Submitted:
24 June 2024
Posted:
24 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Search Strategy and Selection Criteria
3. Disease Overview and AML Pathophysiology
4. Diagnosis and Classification of AML
5. Prognosis, Risk Assessment, and Monitoring of AML
6. Clinical Management
7. Intensive Chemotherapy and Allogeneic SCT
8. Novel Therapies for Older Patients with AML
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- DiNardo CD, Erba HP, Freeman SD, Wei AH. Acute myeloid leukemia. Lancet. 2023,17;401(10393):2073-2086. [CrossRef]
- Wachter, F.; Pikman, Y. Pathophysiology of Acute Myeloid Leukemia. Acta Haematol. 2024, 147, 229–246. [Google Scholar] [CrossRef]
- Bataller, A.; DiNardo, C.D.; Bazinet, A.; Daver, N.G.; Maiti, A.; Borthakur, G.; Short, N.; Sasaki, K.; Jabbour, E.J.; Issa, G.C.; et al. Targetable genetic abnormalities in patients with acute myeloblastic leukemia across age groups. Am. J. Hematol. 2024, 99, 792–796. [Google Scholar] [CrossRef]
- Shimony, S.; Stahl, M.; Stone, R.M. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2023, 98, 502–526. [Google Scholar] [CrossRef]
- Han, H.J.; Choi, K.; Suh, H.S. Impact of aging on acute myeloid leukemia epidemiology and survival outcomes: A real-world, population-based longitudinal cohort study. PLOS ONE 2024, 19, e0300637. [Google Scholar] [CrossRef]
- Snaith, O.; Poveda-Rogers, C.; Laczko, D.; Yang, G.; Morrissette, J.J. Cytogenetics and genomics of acute myeloid leukemia. Best Pr. Res. Clin. Haematol. 2024, 37, 101533. [Google Scholar] [CrossRef]
- Guijarro, F.; Garrote, M.; Villamor, N.; Colomer, D.; Esteve, J.; López-Guerra, M. Novel Tools for Diagnosis and Monitoring of AML. Curr. Oncol. 2023, 30, 5201–5213. [Google Scholar] [CrossRef]
- Duncavage, E.J.; Bagg, A.; Hasserjian, R.P.; DiNardo, C.D.; Godley, L.A.; Iacobucci, I.; Jaiswal, S.; Malcovati, L.; Vannucchi, A.M.; Patel, K.P.; et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood 2022, 140, 2228–2247. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.-M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Appelbaum, F.R. WHO, what, when, where, and why: New classification systems for acute myeloid leukemia and their impact on clinical practice. Best Pr. Res. Clin. Haematol. 2023, 36, 101518. [Google Scholar] [CrossRef]
- Falini, B.; Martelli, M.P. Comparison of the International Consensus and 5th WHO edition classifications of adult myelodysplastic syndromes and acute myeloid leukemia. Am. J. Hematol. 2023, 98, 481–492. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Pollyea DA, Altman JK, Assi R, Bixby D, Fathi AT, Foran JM, Gojo I, Hall AC, Jonas BA, Kishtagari A et al. Acute Myeloid Leukemia, Version 3.2023, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2023,21(5):503-513.
- Wang YH, Orgueira AM, Lin CC, Yao CY, Lo MY, Tsai CH, de la Fuente Burguera A, Hou HA, Chou WC, Tien HF. Stellae-123 gene expression signature improved risk stratification in taiwanese acute myeloid leukemia patients. Sci Rep. 2024,14;14(1):11064.
- Lee, Y.; Baughn, L.B.; Myers, C.L.; Sachs, Z. Machine learning analysis of gene expression reveals TP53 Mutant-like AML with wild type TP53 and poor prognosis. Blood Cancer J. 2024, 14, 1–6. [Google Scholar] [CrossRef]
- Alhajahjeh, A.; Nazha, A. Unlocking the Potential of Artificial Intelligence in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Curr. Hematol. Malign- Rep. 2023, 19, 9–17. [Google Scholar] [CrossRef]
- Didi, I.; Alliot, J.-M.; Dumas, P.-Y.; Vergez, F.; Tavitian, S.; Largeaud, L.; Bidet, A.; Rieu, J.-B.; Luquet, I.; Lechevalier, N.; et al. Artificial intelligence-based prediction models for acute myeloid leukemia using real-life data: a DATAML registry study. Leuk. Res. 2023, 136, 107437. [Google Scholar] [CrossRef] [PubMed]
- Park S, Kim TY, Cho BS, Kwag D, Lee JM, Kim M, Kim Y, Koo J, Raman A, Kim TK et al. Prognostic value of European LeukemiaNet 2022 criteria and genomic clusters using machine learning in older adults with acute myeloid leukemia. Haematologica. 2024,1;109(4):1095-1106.
- Auerbach, S.; Puka, B.; Golla, U.; Chachoua, I. Recent Advances towards the Understanding of Secondary Acute Myeloid Leukemia Progression. Life 2024, 14, 309. [Google Scholar] [CrossRef]
- Hall, T.; Gurbuxani, S.; Crispino, J.D. Malignant progression of pre-leukemic disorders. Blood J. 2024. [Google Scholar] [CrossRef] [PubMed]
- Niscola, P.; Gianfelici, V.; Giovannini, M.; Piccioni, D.; Mazzone, C.; de Fabritiis, P. Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms. Cancers 2024, 16, 1563. [Google Scholar] [CrossRef]
- Fabre, M.A.; Vassiliou, G.S. The lifelong natural history of clonal hematopoiesis and its links to myeloid neoplasia. Blood 2024, 143, 573–581. [Google Scholar] [CrossRef]
- Filipek-Gorzała, J.; Kwiecińska, P.; Szade, A.; Szade, K. The dark side of stemness – the role of hematopoietic stem cells in development of blood malignancies. Front. Oncol. 2024, 14, 1308709. [Google Scholar] [CrossRef]
- Mestrum, S.G.C.; Roanalis, B.Y.V.; de Wit, N.C.J.; Drent, R.J.M.; Boonen, B.T.; van Hemert, W.L.W.; Hopman, A.H.N.; Ramaekers, F.C.S.; Leers, M.P.G. MDS and AML show elevated fractions of CD34-positive blast cell populations with a high anti-apoptotic versus proliferation ratio. . 2024, 142, 107520. [Google Scholar] [CrossRef]
- Kim, N.; Hahn, S.; Choi, Y.J.; Cho, H.; Chung, H.; Jang, J.E.; Lyu, C.J.; Lee, S.-T.; Choi, J.R.; Cheong, J.-W.; et al. Comprehensive insights into AML relapse: genetic mutations, clonal evolution, and clinical outcomes. Cancer Cell Int. 2024, 24, 1–9. [Google Scholar] [CrossRef]
- Molica M, Mazzone C, Niscola P, de Fabritiis P. TP53 Mutations in Acute Myeloid Leukemia: Still a Daunting Challenge? Front Oncol. 2021, 8;10:610820.
- Zhao, Y.; Chen, W.; Yu, J.; Pei, S.; Zhang, Q.; Shi, J.; Huang, H.; Zhao, Y. TP53 in MDS and AML: Biological and clinical advances. Cancer Lett. 2024, 588, 216767. [Google Scholar] [CrossRef]
- Vegivinti, C.T.R.; Keesari, P.R.; Veeraballi, S.; Maia, C.M.P.M.; Mehta, A.K.; Lavu, R.R.; Thakur, R.K.; Tella, S.H.; Patel, R.; Kakumani, V.K.; et al. Role of innate immunological/inflammatory pathways in myelodysplastic syndromes and AML: a narrative review. Exp. Hematol. Oncol. 2023, 12, 1–12. [Google Scholar] [CrossRef]
- Bakhtiyari, M.; Liaghat, M.; Aziziyan, F.; Shapourian, H.; Yahyazadeh, S.; Alipour, M.; Shahveh, S.; Maleki-Sheikhabadi, F.; Halimi, H.; Forghaniesfidvajani, R.; et al. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun. Signal. 2023, 21, 1–38. [Google Scholar] [CrossRef]
- Hu Z, Yang Y, Li J, Hu Z. Genetic mutations and immune microenvironment: unveiling the connection to AML prognosis. Hematology. 2024,29(1):2346965.
- Chen, Y.; Qiu, X.; Liu, R. Comprehensive characterization of immunogenic cell death in acute myeloid leukemia revealing the association with prognosis and tumor immune microenvironment. BMC Med Genom. 2024, 17, 1–16. [Google Scholar] [CrossRef]
- Fan, C.; Yang, X.; Yan, L.; Shi, Z. Oxidative stress is two-sided in the treatment of acute myeloid leukemia. Cancer Med. 2024, 13, e6806. [Google Scholar] [CrossRef]
- Mishra, S.K.; Millman, S.E.; Zhang, L. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood 2023, 141, 1119–1135. [Google Scholar] [CrossRef]
- Shi, X.; Feng, M.; Nakada, D. Metabolic dependencies of acute myeloid leukemia stem cells. Int. J. Hematol. 2024, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Banella, C.; Catalano, G.; Travaglini, S.; Pelosi, E.; Ottone, T.; Zaza, A.; Guerrera, G.; Angelini, D.F.; Niscola, P.; Divona, M.; et al. Ascorbate Plus Buformin in AML: A Metabolic Targeted Treatment. Cancers 2022, 14, 2565. [Google Scholar] [CrossRef] [PubMed]
- Paudel, B.B.; Tan, S.-F.; Fox, T.E.; Ung, J.; Golla, U.; Shaw, J.J.P.; Dunton, W.; Lee, I.; Fares, W.A.; Patel, S.; et al. Acute myeloid leukemia stratifies as 2 clinically relevant sphingolipidomic subtypes. Blood Adv. 2024, 8, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Pino JC, Posso C, Joshi SK, Nestor M, Moon J, Hansen JR, Hutchinson-Bunch C, Gritsenko MA, Weitz KK, Watanabe-Smith K et al. Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia. Cell Rep Med. 2024,16;5(1):101359.
- Haouas, H. Angiogenesis and acute myeloid leukemia. Hematology 2013, 19, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, C.; Sun, Q.; Li, Y.; Zhou, C.; Sun, C. Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies. Front. Mol. Biosci. 2023, 10, 1275774. [Google Scholar] [CrossRef] [PubMed]
- Lambert M, Jambon S, Bouhlel MA, Depauw S, Vrevin J, Blanck S, Marot G, Figeac M, Preudhomme C, Quesnel B et al. Induction of AML cell differentiation using HOXA9/DNA binding inhibitors as a potential therapeutic option for HOXA9-dependent AML. Hemasphere. 2024,6;8(5): e77.
- Zhang, A.; Liu, W.; Guo, X.; Jia, H.; Wei, Y.; Can, C.; He, N.; Ji, C.; Ma, D. Genetic variations in DNA excision repair pathway contribute to the chemosensitivity and prognosis of acute myeloid leukemia. Clin. Chim. Acta 2024, 558, 117899. [Google Scholar] [CrossRef] [PubMed]
- Wysota, M.; Konopleva, M.; Mitchell, S. Novel Therapeutic Targets in Acute Myeloid Leukemia (AML). Curr. Oncol. Rep. 2024, 26, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K.; Sandhu, V.; Wong, M.H.; Iyer, P.; Bhatt, S. Therapeutic biomarkers in acute myeloid leukemia: functional and genomic approaches. Front. Oncol. 2024, 14, 1275251. [Google Scholar] [CrossRef]
- Alsouqi, A.; Geramita, E.; Im, A. Treatment of Acute Myeloid Leukemia in Older Adults. Cancers 2023, 15, 5409. [Google Scholar] [CrossRef]
- Choi, J.H.; Shukla, M.; Abdul-Hay, M. Acute Myeloid Leukemia Treatment in the Elderly: A Comprehensive Review of the Present and Future. Acta Haematol. 2023, 146, 431–457. [Google Scholar] [CrossRef]
- Roman Diaz JL, Vazquez Martinez M, Khimani F. New Approaches for the Treatment of AML beyond the 7+3 Regimen: Current Concepts and New Approaches. Cancers (Basel). 2024,5;16(3):677.
- Abaza, Y.; McMahon, C.; Garcia, J.S. Advancements and Challenges in the Treatment of AML. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e438662. [Google Scholar] [CrossRef]
- Bhansali, R.S.; Pratz, K.W.; Lai, C. Recent advances in targeted therapies in acute myeloid leukemia. J. Hematol. Oncol. 2023, 16, 1–27. [Google Scholar] [CrossRef]
- Zimmer, M.; Kadia, T. Approach to the Older Patient with Acute Myeloid Leukemia. Curr. Oncol. Rep. 2023, 25, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Medina, C.; Stuckey, R.; Bilbao-Sieyro, C.; Gómez-Casares, M.T. Biomarkers of Response to Venetoclax Therapy in Acute Myeloid Leukemia. Int. J. Mol. Sci. 2024, 25, 1421. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D. Toward an improved understanding of hypomethylating agent and venetoclax therapies. Am. J. Hematol. 2023, 99, 152–154. [Google Scholar] [CrossRef]
- Macečková, D.; Vaňková, L.; Holubová, M.; Jindra, P.; Klieber, R.; Jandová, E.; Pitule, P. Current knowledge about FLT3 gene mutations, exploring the isoforms, and protein importance in AML. Mol. Biol. Rep. 2024, 51, 1–11. [Google Scholar] [CrossRef]
- Kennedy, V.E.; Smith, C.C. FLT3 targeting in the modern era: from clonal selection to combination therapies. Int. J. Hematol. 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Grob, T.; Sanders, M.A.; Vonk, C.M.; Kavelaars, F.G.; Rijken, M.; Hanekamp, D.W.; Gradowska, P.L.; Cloos, J.; Fløisand, Y.; Kooy, M.v.M.; et al. Prognostic Value of FLT3-Internal Tandem Duplication Residual Disease in Acute Myeloid Leukemia. J. Clin. Oncol. 2023, 41, 756–765. [Google Scholar] [CrossRef]
- Fruchtman H, Avigan ZM, Waksal JA, Brennan N, Mascarenhas JO. Management of isocitrate dehydrogenase 1/2 mutated acute myeloid leukemia. Leukemia. 2024,38(5):927-935.
- Lachowiez, C.A.; DiNardo, C.D.; Loghavi, S. Molecularly Targeted Therapy in Acute Myeloid Leukemia: Current Treatment Landscape and Mechanisms of Response and Resistance. Cancers 2023, 15, 1617. [Google Scholar] [CrossRef] [PubMed]
- Bewersdorf, J.P.; Shimony, S.; Shallis, R.M.; Liu, Y.; Berton, G.; Schaefer, E.J.; Zeidan, A.M.; Goldberg, A.; Stein, E.; Marcucci, G.; et al. Combination therapy with hypomethylating agents and venetoclax versus intensive induction chemotherapy in IDH1- or IDH2-mutant newly diagnosed acute myeloid leukemia—A multicenter cohort study. Am. J. Hematol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Issa, G.C.; Zarka, J.; Sasaki, K.; Qiao, W.; Pak, D.; Ning, J.; Short, N.J.; Haddad, F.; Tang, Z.; Patel, K.P.; et al. Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer J. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Falini, B.; Martelli, M.P.; Brunetti, L.; Gjertsen, B.T.; Andresen, V. The NPM1 mutant defines AML irrespective of blast count. Am. J. Hematol. 2023, 98, E187–E189. [Google Scholar] [CrossRef]
- Falini, B.; Martelli, M.P.; Brunetti, L. Mutant NPM1: Nuclear export and the mechanism of leukemogenesis. Am. J. Hematol. 2023, 98, 550–552. [Google Scholar] [CrossRef] [PubMed]
- Candoni, A.; Coppola, G. A 2024 Update on Menin Inhibitors. A New Class of Target Agents against KMT2A-Rearranged and NPM1-Mutated Acute Myeloid Leukemia. Hematol. Rep. 2024, 16, 244–254. [Google Scholar] [CrossRef]
- Kühn, M.W.M.; Ganser, A. The Menin story in acute myeloid leukaemia—The road to success. Br. J. Haematol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Issa, G.C.; Aldoss, I.; DiPersio, J.; Cuglievan, B.; Stone, R.; Arellano, M.; Thirman, M.J.; Patel, M.R.; Dickens, D.S.; Shenoy, S.; et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature 2023, 615, 920–924. [Google Scholar] [CrossRef]
- Rasouli, M.; Blair, H.; Troester, S.; Szoltysek, K.; Cameron, R.; Ashtiani, M.; Krippner-Heidenreich, A.; Grebien, F.; McGeehan, G.; Zwaan, C.M.; et al. The MLL–Menin Interaction is a Therapeutic Vulnerability in NUP98-rearranged AML. HemaSphere 2023, 7, e935. [Google Scholar] [CrossRef]
- Heikamp EB, Henrich JA, Perner F, Wong EM, Hatton C, Wen Y, Barwe SP, Gopalakrishnapillai A, Xu H, Uckelmann HJ et al. The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML. Blood. 2022, 10;139(6):894-906.
- Othman, J.; Meggendorfer, M.; Tiacci, E.; Thiede, C.; Schlenk, R.F.; Dillon, R.; Stasik, S.; Venanzi, A.; Bertoli, S.; Delabesse, E.; et al. Overlapping features of therapy-related and de novo NPM1-mutated AML. Blood 2023, 141, 1846–1857. [Google Scholar] [CrossRef]
- Turkalj, S.; Radtke, F.A.; Vyas, P. An Overview of Targeted Therapies in Acute Myeloid Leukemia. HemaSphere 2023, 7, e914. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, E.; Castelli, G.; Testa, U. CD123 a Therapeutic Target for Acute Myeloid Leukemia and Blastic Plasmocytoid Dendritic Neoplasm. Int. J. Mol. Sci. 2023, 24, 2718. [Google Scholar] [CrossRef]
- Martino, G.; Cimino, G.; Caridi, M.; Perta, G.; Cardinali, V.; Sciabolacci, S.; Quintini, M.; Matteucci, C.; Venanzi, A.; Tiacci, E.; et al. One disease, two faces: clonally-related AML and MPDCP with skin involvement. Ann. Hematol. 2023, 102, 2969–2971. [Google Scholar] [CrossRef]
- Marra, A.; Akarca, A.U.; Martino, G.; Ramsay, A.; Ascani, S.; Perriello, V.M.; O’nions, J.; Wilson, A.J.; Gupta, R.; Childerhouse, A.; et al. CD47 expression in acute myeloid leukemia varies according to genotype. Haematologica 2023, 108, 3491–3495. [Google Scholar] [CrossRef]
- Lemos, T.; Merchant, A. The hedgehog pathway in hematopoiesis and hematological malignancy. Front. Oncol. 2022, 12, 960943. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.G.; Elias, L.; Stanchina, M.; Watts, J. The treatment of acute promyelocytic leukemia in 2023: Paradigm, advances, and future directions. Front. Oncol. 2023, 12, 1062524. [Google Scholar] [CrossRef]
- Macaron, W.; Sargsyan, Z.; Short, N.J. Hyperleukocytosis and leukostasis in acute and chronic leukemias. Leuk. Lymphoma 2022, 63, 1780–1791. [Google Scholar] [CrossRef] [PubMed]
- Lucas, F.; Hergott, C.B. Advances in Acute Myeloid Leukemia Classification, Prognostication and Monitoring by Flow Cytometry. Clin. Lab. Med. 2023, 43, 377–398. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.-M.; Lo, S.-C.; Lin, C.-C.; Lo, W.-J.; Chien, S.-Y.; Sun, T.-H.; Hsu, K.-C. Deep learning assists in acute leukemia detection and cell classification via flow cytometry using the acute leukemia orientation tube. Sci. Rep. 2024, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tong, X. Role of Measurable Residual Disease in Older Adult Acute Myeloid Leukemia. Clin. Interv. Aging 2023, ume 18, 921–931. [Google Scholar] [CrossRef]
- Tiong, I.S.; Loo, S. Targeting Measurable Residual Disease (MRD) in Acute Myeloid Leukemia (AML): Moving beyond Prognostication. Int. J. Mol. Sci. 2023, 24, 4790. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhu, G.; Zhong, H. Minimal residual disease monitoring in acute myeloid leukemia: Focus on MFC-MRD and treatment guidance for elderly patients. Eur. J. Haematol. 2024, 112, 870–878. [Google Scholar] [CrossRef]
- Pratz, K.W.; Jonas, B.A.; Pullarkat, V.; Recher, C.; Schuh, A.C.; Thirman, M.J.; Garcia, J.S.; DiNardo, C.D.; Vorobyev, V.; Fracchiolla, N.S.; et al. Measurable Residual Disease Response and Prognosis in Treatment-Naïve Acute Myeloid Leukemia With Venetoclax and Azacitidine. J. Clin. Oncol. 2021, 40, 855–865. [Google Scholar] [CrossRef]
- Niscola P, Gianfelici V, Giovannini M, Piccioni D, Mazzone C, Fabritiis P. Very long-term efficacy of venetoclax combined with hypomethylating agents in two AML elderly: is it the time for treatment discontinuation strategies? Ann Hematol. 2024,103(5):1787-1788.
- Garciaz, S.; Dumas, P.; Bertoli, S.; Sallman, D.A.; Decroocq, J.; Belhabri, A.; Orvain, C.; Requena, G.A.; Simand, C.; Laribi, K.; et al. Outcomes of acute myeloid leukemia patients who responded to venetoclax and azacitidine and stopped treatment. Am. J. Hematol. 2024. [Google Scholar] [CrossRef]
- Boscaro, E.; Urbino, I.; Catania, F.M.; Arrigo, G.; Secreto, C.; Olivi, M.; D’ardia, S.; Frairia, C.; Giai, V.; Freilone, R.; et al. Modern Risk Stratification of Acute Myeloid Leukemia in 2023: Integrating Established and Emerging Prognostic Factors. Cancers 2023, 15, 3512. [Google Scholar] [CrossRef] [PubMed]
- Song, G.-Y.; Kim, T.; Ahn, S.-Y.; Jung, S.-H.; Kim, M.; Yang, D.-H.; Lee, J.-J.; Kim, M.Y.; Cheong, J.-W.; Jung, C.W.; et al. Validation of the 2022 European LeukemiaNet risk stratification for acute myeloid leukemia. Sci. Rep. 2024, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.D.; Klepin, H.D. Geriatric Assessment in Acute Myeloid Leukemia. Acta Haematol. 2023, 147, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Barosi, G.; Venditti, A.; Angelucci, E.; Gobbi, M.; Pane, F.; Tosi, P.; Zinzani, P.; Tura, S. Consensus-based definition of unfitness to intensive and non-intensive chemotherapy in acute myeloid leukemia: a project of SIE, SIES and GITMO group on a new tool for therapy decision making. Leukemia 2013, 27, 997–999. [Google Scholar] [CrossRef] [PubMed]
- Apolito V, Arrigo G, Vasseur L, Olivi M, Perrone S, Giai V, Secreto C, Di Biase F, De Simone MC, Copia C et al. Validation of SIE/SIES/GITMO consensus criteria for unfitness to predict early mortality and survival in acute myeloid leukemia patients treated with hypomethylating agents and venetoclax. Br J Haematol.,2023,203(4): e98-e101.
- Bazinet, A.; Kantarjian, H.; Arani, N.; Popat, U.; Bataller, A.; Sasaki, K.; DiNardo, C.D.; Daver, N.; Yilmaz, M.; Abbas, H.A.; et al. Evolving trends and outcomes in older patients with acute myeloid leukemia including allogeneic stem cell transplantation. Am. J. Hematol. 2023, 98, 1383–1393. [Google Scholar] [CrossRef] [PubMed]
- Jen, W.; Kantarjian, H.; Kadia, T.M.; DiNardo, C.D.; Issa, G.C.; Short, N.J.; Yilmaz, M.; Borthakur, G.; Ravandi, F.; Daver, N.G. Combination therapy with novel agents for acute myeloid leukaemia: Insights into treatment of a heterogenous disease. Br. J. Haematol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Pratz KW, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Döhner H, Récher C, Fiedler W, Yamamoto K, Wang J et al. Long-term follow-up of VIALE-A: Venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia. Am J Hematol. 2024, 99(4):615-624.
- He, H.; Wen, X.; Zheng, H. Efficacy and safety of venetoclax-based combination therapy for previously untreated acute myeloid leukemia: a meta-analysis. Hematology 2024, 29, 2343604. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Borlenghi, E.; Zappasodi, P.; Lussana, F.; Bernardi, M.; Basilico, C.; Molteni, A.; Lotesoriere, I.; Turrini, M.; Frigeni, M.; et al. Adapting the Fitness Criteria for Non-Intensive Treatments in Older Patients with Acute Myeloid Leukemia to the Use of Venetoclax-Hypomethylating Agents Combination—Practical Considerations from the Real-Life Experience of the Hematologists of the Rete Ematologica Lombarda. Cancers 2024, 16, 386. [Google Scholar] [CrossRef]
- Molica, M.; Perrone, S.; Mazzone, C.; Niscola, P.; Cesini, L.; Abruzzese, E.; de Fabritiis, P. CD33 Expression and Gentuzumab Ozogamicin in Acute Myeloid Leukemia: Two Sides of the Same Coin. Cancers 2021, 13, 3214. [Google Scholar] [CrossRef]
- Lai, C.; Bhansali, R.S.; Kuo, E.J.; Mannis, G.; Lin, R.J. Older Adults With Newly Diagnosed AML: Hot Topics for the Practicing Clinician. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390018. [Google Scholar] [CrossRef]
- Bordeleau ME, Audemard É, Métois A, Theret L, Lisi V, Farah A, Spinella JF, Chagraoui J, Moujaber O, Aubert L et al. Immunotherapeutic targeting of surfaceome heterogeneity in AML. Cell Rep. 2024, 4;43(6):114260.
- Bernal, T.; Moreno, A.F.; de LaIglesia, A.; Benavente, C.; García-Noblejas, A.; Belmonte, D.G.; Riaza, R.; Salamero, O.; Foncillas, M.A.; Roldán, A.; et al. Clinical outcomes after CPX-351 in patients with high-risk acute myeloid leukemia: A comparison with a matched cohort from the Spanish PETHEMA registry. Cancer Med. 2023, 12, 14892–14901. [Google Scholar] [CrossRef] [PubMed]
- Heuser, M.; Fernandez, C.; Hauch, O.; Klibanov, O.M.; Chaudhary, T.; Rives, V. Therapies for acute myeloid leukemia in patients ineligible for standard induction chemotherapy: a systematic review. Futur. Oncol. 2023, 19, 789–810. [Google Scholar] [CrossRef] [PubMed]
- Sartor C, Brunetti L, Audisio E, Cignetti A, Zannoni L, Cristiano G, Nanni J, Ciruolo R, Zingarelli F, Ottaviani E et al. A. A venetoclax and azacitidine bridge-to-transplant strategy for NPM1-mutated acute myeloid leukaemia in molecular failure. Br J Haematol. 2023, 202(3):599-607.
- Saburi, M.; Sakata, M.; Maruyama, R.; Kodama, Y.; Takata, H.; Miyazaki, Y.; Kawano, K.; Wada, J.; Urabe, S.; Ohtsuka, E. Gilteritinib as Bridging and Posttransplant Maintenance for Relapsed Acute Myeloid Leukemia with FLT3-ITD Mutation Accompanied by Extramedullary Disease in Elderly. Case Rep. Hematol. 2023, 2023, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Senapati, J.; Kantarjian, H.M.; Bazinet, A.; Reville, P.; Short, N.J.; Daver, N.; Borthakur, G.; Bataller, A.; Jabbour, E.; DiNardo, C.; et al. Lower intensity therapy with cladribine/low dose cytarabine/venetoclax in older patients with acute myeloid leukemia compares favorably with intensive chemotherapy among patients undergoing allogeneic stem cell transplantation. Cancer 2024. [Google Scholar] [CrossRef] [PubMed]
- Molica, M.; Mazzone, C.; Niscola, P.; Carmosino, I.; Di Veroli, A.; De Gregoris, C.; Bonanni, F.; Perrone, S.; Cenfra, N.; Fianchi, L.; et al. Identification of Predictive Factors for Overall Survival and Response during Hypomethylating Treatment in Very Elderly (≥75 Years) Acute Myeloid Leukemia Patients: A Multicenter Real-Life Experience. Cancers 2022, 14, 4897. [Google Scholar] [CrossRef]
- Dinardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Niscola, P.; Mazzone, C.; Fratoni, S.; Ardu, N.R.; Cesini, L.; Giovannini, M.; Ottone, T.; Anemona, L.; Voso, M.T.; de Fabritiis, P. Acute Myeloid Leukemia with NPM1 Mutation and Disseminated Leukemia Cutis: Achievement of Molecular Complete Remission by Venetoclax/Azacitidine Combination in a Very Old Patient. Acta Haematol. 2023, 146, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Heidel, F.H.; Hellmann, A.; Fiedler, W.; Smith, B.D.; Robak, T.; Montesinos, P.; Pollyea, D.A.; DesJardins, P.; Ottmann, O.; et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 2018, 33, 379–389. [Google Scholar] [CrossRef]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.-P.; et al. Ivosidenib and Azacitidine in IDH1 -Mutated Acute Myeloid Leukemia. New Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; Loghavi, S.; Zeng, Z.; Tanaka, T.; Kim, Y.J.; Uryu, H.; Turkalj, S.; Jakobsen, N.A.; Luskin, M.R.; Duose, D.Y.; et al. A Phase Ib/II Study of Ivosidenib with Venetoclax ± Azacitidine in IDH1-Mutated Myeloid Malignancies. Blood Cancer Discov. 2023, 4, 276–293. [Google Scholar] [CrossRef]
- Cai SF, Huang Y, Lance JR, Mao HC, Dunbar AJ, McNulty SN, Druley T, Li Y, Baer MR, Stock W, et al. A study to assess the efficacy of enasidenib and risk-adapted addition of azacitidine in newly diagnosed IDH2-mutant AML. Blood Adv. 2024 Jan 23;8(2):429-440.
- Watts JM, Baer MR, Yang J, Prebet T, Lee S, Schiller GJ, Dinner SN, Pigneux A, Montesinos P, Wang ES et al. Olutasidenib alone or with azacitidine in IDH1-mutated acute myeloid leukaemia and myelodysplastic syndrome: phase 1 results of a phase 1/2 trial. Lancet Haematol. 2023, 10(1): e46-e58.
- Kim, N.; Hahn, S.; Choi, Y.J.; Cho, H.; Chung, H.; Jang, J.E.; Lyu, C.J.; Lee, S.-T.; Choi, J.R.; Cheong, J.-W.; et al. Comprehensive insights into AML relapse: genetic mutations, clonal evolution, and clinical outcomes. Cancer Cell Int. 2024, 24, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-S.; Wang, J.; Xu, M.-Z.; Wu, T.-M.; Huang, S.-M.; Cao, H.-Y.; Sun, A.-N.; Liu, S.-B.; Xue, S.-L. Rapid and Efficient Response to Gilteritinib and Venetoclax-Based Therapy in Two AML Patients with FLT3-ITD Mutation Unresponsive to Venetoclax Plus Azacitidine. OncoTargets Ther. 2022, ume 15, 159–164. [Google Scholar] [CrossRef]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.E.; Larson, R.A.; Podoltsev, N.A.; Strickland, S.; Wang, E.S.; Atallah, E.; Schiller, G.J.; Martinelli, G.; Neubauer, A.; Sierra, J.; et al. Follow-up of patients with R/R FLT3-mutation–positive AML treated with gilteritinib in the phase 3 ADMIRAL trial. Blood 2022, 139, 3366–3375. [Google Scholar] [CrossRef] [PubMed]
- Bocchia, M.; Carella, A.M.; Mulè, A.; Rizzo, L.; Turrini, M.; Abbenante, M.C.; Cairoli, R.; Calafiore, V.; Defina, M.; Gardellini, A.; et al. Therapeutic Management of Patients with FLT3+Acute Myeloid Leukemia: Case Reports and Focus on Gilteritinib Monotherapy. Pharmacogenomics Pers. Med. 2022, 15, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Bewersdorf JP, Shallis RM, Derkach A, Goldberg AD, Stein A, Stein EM, Marcucci G, Zeidan AM, Shimony S, DeAngelo DJ et al. Venetoclax-based salvage therapy in patients with relapsed/refractory acute myeloid leukemia previously treated with FLT3 or IDH1/2 inhibitors. Leuk Lymphoma. 2023, 64(1):188-196.
- Jen EY, Gao X, Li L, Zhuang L, Simpson NE, Aryal B, Wang R, Przepiorka D, Shen YL, Leong R et al. FDA Approval Summary: Tagraxofusp-erzs For Treatment of Blastic Plasmacytoid Dendritic Cell Neoplasm. Clin Cancer Res. 2020,1;26(3):532-536.
- Zanotta, S.; Galati, D.; De Filippi, R.; Pinto, A. Breakthrough in Blastic Plasmacytoid Dendritic Cell Neoplasm Cancer Therapy Owing to Precision Targeting of CD123. Int. J. Mol. Sci. 2024, 25, 1454. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Perl, A.E.; Maly, J.; Levis, M.; Ritchie, E.; Litzow, M.; McCloskey, J.; Smith, C.C.; Schiller, G.; Bradley, T.; et al. Venetoclax Plus Gilteritinib for FLT3-Mutated Relapsed/Refractory Acute Myeloid Leukemia. J. Clin. Oncol. 2022, 40, 4048–4059. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, S.; Watts, J. The future paradigm of HMA + VEN or targeted inhibitor approaches: sequencing or triplet combinations in AML therapy. Hematol. 2023, 2023, 192–197. [Google Scholar] [CrossRef]
- Short NJ, Daver N, Dinardo CD, Kadia T, Nasr LF, Macaron W, Yilmaz M, Borthakur G, Montalban-Bravo G, Garcia-Manero G et al. Azacitidine, Venetoclax, and Gilteritinib in Newly Diagnosed and Relapsed or Refractory FLT3-Mutated AML. J Clin Oncol. 2024, 1;42(13):1499-1508.
- Narayan, R.; Piérola, A.A.; Donnellan, W.B.; Yordi, A.M.; Abdul-Hay, M.; Platzbecker, U.; Subklewe, M.; Kadia, T.M.; Alonso-Domínguez, J.M.; McCloskey, J.; et al. First-in-human study of JNJ-67571244, a CD33 × CD3 bispecific antibody, in relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Clin. Transl. Sci. 2024, 17, e13742. [Google Scholar] [CrossRef]
- Gao, C.; Li, X.; Xu, Y.; Zhang, T.; Zhu, H.; Yao, D. Recent advances in CAR-T cell therapy for acute myeloid leukaemia. J. Cell. Mol. Med. 2024, 28, e18369. [Google Scholar] [CrossRef]
- Pereira-Vieira, J.; Weber, D.D.; Silva, S.; Barbosa-Matos, C.; Granja, S.; Reis, R.M.; Queirós, O.; Ko, Y.H.; Kofler, B.; Casal, M.; et al. Glucose Metabolism as a Potential Therapeutic Target in Cytarabine-Resistant Acute Myeloid Leukemia. Pharmaceutics 2024, 16, 442. [Google Scholar] [CrossRef] [PubMed]
- Uy GL, DeAngelo DJ, Lozier JN, Fisher DM, Jonas BA, Magnani JL, Becker PS, Lazarus HM, Winkler IG. Targeting hematologic malignancies by inhibiting E-selectin: A sweet spot for AML therapy? Blood Rev. 2024, 65:101184.
- Maslah, N.; Rety, S.; Bonnamy, M.; Aguinaga, L.; Huynh, T.; Parietti, V.; Giraudier, S.; Fenaux, P.; Cassinat, B. Niclosamide combined to Azacitidine to target TP53-mutated MDS/AML cells. Leukemia 2024, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Santini, V.; Stahl, M.; Sallman, D.A. TP53 Mutations in Acute Leukemias and Myelodysplastic Syndromes: Insights and Treatment Updates. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e432650. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.R.; Zhou, X.; Reeder-Hayes, K.; Jensen, C.E.; Islam, J.; Loh, K.P.; Gupta, A.; Basch, E.; Bennett, A.V.; Bridges, J.F.P.; et al. Home Time Among Older Adults With Acute Myeloid Leukemia Following Chemotherapy. JAMA Oncol. 2024. [Google Scholar] [CrossRef]
- de Leeuw DC, Ossenkoppele GJ, Janssen JJWM. Older Patients with Acute Myeloid Leukemia Deserve Individualized Treatment. Curr Oncol Rep. 2022, 24(11):1387-1400.
| Blast threshold | WHO-5 | ICC | Blast threshold |
| 20% | AMLs with DGA | APL with t (15;17) (q24.1; q21.2)/PML: RARA. APL with others RARA rearrangement | 10% |
| APL with PML: RARA fusion gene. | |||
| AML with RUNX1:RUNX1T1 fusion gene. | AML with t (8/21) (q22; q22.1) / RUNX1:RUNX1T1 fusion gene. | ||
| AML with CBFB: MYH11 fusion gene. | AML with inv (16) (p13.1; q22) or t (16;16) (p13.1; q22)/CBFB: MYH11. | ||
| AML with KMT2A rearrangements. | AML with t (9;11) (p21.3; q23.3)/ MLLT3:KTM2A or other KMT2A rearrangements. | ||
| AML with DEK: NUP214 fusion gene. | AML with t (6;9) (p22.3; q34.1)/ DEK: NUP214. | ||
| AML with MECOM rearrangements | AML with inv (3) (q21.3q;26.2) or t (3;3) (q21.3; q26.2)/GATA: MECOM (EV1) or other MECOM rearrangements | ||
| AML with other rare translocations (NUP98; RBM15; MRTF1, DEK: NUP214) | |||
| 20% | AML with BCR: ABL1 fusion gene | AML with t (9;22) (q34.1; q11.2) / BCR: ABL1 | 20% |
| No cut-off. | AML with NPM1 mutation. | 10% | |
| 20% | AML with CEPA mutation. | AML with bZIP CEBPA in-frame mutation. | 20% |
| Not classified | AML with TP53 mutation. | 20% | |
| 20% | AML with MDS-related genetic abnormalities | AML with MDS-related genetic abnormalities (ASXL1; BCOR, EZH2; RUNX1; SF3B1; SRSF2; STAG2; U2AF1, ZRSR2). AML with MDS-related cytogenetic alterations. | 20% |
| 20% | AMLs defined by differentiation | AML NOS | 20% |
| Table 2 | |||
| Myeloid sarcoma | |||
| AML subtype | Diagnostic criteria |
| AML with minimal differentiation. | Cytochemistry: MPO and SBB negative blasts (<3%). |
| MFC: expression of myeloid antigens (two or more), such as CD13, CD33, and CD117. | |
| AML without maturation. | Morphology: <10% maturing myeloid progenitors of the BM nucleated cells. |
| Cytochemistry: > 3% blasts positive for MPO or SBB and negative for NSE. | |
| MFC: expression of myeloid antigens (two or more), such as MPO, CD13, CD33, and CD117. | |
| AML with maturation. | Morphology: >10% maturing myeloid progenitors and < 20% of the monocytic lineage cells of the BM nucleated cells. |
| Cytochemistry: > 3% blasts positive for MPO or SBB. | |
| MFC: expression of myeloid antigens (two or more), such as MPO, CD13, CD33, and CD117. | |
| Acute basophilic leukemia. | Morphology: blasts and mature/immature basophils. |
| Cytochemistry. Basophils: metachromasia on toluidine blue staining. Blasts: negative for MPO, SBB, and NSA. | |
| MFC: negative CD117 (to exclude mast cell leukemia). | |
| Acute myelomonocytic leukemia. | Morphology: > 20% monocytes or their precursors and > 20% maturing granulocytic cells. |
| Cytochemistry and/or MFC: < 3% of MPO-positive blasts. | |
| Acute monocytic leukemia. | Morphology: > 80% of monocytes and/or their precursors (monoblasts and/or promonocytes); < 20% of maturing granulocytic cells. |
| MFC/cytochemistry: expression of monocytic antigens (two or more), such as CD11c, CD14, CD36, and CD64, on blasts and promonocytes or their NSE positivity. | |
| Acute erythroid leukemia. | Morphology: erythroid predominance in the BM (> 80% of BM cellularity); > 30% of immature erythroid (proerythroblasts). |
| Acute megakaryoblastic leukemia. | MFC: expression of one or more of platelet GP: CD41(GP IIb), CD61 (GP IIIa), or CD42b (GP Ib). |
| Therapeutic mechanisms and biological targets | Therapeutic agent | Indications | |
| Antiapoptotic by inhibition of BCL2 overexpression | Venetovlax | ND AML in patients > 75 years old or with comorbidities in combination with HMA or LODAC | |
| FLT3 | FLT-3 ITD FLT-3 TKD |
Midostaurin, Quizartinib |
Frontline, in combination with ICT |
| Gilteritinib | R/R setting | ||
| Sorafenib | Maintenance following consolidation | ||
| IDH1 | IDH1 | Ivosidenib | ND AML in patients > 75 years old or with comorbidities; R/R setting |
| Olutasidenib | R/R setting | ||
| IDH2 | IDH2 | Enasidenib | R/R setting |
| Inhibition of Hedgehog pathway | Glasdegib | Adults older than 75 years who have comorbidities. | |
| ICT with liposomal compounds in s-AML and t-AML | CPX-351 | As induction ICT for ND s-AML and t-AML | |
| Anti-CD33 monoclonal antibodies | GO | During induction, ICT for CD33-positive AML or as a single agent in the R/R setting. | |
| Targeting CD123 membrane receptor, Cell death via disruption of intracellular protein synthesis by CD123 binding and internalization of the drug. | Tagraxofusp (anti-CD123 conjugate with toxin). | Treatment of BPDCN | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
