; Gong, S.; Lu, H.-C.; Heintz, N. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 2010, 468, 263–269. [CrossRef] [PubMed]
- Ure, K.; Lu, H.; Wang, W.; Ito-Ishida, A.; Wu, Z.; He, L.J.; Sztainberg, Y.; Chen, W.; Tang, J.; Zoghbi, H.Y. Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. eLife 2016, 5. [CrossRef]
- Baker, K.B.; Wray, S.P.; Ritter, R.; Mason, S.; Lanthorn, T.H.; Savelieva, K.V. Male and female Fmr1 knockout mice on C57 albino background exhibit spatial learning and memory impairments. Genes, brain, and behavior 2010, 9, 562–574. [CrossRef] [PubMed]
- Ding, Q.; Sethna, F.; Wang, H. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background. Behav Brain Res 2014, 271, 72–78. [CrossRef] [PubMed]
- Albert, P.R.; Vahid-Ansari, F.; Luckhart, C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Frontiers in Behavioral Neuroscience 2014, 8. [CrossRef]
- Hamilton, S.M.; Green, J.R.; Veeraragavan, S.; Yuva, L.; McCoy, A.; Wu, Y.; Warren, J.; Little, L.; Ji, D.; Cui, X.; et al. Fmr1 and Nlgn3 knockout rats: novel tools for investigating autism spectrum disorders. Behavioral neuroscience 2014, 128, 103–109. [CrossRef]
- Barić, I.; Staufner, C.; Augoustides-Savvopoulou, P.; Chien, Y.-H.; Dobbelaere, D.; Grünert, S.C.; Opladen, T.; Petković Ramadža, D.; Rakić, B.; Wedell, A.; et al. Consensus recommendations for the diagnosis, treatment and follow-up of inherited methylation disorders. J Inherit Metab Dis 2017, 40, 5–20. [CrossRef]
- Curnow, E.; Wang, Y. New Animal Models for Understanding FMRP Functions and FXS Pathology. Cells 2022, 11. [CrossRef]
- Bozdagi, O.; Sakurai, T.; Papapetrou, D.; Wang, X.; Dickstein, D.L.; Takahashi, N.; Kajiwara, Y.; Yang, M.; Katz, A.M.; Scattoni, M.L.; et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 2010, 1, 15. [CrossRef]
- Yang, M.; Bozdagi, O.; Scattoni, M.L.; Wöhr, M.; Roullet, F.I.; Katz, A.M.; Abrams, D.N.; Kalikhman, D.; Simon, H.; Woldeyohannes, L.; et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 2012, 32, 6525–6541. [CrossRef]
- Wang, X.; McCoy, P.A.; Rodriguiz, R.M.; Pan, Y.; Je, H.S.; Roberts, A.C.; Kim, C.J.; Berrios, J.; Colvin, J.S.; Bousquet-Moore, D.; et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 2011, 20, 3093–3108. [CrossRef]
- Peça, J.; Feliciano, C.; Ting, J.T.; Wang, W.; Wells, M.F.; Venkatraman, T.N.; Lascola, C.D.; Fu, Z.; Feng, G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011, 472, 437–442. [CrossRef]
- Qin, L.; Ma, K.; Wang, Z.J.; Hu, Z.; Matas, E.; Wei, J.; Yan, Z. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci 2018, 21, 564–575. [CrossRef]
- Duffney, L.J.; Zhong, P.; Wei, J.; Matas, E.; Cheng, J.; Qin, L.; Ma, K.; Dietz, D.M.; Kajiwara, Y.; Buxbaum, J.D.; et al. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators. Cell Rep 2015, 11, 1400–1413. [CrossRef] [PubMed]
- Wang, Z.J.; Zhong, P.; Ma, K.; Seo, J.S.; Yang, F.; Hu, Z.; Zhang, F.; Lin, L.; Wang, J.; Liu, T.; et al. Amelioration of autism-like social deficits by targeting histone methyltransferases EHMT1/2 in Shank3-deficient mice. Mol Psychiatry 2020, 25, 2517–2533. [CrossRef]
- Nakanishi, M.; Nomura, J.; Ji, X.; Tamada, K.; Arai, T.; Takahashi, E.; Bućan, M.; Takumi, T. Functional significance of rare neuroligin 1 variants found in autism. PLoS Genet 2017, 13, e1006940. [CrossRef]
- Blundell, J.; Blaiss, C.A.; Etherton, M.R.; Espinosa, F.; Tabuchi, K.; Walz, C.; Bolliger, M.F.; Südhof, T.C.; Powell, C.M. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. The Journal of neuroscience : the official journal of the Society for Neuroscience 2010, 30, 2115–2129. [CrossRef]
- Chen, C.H.; Lee, P.W.; Liao, H.M.; Chang, P.K. Neuroligin 2 R215H Mutant Mice Manifest Anxiety, Increased Prepulse Inhibition, and Impaired Spatial Learning and Memory. Frontiers in psychiatry 2017, 8, 257. [CrossRef] [PubMed]
- Radyushkin, K.; Hammerschmidt, K.; Boretius, S.; Varoqueaux, F.; El-Kordi, A.; Ronnenberg, A.; Winter, D.; Frahm, J.; Fischer, J.; Brose, N.; et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes, brain, and behavior 2009, 8, 416–425. [CrossRef] [PubMed]
- Chadman, K.K.; Gong, S.; Scattoni, M.L.; Boltuck, S.E.; Gandhy, S.U.; Heintz, N.; Crawley, J.N. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism research : official journal of the International Society for Autism Research 2008, 1, 147–158. [CrossRef] [PubMed]
- Tabuchi, K.; Blundell, J.; Etherton, M.R.; Hammer, R.E.; Liu, X.; Powell, C.M.; Südhof, T.C. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. science 2007, 318, 71–76. [CrossRef] [PubMed]
- Lai, E.S.K.; Nakayama, H.; Miyazaki, T.; Nakazawa, T.; Tabuchi, K.; Hashimoto, K.; Watanabe, M.; Kano, M. An Autism-Associated Neuroligin-3 Mutation Affects Developmental Synapse Elimination in the Cerebellum. Front Neural Circuits 2021, 15, 676891. [CrossRef] [PubMed]
- Jamain, S.; Radyushkin, K.; Hammerschmidt, K.; Granon, S.; Boretius, S.; Varoqueaux, F.; Ramanantsoa, N.; Gallego, J.; Ronnenberg, A.; Winter, D.; et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proceedings of the National Academy of Sciences of the United States of America 2008, 105, 1710–1715. [CrossRef]
- Scattoni, M.L.; Martire, A.; Cartocci, G.; Ferrante, A.; Ricceri, L. Reduced social interaction, behavioural flexibility and BDNF signalling in the BTBR T+ tf/J strain, a mouse model of autism. Behav Brain Res 2013, 251, 35–40. [CrossRef]
- McFarlane, H.G.; Kusek, G.K.; Yang, M.; Phoenix, J.L.; Bolivar, V.J.; Crawley, J.N. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes, Brain and Behavior 2008, 7, 152–163. [CrossRef]
- Scattoni, M.L.; Gandhy, S.U.; Ricceri, L.; Crawley, J.N. Unusual Repertoire of Vocalizations in the BTBR T+tf/J Mouse Model of Autism. PLOS ONE 2008, 3, e3067. [CrossRef]
- Wöhr, M.; Silverman, J.L.; Scattoni, M.L.; Turner, S.M.; Harris, M.J.; Saxena, R.; Crawley, J.N. Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2. Behavioural brain research 2013, 251, 50–64. [CrossRef]
- Meyza, K.Z.; Defensor, E.B.; Jensen, A.L.; Corley, M.J.; Pearson, B.L.; Pobbe, R.L.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J. The BTBR T+ tf/J mouse model for autism spectrum disorders-in search of biomarkers. Behav Brain Res 2013, 251, 25–34. [CrossRef]
- Dodero, L.; Damiano, M.; Galbusera, A.; Bifone, A.; Tsaftsaris, S.A.; Scattoni, M.L.; Gozzi, A. Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+TF/J mouse model of autism. PLoS One 2013, 8, e76655. [CrossRef]
- Liu, Z.; Li, X.; Zhang, J.T.; Cai, Y.J.; Cheng, T.L.; Cheng, C.; Wang, Y.; Zhang, C.C.; Nie, Y.H.; Chen, Z.F.; et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 2016, 530, 98–102. [CrossRef]
- Cai, D.-C.; Wang, Z.; Bo, T.; Yan, S.; Liu, Y.; Liu, Z.; Zeljic, K.; Chen, X.; Zhan, Y.; Xu, X.; et al. <em>MECP2</em> Duplication Causes Aberrant GABA Pathways, Circuits and Behaviors in Transgenic Monkeys: Neural Mappings to Patients with Autism. The Journal of Neuroscience 2020, 40, 3799. [CrossRef]
- Liu, H.; Chen, Y.; Niu, Y.; Zhang, K.; Kang, Y.; Ge, W.; Liu, X.; Zhao, E.; Wang, C.; Lin, S.; et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 2014, 14, 323–328. [CrossRef]
- Chen, Y.; Yu, J.; Niu, Y.; Qin, D.; Liu, H.; Li, G.; Hu, Y.; Wang, J.; Lu, Y.; Kang, Y.; et al. Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys. Cell 2017, 169, 945–955.e910. [CrossRef]
- Zhou, Y.; Sharma, J.; Ke, Q.; Landman, R.; Yuan, J.; Chen, H.; Hayden, D.S.; Fisher, J.W.; Jiang, M.; Menegas, W.; et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 2019, 570, 326–331. [CrossRef]
- Amir, R.E.; Van den Veyver, I.B.; Wan, M.; Tran, C.Q.; Francke, U.; Zoghbi, H.Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics 1999, 23, 185–188. [CrossRef] [PubMed]
- Cuddapah, V.A.; Pillai, R.B.; Shekar, K.V.; Lane, J.B.; Motil, K.J.; Skinner, S.A.; Tarquinio, D.C.; Glaze, D.G.; McGwin, G.; Kaufmann, W.E.; et al. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J Med Genet 2014, 51, 152–158. [CrossRef] [PubMed]
- Van den Veyver, I.B.; Zoghbi, H.Y. Mutations in the gene encoding methyl-CpG-binding protein 2 cause Rett syndrome. Brain and Development 2001, 23, S147–S151. [CrossRef]
- Percy, A.K. Rett syndrome: exploring the autism link. Archives of neurology 2011, 68, 985–989. [CrossRef]
- Boxer, L.D.; Renthal, W.; Greben, A.W.; Whitwam, T.; Silberfeld, A.; Stroud, H.; Li, E.; Yang, M.G.; Kinde, B.; Griffith, E.C.; et al. MeCP2 Represses the Rate of Transcriptional Initiation of Highly Methylated Long Genes. Molecular cell 2020, 77, 294–309.e299. [CrossRef] [PubMed]
- Young, J.I.; Hong, E.P.; Castle, J.C.; Crespo-Barreto, J.; Bowman, A.B.; Rose, M.F.; Kang, D.; Richman, R.; Johnson, J.M.; Berget, S.; et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 17551–17558. [CrossRef]
- Skene, P.J.; Illingworth, R.S.; Webb, S.; Kerr, A.R.; James, K.D.; Turner, D.J.; Andrews, R.; Bird, A.P. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Molecular cell 2010, 37, 457–468. [CrossRef]
- Kimura, H.; Shiota, K. Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J Biol Chem 2003, 278, 4806–4812. [CrossRef] [PubMed]
- Olson, C.O.; Zachariah, R.M.; Ezeonwuka, C.D.; Liyanage, V.R.B.; Rastegar, M. Brain Region-Specific Expression of MeCP2 Isoforms Correlates with DNA Methylation within Mecp2 Regulatory Elements. PLOS ONE 2014, 9, e90645. [CrossRef]
- Moretti, P.; Bouwknecht, J.A.; Teague, R.; Paylor, R.; Zoghbi, H.Y. Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum Mol Genet 2005, 14, 205–220. [CrossRef]
- Samaco, R.C.; McGraw, C.M.; Ward, C.S.; Sun, Y.; Neul, J.L.; Zoghbi, H.Y. Female Mecp2+/− mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Human Molecular Genetics 2012, 22, 96–109. [CrossRef]
- Díaz de León-Guerrero, S.; Pedraza-Alva, G.; Pérez-Martínez, L. In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. European Journal of Neuroscience 2011, 33, 1563–1574. [CrossRef]
- Peyser, A.; Singer, T.; Mullin, C.; Hershlag, A. Reduction in the number of CGG repeats on the FMR1 gene in carriers of genetic disorders versus noncarriers. JBRA assisted reproduction 2017, 21, 327–329. [CrossRef]
- Dahlhaus, R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018, 11, 41. [CrossRef] [PubMed]
- Maurin, T.; Zongaro, S.; Bardoni, B. Fragile X Syndrome: from molecular pathology to therapy. Neuroscience and biobehavioral reviews 2014, 46 Pt 2, 242–255. [CrossRef]
- Christie, S.B.; Akins, M.R.; Schwob, J.E.; Fallon, J.R. The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. Journal of Neuroscience 2009, 29, 1514–1524. [CrossRef] [PubMed]
- Stefani, G.; Fraser, C.E.; Darnell, J.C.; Darnell, R.B. Fragile X mental retardation protein is associated with translating polyribosomes in neuronal cells. Journal of Neuroscience 2004, 24, 7272–7276. [CrossRef]
- Darnell, J.C.; Van Driesche, S.J.; Zhang, C.; Hung, K.Y.; Mele, A.; Fraser, C.E.; Stone, E.F.; Chen, C.; Fak, J.J.; Chi, S.W.; et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011, 146, 247–261. [CrossRef]
- Comery, T.A.; Harris, J.B.; Willems, P.J.; Oostra, B.A.; Irwin, S.A.; Weiler, I.J.; Greenough, W.T. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proceedings of the National Academy of Sciences of the United States of America 1997, 94, 5401–5404. [CrossRef]
- He, C.X.; Portera-Cailliau, C. The trouble with spines in fragile X syndrome: density, maturity and plasticity. Neuroscience 2013, 251, 120–128. [CrossRef]
- Gauducheau, M.; Lemaire-Mayo, V.; D'Amato, F.R.; Oddi, D.; Crusio, W.E.; Pietropaolo, S. Age-specific autistic-like behaviors in heterozygous Fmr1-KO female mice. Autism Research 2017, 10, 1067–1078. [CrossRef]
- Portales-Casamar, E.; Lussier, A.A.; Jones, M.J.; MacIsaac, J.L.; Edgar, R.D.; Mah, S.M.; Barhdadi, A.; Provost, S.; Lemieux-Perreault, L.P.; Cynader, M.S.; et al. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin 2016, 9, 25. [CrossRef]
- Boeckers, T.M.; Bockmann, J.; Kreutz, M.R.; Gundelfinger, E.D. ProSAP/Shank proteins–a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. Journal of neurochemistry 2002, 81, 903–910. [CrossRef]
- Meyer, G.; Varoqueaux, F.; Neeb, A.; Oschlies, M.; Brose, N. The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology 2004, 47, 724–733. [CrossRef]
- Sato, D.; Lionel, A.C.; Leblond, C.S.; Prasad, A.; Pinto, D.; Walker, S.; O'Connor, I.; Russell, C.; Drmic, I.E.; Hamdan, F.F.; et al. SHANK1 Deletions in Males with Autism Spectrum Disorder. American journal of human genetics 2012, 90, 879–887. [CrossRef]
- Berkel, S.; Tang, W.; Treviño, M.; Vogt, M.; Obenhaus, H.A.; Gass, P.; Scherer, S.W.; Sprengel, R.; Schratt, G.; Rappold, G.A. Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Hum Mol Genet 2012, 21, 344–357. [CrossRef]
- Bonaglia, M.C.; Giorda, R.; Mani, E.; Aceti, G.; Anderlid, B.-M.; Baroncini, A.; Pramparo, T.; Zuffardi, O. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13. 3 deletion syndrome. J Med Genet 2006, 43, 822–828. [CrossRef]
- Uchino, S.; Waga, C. SHANK3 as an autism spectrum disorder-associated gene. Brain and Development 2013, 35, 106–110. [CrossRef]
- Durand, C.M.; Betancur, C.; Boeckers, T.M.; Bockmann, J.; Chaste, P.; Fauchereau, F.; Nygren, G.; Rastam, M.; Gillberg, I.C.; Anckarsäter, H.; et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics 2007, 39, 25–27. [CrossRef]
- Waga, C.; Okamoto, N.; Ondo, Y.; Fukumura-Kato, R.; Goto, Y.-i.; Kohsaka, S.; Uchino, S. Novel variants of the SHANK3 gene in Japanese autistic patients with severe delayed speech development. Psychiatric genetics 2011, 21, 208–211. [CrossRef]
- Gauthier, J.; Champagne, N.; Lafrenière, R.G.; Xiong, L.; Spiegelman, D.; Brustein, E.; Lapointe, M.; Peng, H.; Côté, M.; Noreau, A.; et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 7863–7868. [CrossRef]
- Phelan, M.C.; Rogers, R.C.; Saul, R.A.; Stapleton, G.A.; Sweet, K.; McDermid, H.; Shaw, S.R.; Claytor, J.; Willis, J.; Kelly, D.P. 22q13 deletion syndrome. Am J Med Genet 2001, 101, 91–99. [CrossRef]
- Kleefstra, T.; Kramer, J.M.; Neveling, K.; Willemsen, M.H.; Koemans, T.S.; Vissers, L.E.; Wissink-Lindhout, W.; Fenckova, M.; van den Akker, W.M.; Kasri, N.N.; et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. American journal of human genetics 2012, 91, 73–82. [CrossRef]
- Laumonnier, F.; Bonnet-Brilhault, F.; Gomot, M.; Blanc, R.; David, A.; Moizard, M.P.; Raynaud, M.; Ronce, N.; Lemonnier, E.; Calvas, P.; et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. American journal of human genetics 2004, 74, 552–557. [CrossRef]
- Jamain, S.; Quach, H.; Betancur, C.; Råstam, M.; Colineaux, C.; Gillberg, I.C.; Soderstrom, H.; Giros, B.; Leboyer, M.; Gillberg, C.; et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003, 34, 27–29. [CrossRef]
- Thomas, N.S.; Sharp, A.J.; Browne, C.E.; Skuse, D.; Hardie, C.; Dennis, N.R. Xp deletions associated with autism in three females. Human genetics 1999, 104, 43–48. [CrossRef]
- Nguyen, T.A.; Lehr, A.W.; Roche, K.W. Neuroligins and Neurodevelopmental Disorders: X-Linked Genetics. Frontiers in synaptic neuroscience 2020, 12, 33. [CrossRef]
- Varoqueaux, F.; Aramuni, G.; Rawson, R.L.; Mohrmann, R.; Missler, M.; Gottmann, K.; Zhang, W.; Südhof, T.C.; Brose, N. Neuroligins determine synapse maturation and function. Neuron 2006, 51, 741–754.
- Trobiani, L.; Meringolo, M.; Diamanti, T.; Bourne, Y.; Marchot, P.; Martella, G.; Dini, L.; Pisani, A.; De Jaco, A.; Bonsi, P. The neuroligins and the synaptic pathway in Autism Spectrum Disorder. Neuroscience & Biobehavioral Reviews 2020, 119, 37–51. [CrossRef]
- Parente, D.J.; Garriga, C.; Baskin, B.; Douglas, G.; Cho, M.T.; Araujo, G.C.; Shinawi, M. Neuroligin 2 nonsense variant associated with anxiety, autism, intellectual disability, hyperphagia, and obesity. American journal of medical genetics Part A 2017, 173, 213–216. [CrossRef]
- Radyushkin, K.; Hammerschmidt, K.; Boretius, S.; Varoqueaux, F.; El-Kordi, A.; Ronnenberg, A.; Winter, D.; Frahm, J.; Fischer, J.; Brose, N.; et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes, Brain and Behavior 2009, 8, 416–425. [CrossRef]
- Kisaretova, P.; Tsybko, A.; Bondar, N.; Reshetnikov, V. Molecular Abnormalities in BTBR Mice and Their Relevance to Schizophrenia and Autism Spectrum Disorders: An Overview of Transcriptomic and Proteomic Studies. Biomedicines 2023, 11. [CrossRef]
- Bolivar, V.J.; Walters, S.R.; Phoenix, J.L. Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav Brain Res 2007, 176, 21–26. [CrossRef]
- Silverman, J.L.; Tolu, S.S.; Barkan, C.L.; Crawley, J.N. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 2010, 35, 976–989. [CrossRef]
- McFarlane, H.G.; Kusek, G.K.; Yang, M.; Phoenix, J.L.; Bolivar, V.J.; Crawley, J.N. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes, brain, and behavior 2008, 7, 152–163. [CrossRef]
- Alexander, A.L.; Lee, J.E.; Lazar, M.; Boudos, R.; DuBray, M.B.; Oakes, T.R.; Miller, J.N.; Lu, J.; Jeong, E.-K.; McMahon, W.M.; et al. Diffusion tensor imaging of the corpus callosum in Autism. NeuroImage 2007, 34, 61–73. [CrossRef]
- Egaas, B.; Courchesne, E.; Saitoh, O. Reduced Size of Corpus Callosum in Autism. Archives of neurology 1995, 52, 794–801. [CrossRef] [PubMed]
- El-Kordi, A.; Winkler, D.; Hammerschmidt, K.; Kästner, A.; Krueger, D.; Ronnenberg, A.; Ritter, C.; Jatho, J.; Radyushkin, K.; Bourgeron, T.; et al. Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav Brain Res 2013, 251, 41–49. [CrossRef]
| ASD core-related behavior batteries |
Behavioral assays | Paradigm application and validation for ASD phenotyping | Author |
|---|---|---|---|
|
Social interaction |
Three-chamber/ partition for sociability | Evaluate Sociability/Social behavior by assessing the friendliness of models to strangers. Healthy animals spend more time around conspecifics. Lack/no interest in strangers indicates social behavioral impairment typical of ASD patients. | Berg & Silverman, [29]; Kaidanovich-Beilin et al., [39]; Takumi et al., [40] |
| Three-chamber approach for social recognition | Novel social preference/recognition evaluates animal flexibility to socialize with new conspecific. If the introduction of a novel conspecific does not attract its attention, the subject is adjudged to lack social memory/recognition | Chao et al.,[41]; Hrabovska & Salyha [42]; Jabarin et al., [43]; Luhach et al.,[44]; Takumi et al., [40] |
|
| Open arena social approach |
Reciprocal social interactions are assessed based on the time taken by the test animal to reciprocate to social gestures made towards it by stranger in an open arena. Autistic models are reported to respond little or not to advances by a conspecific. |
Brunner et al., [45]; Hirsch et al[46]; Jones et al., [47] ; Moy et al., [48]; |
|
| Conditioned Place two chamber motivation approach | Social Motivation is indicated by how rewarding an animal finds social stimulus. Autistic models spend an equal/less amount of time in environment that previously had social cues. | Maloney et al., [49]; Martin et al., [50]; Pearson et al., [51]; |
|
|
Social communication |
Scent marking test |
In open arena, social communication is observed when animal encounters the urine of conspecific and normally spends time sniffing it, and frequently dropping its own urine beside it. ASD models sniff less and fails to deposit urine as frequently as healthy animals. | Brunner et al., [45]; Kabitzke et al., [52]; Wöhr et al., [53]; Wöhr et al.,[54]; |
| Ultrasonic vocalization | Different conditions are known to produce different type of calls in pups, as diagnostic and characterizing tools for certain neurodevelopmental and psychiatric disorders including ASD. | Becker et al., [55] Gzielo et al., [56] Möhrle et al., [57]; Premoli et al., [58] Shekel et al., [34] |
|
|
Restricted repetitive behavior |
Marble burying test |
Repetitive behaviors in rodents often manifest as excessive digging behavior when presented with glass balls. Autistic models have a high tendency to burry more balls. | Carmel et al., 2023 [59]; Dunn et al., 2024 [60] Eshraghi et al., [61] Sato & Ikeda, [62] |
| Open Arena/Open field approach | Repetitive and stereotypic behavior tests observe how subjects perform normal activities like self-grooming, bedding chewing, circling, and backflipping. ASD models tend to perform these actions for unusual periods and pattern. | Avraham et al., [63] Hirsch et al., [64] Jones et al., [47] Zhang et al., [65] |
|
| Y-Maze, Banes-Maze, Water-T-Maze | Restricted repetitive interest/cognitive inflexibility is the inability of animals to explore new object/position or their insistence on sameness. ASD models will continue to interact/explore or visit the same position even when presented varieties of options. | Berg & Silverman, [29] Luhach et al., [10] Ornoy et al., [10] Takumi et al., [40] |
|
|
ASD comorbidities |
Novel Object Recognition | To assess intellectual difficulties that confound about 70% of ASD cases. This test is likely to validate results from novel social preference test. | Lyu et al., [66]; Miao et al., [67]; Ornoy et al., [10] |
| Morris Water Maze | Assesses spatial learning and memory and reversal learning in rodents. Despite testing for ASD comorbidities, the test importantly helps to validate tests for restricted interest. | Jones et al., [47]; Barnhart et al., [68]) |
|
| Fear Conditioning | Aversive foot shock accompanied by contextual or sound cues are presented to animals on trial. ASD models display elevated fear memory and generalization for context without shock. | Lanjewar et al [69] Markram et al., [70] Zhang et al., [71] |
|
| Rotarod tes, Beam walk | A rotating rod/beam walk is used to check for motor coordination, balancing as well as motor skill learning in rodents. So far, the results vary for different tests | Berg & Silverman,[29]; Cording & Bateup [72]; Ornoy et al., [10] |
|
| Elevated plus maze, light-dark box |
Increased time spent in the opened arms of EPM or in the illuminated part of a light-dark box is an indication of a lower degree of “anxiety”. | Fereshetyan et al., [73]; Jones et al., [74]; Ornoy et al., [10] |
| Animals | Test paradigm | Phenotype manifestations |
Authors |
|---|---|---|---|
| Pregnant C57BL/6 were treated with 300 μg of IgG on GD 13.5 | OF, Y-Maze, marble burying, clock maze |
Adult offspring show: abnormal sociability, impaired motivation, stereotypic and/or compulsive behavior, learning inflexibility | Brimberg et al., [12] |
| C57BL/6 dams were injected with multiple synthetic antigenic epitopes before pregnancy; inducing autoimmune response. | Open arena social approach, 3-chambers, self-grooming, marble burying, USVs, MWM, OF, EPM, light and dark box |
Adult offspring manifest: Reduced number in USVs, Repetitive behaviors, Diminished interest in social interaction Neurodevelopmental delays. |
Jones et al., [47] |
| Sprague Dawley Rat dams received injections of 21 custom synthetic peptides (LDH-A, LDH-B, STIP1, and CRMP1), 4 weeks before pregnancy | Neurodevelopmental test, USVs, EPM, OF, 3-chamber, pre-pulse inhibition reciprocal social behavior social novelty test |
Adult Offspring show: impaired social behavior, dampened social reciprocity, |
Bruce et al., [15] |
| C57BL/6J dams were IP injectied with 20 mg/kg poly(I:C) on GD 12.5 | 3-chamber Self-grooming, EPM OF |
Adult Offspring show: Declined sociability, social recognition, and anxiety. Excessive self-grooming Increased NKCC1 and Dendritic spines, Reactive microglia in PFC. |
Zhang et al., [19] |
|
C57BL/6J dams were treated with Poly I:C on GD 12.5 Pups were treated with LPS on PND 9. |
USVs, Scent marking, Social recognition, OF, Rotarod, |
ASD-like phenotype more severe in males than in females: Altered social behavior, Repetitive behaviors, Anxiety Altered USVs in both sexes. |
Carlezon et al., [20] |
| C57bL/6 dams were IP injected with 15µg/kg LPS on GD 15. | 3-chamber, Stereotypic behavior test |
Adult Offspring show: Altered social interaction, Stereotyped self-grooming, Abnormal BDNF and interleukin 17A in the hippocampus and cortex. These altered behaviors were absent at age 28. |
Dutra et al., [21] |
| Female zebrafish were treated with Poly(I:C) intraperitoneally at 24 hours before mating | 3-chamber, shoaling, OF social preference test | Offspring zebrafish show: impaired social approach/cohesion, altered villin-1 (vil1) pathway. | Wu et al., [22] |
| C57BL/6J dams were IP injected with 20 mg/kg poly (I:C) on GD 12.5 |
OF, EPM, grooming test, marble burying 3-chamber test |
Adult Offspring show: Reduced locomotion, Increased anxiety Higher repetitive digging, Higher repetitive stereotyped behavior, Impaired social interaction and recognition memory |
Zeng et al., [23] |
| Balb/c dams were exposed to Mycobacterium tuberculosis (Mtb) via aerosol infection on GD 12.5 | 3-chamber test, self-grooming | No deficit in social behavior Increased repetitive self-grooming. |
Manjeese et al., [24] |
| Pregnant rhesus monkey was treated on GDs 30, 44, 58, 72, 86, 100 with IgG from mother of ASD patient. | Reciprocal social interaction, 3-chambers, MIR |
IgG-ASD offspring were: Asocial to conspecific Show impaired reciprocal social interaction Have abnormal frontal lobe white matter. |
Bauman et al., [91] |
| C57BL/6 dams were IP injected with 75 μg/kg LPS on GD14. | 3-chamber, OF, EPM, forced swim tail suspension |
Impaired social interactions and social recognition, Altered locomotion anxiety Depression |
Wu et al., [92] |
| Animal | Test paradigm | Phenotype manifestations |
Authors, ref. |
|---|---|---|---|
| ICR mice were treated with 300mg/kg VPA on PND 4 | 3-chamber, EPM Water T-maze, OF test |
VPA-increased grooming frequency, impaired sociability in males increased anxiety-like behaviors in females. |
Ornoy, et al., [10] |
| Pregnant Wistar rats were administered 600 mg/kg of VPA on GD 12.5 | 3-chamber, reciprocal social interaction, OF/self-grooming and EPM | Decreased social interactions and recognition, increased anxiety and nociceptive threshold | Hirsch et al., [64] |
| Treating Zebrafish embryos with 5, 50 and 500µM of VPA at 8 hours post fertilization | Light band dark swim speed/preference test, larval social test, mirror attack, shoaling and social contact test | hyperactive movement disorder and abnormal?? thigmotaxis, reduced social interaction, macrocephaly | Chen et al., [93] |
| Rats administered 25 mg/kg of PCB from GD 3 to parturition | Two-chamber social paradigm | Impairment of sociability and social recognition | Jolous-Jamshidi et al., [32] |
| 200 mg VPA was orally given to pregnant marmosets from GD 60 to 66 | pulse code modulation (PCM) audio recorder. | altered infant and juvenile vocalizations | Watanabe et al., [94] |
| 5mg of CPF to pregnant mice from GDs 12 – 15 | 3-chamber, social interaction, object recognition and restricted interest tests | enhanced restricted interest. reduced social conditioned place preference, dampened social recognition | Lan et al., [33] |
| Treated zebrafish embryos for 48 hours with 1µM of VPA starting 8 hours post fertilization | Mirror test, 2-chamber social paradigm, | Exhibited impaired social behavior and social visual laterality. with altered brain asymmetric | Messina et al., [95] |
| Gene | Conditional animal models | ASD-like phenotype | Autor (ref) |
| X-linked Methyl CpG Binding Protein 2,MeCP2 | |||
|
Mecp2tm1.1Bird Mice Mecp2tm1.1Jae |
The targeted deletion that removes exons 3 and 4 of the Mecp2 gene, resulting in a complete lack of MECP2 protein product Mecp2tm1.1Jae mice created by condition disruption of exon 3 of the Mecp2 gene, resulted to the lack of functional MECP2 protein |
Male hemizygous Mecp2-null mice develop a Rett-like phenotype from the 4 weeks of age with raid regression, and die between 6 and 12 weeks of age: Hind limb clasping, tremors, breathing irregularities, loss of muscle tone, reduced locomotion, reduced brain weight and body weight, experience a rapid phenotypic. Female heterogeneous Mecp2 -null mice develop the same features at 4–6 months of age and typically live a normal lifespan 2 weeks of treatment with Mirtazapine rescue dendritic arborization and spine density of pyramidal neurons and improved phenotypic score. |
Guy et al., [113] Bittalo et al., [114] Flores Gutiérrez et al., [111] Chen et al., [115] |
| Mice Mecp2-308/y | Stop codon at amino acid position 308, leading to the production of a truncated MeCP2 protein that lacks the C-terminal domain. | Displaying a milder RTT phenotype, a delayed onset of symptoms, and an extended lifespan, due to the presence of partially functional truncated protein. | Shahbazian et al.,[116] |
| Rats Mecp2308 | expressing a truncated allele of Mecp2 |
displayed RTT phenotype: growth retardation, reduced locomotion, impaired social behavior, breathing abnormalities, excessive spontaneous firing activity of neurons in the locus coeruleus |
Wu et al., [117] |
| Viaat-Mecp2−/y | Male Viaat-Mecp2−/y mice are absent MeCP2 protein nearly from >90% of GABAergic neurons | Male Viaat-Mecp2−/y mice developed RTT and ASD-like phenotype from 5 weeks of age: motor dysfunction. repetitive behaviors. impaired working memory. Reduced levels of Gad1 and Gad2 Decrease GABA immunostaining in the cortex and striatum |
Chao et al., [118] |
| Mecp2lox-Stop/Y | Male Mecp2 null mice, with genetically restored Mecp2 expression in targeted GABAergic neurons |
Rescue MECP2 functions Ablation of RTT phenotype |
Ure et al., [119] |
| X-linked Mental Retardation FMR1 gene, FMR1 | |||
| Fmr1 KO mice and rats |
Loss-of-function models; disruption knockout (KO) of the FMR1 gene homolog. |
Displayed FXS phenotype: Altered social interaction and social play, Social anxiety, Defects in visual attention, Auditory dysfunctions, Cognitive deficits, Repetitive behaviors, Hyperactivity, Differences in dendritic spines. |
Baker et al., [120] Ding et al., [121] Albert et al., [122] Hamilton et al., [123] Barić et al.,[124] Curnow et al., [125] |
| SH and multiple ankyrin repeat domains proteins (SHANK) | |||
| Shank3+/- mice | deletion of the ankyrin repeat region of the Shank3 gene resulted in a lack of full-length SHANK3 protein | Heterozygous (Shank3+/-) and homozygous (Shank3-/-) showed normal brain anatomic structure and displayed normal developmental trajectory, normal social interaction, normal spatial learning, repetitive self-grooming in males Reduced number of USVs Decreased GLUR1 and AMPA receptor immunoreactivity. Altered LTP in hippocampal CA1 neurons. |
Bozdagi et al., [126] Yang et al.,[127] |
| Shank3e4–9 mice | exons 4–9 deletion of the Shank3 gene, produced transcripts of truncated SHANK3 proteins | Homozygous Shank3e4–9 mice showed: abnormal social communication, decreased novel object preference, impaired spatial learning and memory, increased stereotypic self-grooming, increased number of USV. affected fine motor coordination, Reduction in brain levels of Shank3-interacting protein Homer1b/c, GKAP, and GluA1. |
Wang et al., [128] |
| Shank3A−/− null mice Shank3B−/− null mice |
targeting the ankyrin repeat domain, resulting in the loss of the longest Shank3α isoform targeting the fragment encoding exons 13 to 16 of the PDZ domain, which led to the complete deletion of both Shank3α and Shank3β isoforms, as well as a reduction in the Shank3γ isoform |
Shank3B−/− mice exhibited a more pronounced ASD-like phenotype, than Shank3A−/− mice: anxiety-like behavior, repetitive self-injurious grooming. Shank3B−/−mice demonstrated impaired social interaction preference for social novelty. Shank3A−/−mice preserved normal social communication, the deficit for social novelty recognition. striatal hypertrophy, increased neuronal complexity, and dendritic arbors. reduced frequency mEPSCs in striatal medium spiny neurons. reduced protein levels of glutamate receptor subunits GluR2, NR2A, and NR2B |
Peça et al., [129] |
| Shank3+/ΔC mice | Conditional deletion of exon 21in the C-terminal of the Shank3 gene which leads to the expression of a truncated SHANK3 protein. | Only male Shank3+/ΔC mice developed ASD-like phenotype. Decreased level of histone acetylation Subchronic treatment with romidepsin, class I HDAC inhibitor, transiently rescued social deficits in Shank3+/ΔCmice, elevated the transcriptional level of HDAC2 in PFC, restored β-catenin and restored NMDAR, elevated expression of actin regulatory genes Grin2 Single I.V. injection with TAT-p-cofilin peptide rescues behavioral deficits and restores NMDAR function. Treatment with UNC0642 inhibitor of EHMT1 and EHMT2, reduced the elevated level of H3K9me2 in the PFC of Shank3+/ΔC mice and rescued autism-like social deficits, and restored NMDAR function |
Qin et al., [130] Duffney et al., [131] Wang et al., [132]. |
| Neuroligin genes, NLGN | |||
| Knock-in mice Nlgn1 P89L mice | knock-in mice with the novel missense mutation P89L in the NLGN1 gene |
Heterozygous Nlgn1 P89L mice: affected sociability and social dominance. impaired spatial memory Homozygous Nlgn1 P89L developed a milder ASD-like phenotype: has less impairment in sociability and spatial memory. Either homozygous or heterozygous Nlgn1 P89L mice demonstrated normal odor discrimination, object recognition, general locomotor activity, stereotypic repetitive behavior anxiety-like behavior, altered stress-induced USVs. Decreased levels of NLGN1 protein in brain |
Nakanishi et al., [133] |
| NL1 KO mice | NLGN1 depletion | NL1 KO mice exhibited mild deficits in social behavior, impaired spatial memory evaluated by MWM test, and increased repetitive grooming behavior. Impaired hippocampal long-term potentiation. Decrease in the NMDA/AMPA ratio in synapses A single administration of the NMDA receptor partial coagonist d-cycloserine abolished abnormal grooming phenotype in adult NL1 KO mice |
Blundell et al., [134] |
| R215H-Nlgn2 knock-in mice | Mice carrying the R215H mutation in the Nlgn2 gene lost NLGN protein expression | R215H-Nlgn2 mice have growth retardation and demonstrated anxiety-like behavior, impaired spatial learning and memory, and enhanced Startle reflex | Chen et al., [135] |
| R451C-Nlgn3 knock-in mice | insertion of R451C mutations in an extracellular domain of the Nlgn3 gene caused partial retention of NLGN protein in the ER and further proteasomal degradation |
R451C-Nlgn3 mutant mice demonstrated controversial phenotype. Tabuchi et al [136] reported reduced sociability facilitated spatial learning and memory increase in inhibitory synaptic transmission elevate the inhibition to excitation (I/E) ratio of synaptic inputs to cerebellar Purkinje cells Chadman et al [137] reported normal reciprocal social interactions, learning, and memory in MWT, similar to WT controls, but demonstrated some delay in the early postnatal developmental trajectory |
Tabuchi et al., [138] Lai et al., [139] Chadman et al., [137]. |
| Nlgn3-KO mouse line | Nlgn3-KO knockout mouse line with completely depleted NLGN3 |
Nlgn3-KO mice demonstrated: increased decreased social recognition and social novelty preference Impaired olfaction Reduced number of USVs in males |
Radyushkin et al., [136] |
| Nlgn4-KO mice | Nlgn4-knockout mouse line with chimeric nonfunctional NLGN4 protein |
Nlgn4-KO mouse developed abnormality in reciprocal social interactions and communication, decrease USVs and reduced total brain volume |
Jamain et al., [140] |
| Inbred model of idiopathic ASD: BTBR mice | |||
| BTBR T+ Itpr3tf/J | Carries mutations in genes including (nonagouti; black and tan), Itpr3tf (inositol 1,4,5-triphosphate receptor 3; tufted), and T (brachyury). | BTBR mice demonstrated natural traits of the core autism symptom: decreased social interaction, increased USVs and abnormal patterns of sonograms, repetitive grooming, lack of corpus callosum and hippocampal commissure, decreased cortical thickness, and thalamic gray matter volume. |
Scattoni et al., [141] McFarlane et al., [142] Scattoni et al., [143] Wöhr et al., [144] Meyza et al., [145] Dodero et al., [146]. |
| Genetic models in nonhuman primates (NHP) | |||
| Mecp2 transgenic MF | Mutant MF expressed human Mecp2 via lentiviral infection of monkey oocytes mitigating MECP2 duplication syndrome |
Mecp2
transgenic MF exhibited; repetitive circular locomotion, increased stress response, Reduced social interaction, Mildly impaired cognition Significant enrichment in gaba-related signaling pathways Reduced β-synchronization in fronto-parieto-occipital networks EEG studies Hyperconnectivity in prefrontal and cingulate networks. |
Liu et al., [147] Cai et al., [148] |
| Mecp2 transgenic Rhesus and cynomolgus monkeys | Mecp2 mutagenesis was induced by microinjection of Mecp2- exon 3 targeted TALEN plasmids into rhesus and cynomolgus zygotes, leading to MECP2 altered expression or function. |
Male mutant monkeys were embryonic lethal. Female Mecp2 mutant monkeys demonstrated stereotypical behaviors, impaired active social interaction, reduced exploration, and affected sleep patterns |
Liu et al., [149] Chen et al., [150]. |
| Shank3-deficient MF | CRISPR-Cas9-targeting exon 21 of of SHANK3 in Macaca fasciculari resulting to expression of non-functional SHANK3 protein | SHANK3-deficient MF capitulated most symptoms of Phelan-McDermid syndrome: Impaired sleep and motor functions Increased repetitive behaviors MRI abnormal brain global connectivity |
Zhou et al., [151] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
