Submitted:
22 June 2024
Posted:
24 June 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. Plant Material
2.1.2. Fungal Strains
2.2. Methods
2.2.1. Extraction of the Essential Oil
2.2.2. GC-MS Analysis of Essential Oils from Flower Buds and Leaves of S. aromaticum
2.2.3. Antifungal Activity
2.3. Antioxidant Activity
2.3.1. 1,1-. Diphenyl-2-Picryl Hydrazyl (DPPH) Radical Scavenging Assay
2.3.2. ABTS Radical Scavenging Assay
2.3.3. Ferric Reducing Antioxidant Power Assay (FRAP)
2.3.4. Statistical Analysis
3. Results
3.1.1. Yields of Extraction
3.1.2. Chemical Composition of the Essential Oils
3.1.3. Antifungal Activity
3.1.4. Antioxidant activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The World Health Organization (WHO), 2024. Infectious diseases. Available online: https://www.emro.who.int/health-topics/infectious-diseases/index.html (accessed on 30 April 2024).
- The world Health Organization (WHO), 2014. “Rapport sur les maladies infectieuses et Stratégie pour la médecine traditionnelle pour 2014-2023, Organisation Mondiale de la Santé: Genève.” 2014. P.1-72.
- Zhang, Z.; Bills, G.F.; An, Z. Advances in the treatment of invasive fungal disease. PLoS Pathog. 2023, 19, e1011322. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W. Global incidence and mortality of severe fungal disease - Author’s reply. Lancet Infect Dis. 2024, 24, e269. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, R.; Govender, N.P.; Jordan, A.; Loyse, A.; Shroufi, A.; Denning, D.W.; Meya, D.B.; Chiller, T.M.; Boulware, D.R. The global burden of HIV-associated cryptococcal infection in adults in 2020: A modelling analysis. Lancet Infect Dis. 2022, 22, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Azie, N.; Neofytos, D.; Pfaller, M.; Meier-Kriesche, H.U.; Quan, S.P.; Horn, D. The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: Update 2012. Diagn Microbiol Infect Dis. 2012, 73, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Montagna, M.T.; Caggiano, G.; Lovero, G.; De Giglio, O.; Coretti, C.; Cuna, T.; Iatta, R.; Giglio, M.; Dalfino, L.; Bruno, F.; Puntillo, F. Epidemiology of invasive fungal infections in the intensive care unit: Results of a multicenter Italian survey (AURORA Project). Infection 2013, 41, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 2014, 20, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Komalapriya, C.; Kaloriti, D.; Tillmann, A.T.; Yin, Z.; Herrero-de-Dios, C.; Jacobsen, M.D.; Belmonte, R.C.; Cameron, G.; Haynes, K.; Grebogi, C.; de Moura, A.P.; Gow, N.A.; Thiel, M.; Quinn, J.; Brown, A.J.; Romano, M.C. Integrative model of oxidative stress adaptation in the fungal pathogen Candida albicans. PLoS ONE. 2015, 10, e0137750. [Google Scholar] [CrossRef] [PubMed]
- Dantas, A. da S.; Day, A.; Ikeh, M.; Kos, I.; Achan, B.; Quinn, J. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules. 2015, 5, 142–165. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, D.; Nobile, C.J.; Dong, D.; Ni, Q.; Su, T.; Jiang, C.; Peng, Y. Systematic identification and characterization of five transcription factors mediating the oxidative stress response in Candida albicans. Microb Pathog. 2024, 187, 106507. [Google Scholar] [CrossRef] [PubMed]
- Ghenciu, L.A.; Faur, A.C.; Bolintineanu, S.L.; Salavat, M.C.; Maghiari, A.L. Recent advances in diagnosis and treatment approaches in fungal keratitis: A narrative review. Microorganisms 2024, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, T.; Constantinou, M.; Jhanji, V.; Vajpayee, R.B. Factors Affecting Treatment Outcomes With Voriconazole in Cases with Fungal Keratitis. Cornea 2013, 32, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Akwongo, B.; Katuura, E.; Nsubuga, A.M.; Tugume, P.; Andama, M.; Anywar, G.; Namaganda, M.; Asimwe, S.; Kakudidi, E.K. Ethnobotanical study of medicinal plants utilized in the management of candidiasis in Northern Uganda. Trop Med Health 2022, 50, 78. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.S.; Beshbishy, A.A.; Tayebwa, D.S.; Shaheen, M.H.; Yokoyama, N.; Igarashi, I. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick. Borne Dis. 2019, 10, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, D.; Kumar, K.S.; Yadav, A.; Srivastava, S.; Paswan, S.; Dutta, A.S. Recent trends in Indian traditional herbs Syzygium aromaticum and its health benefits. J Pharmaco Phytochem. 2012, 1, 13–23. [Google Scholar]
- Rana, I.S.; Rana, A.S.; Rajak, R.C. Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L.) by extraction, purification and analysis of its main component eugenol. Braz J Microbiol. 2011, 42, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Gonzalez, A.E.; Palou, E.; Lopez-Malo, A. Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against grey mold (Botrytis cinerea) in strawberries. Innov Food Sci Emerg Technol. 2015, 32, 181–185. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.AF.; Al-Askar, A.A. In vitro anticandidal potency of Syzygium aromaticum (clove) extracts against vaginal candidiasis. BMC Complement Med Ther 2020, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.A.-F.; Yassin, M.T.; Al–Askar, A.A.; Al-Otibi, F.O. Phytochemical analysis, antiproliferative and antifungal activities of different Syzygium aromaticum solvent extracts. Journal of King Saud University-Science. 2022, 35, 1–7. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.; Chong, C.M.; Chong, C.W.; Abushelaibi, A.; Lim, S.E.; Lai, K.S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [PubMed]
- Arbab, I.A.; Abdul, A.B.; Aspollah, M.; Abdullah, R.; Abdelwahab, S.I.; Ibrahim, M.Y.; Ali, L.Z. A review of traditional uses, phytochemical and pharmacological aspects of selected members of Clausena genus (Rutaceae). J Med Plant Res. 2012, 6, 5107–5118. [Google Scholar] [CrossRef]
- da Silva, L.Y.S.; Paulo, C.L.R.; Moura, T.F.; Alves, D.S.; Pessoa, R.T.; Araújo, I.M.; de Morais Oliveira-Tintino, C.D.; Tintino, S.R.; Nonato, C.F.A.; da Costa, J.G.M.; et al. Antibacterial activity of the essential oil of Piper tuberculatum Jacq. Fruits against multidrug-resistant strains: Inhibition of efflux pumps and β-Lactamase. Plants 2023, 12, 2377. [Google Scholar] [CrossRef] [PubMed]
- CA-SFM « Comité de l’antibiogramme de la societé francaise de microbiologie » (CA-SFM) Recommendations of 2010.
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of product of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Kanoun, K. « Contribution à l’étude phytochimique et activité antioxydante des extraits de Myrtus communis L. (Rayhane) de la région de Tlemcen (Honaine). Mémoire de Master en Biologie. » « Université Aboubekr belkaid tlemcen. » 2011, 30-48p.
- Ladoh Didong, S.D.; Nyegue, M.A.; Djembissi Talla, R.P.; Lenta Ndjakou, B.; Mpondo, E.; Yinyang, J.; Wansi, J.D. Activité antioxydante des extraits méthanolique de Phragmentera capitata sur Citrus sinensis. J. Appl. Biosci. 2014, 84, 7636–7643. [Google Scholar] [CrossRef]
- Desmares, C.; Delerme, C.; Laurent, A. « Recommandations relatives aux critères de qualité des huiles essentielles ». 2008, 18.
- Houari, A.D.E. “Effet prophylactique de l’administration d’un extrait de Syzygium aromaticum (clou de girofle) chez les rats wistar en croissance intoxique au plomb et au manganèse. Etude biochimique, histologique et neurocomportementale.” “Thèse de Doctorat en biologie. Université d’Oran Ahmed ben Bella”. 2015. https://dspace.univ-oran1.dz/handle/123456789/2218.
- Atmani, H.; Baira, K. “Mise en évidence de l’activité antibactérienne et antifongique et l’étude des caractères Physico-chimique de l’huile essentielle du clou de girofle Syzygium aromaticum” L. 2015, 88p.
- Alitonou, G.; Tchobo, F.; Avlessi, F.; Yehouenou, B.; Yedomonhan, P.; Koudoro, A.; Menut, C.; Sohounhloue, D.K. Chemical and biological investigations of Syzygium aromaticum L. essential oil from Benin. Int. J. Biol. Chem. Sci. 2012, 6, 1360–1367. [Google Scholar] [CrossRef]
- Mekemzeu, F.P. “Activités antioxydante et antifongique de Theobroma cacao (beurre de cacao) et de l’huile essentielle de Eugenia caryophyllata (clous de girofle) vis-à-vis de : Microsporum gypseum, Trichophyton rubrum et Trichophyton tonsurans.” Dissertation submitted for the Award of Master in Biochemistry at University of Douala, Cameroon. 2015, 20–26.
- Hellal, Z. “Contribution à l’étude des propriétés antibactériennes et antioxydantes de certaines huiles essentielles extraites des Citrus: Application sur la sardine (Sardina pilchardus). Mémoire de magistère, Faculté des Sciences Biologiques et des Sciences Agronomiques, Université Mouloud Mammeri de Tizi-Ouzou.” 2011, 78p.
- Gomez Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Razafimamonjison, G.; Jahiel, M.; Duclos, T.; Ramanoelina, P.; Fawbush, F. Bud, leaf and stem essential oil composition of Syzygium aromaticum from Madagascar, Indonesia and Zanzibar. Int. J. Basic Appl. Sci. 2014, 3, 224–233. [Google Scholar] [CrossRef]
- Didehdar, M.; Chegini, Z.; Shariati, A. Eugenol: A novel therapeutic agent for the inhibition of Candida species infection. Front Pharmacol. 2022, 13, 872127. [Google Scholar] [CrossRef] [PubMed]
- Olea, A.F.; Bravo, A.; Martínez, R.; Thomas, M.; Sedan, C.; Espinoza, L.; Zambrano, E.; Carvajal, D.; Silva-Moreno, E.; Carrasco, H. Antifungal activity of eugenol derivatives against Botrytis cinerea. Molecules 2019, 24, 1239. [Google Scholar] [CrossRef] [PubMed]
- Aliabasi, S.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. 2023. Eugenol effectively inhibits Trichophyton rubrum growth via affecting ergosterol synthesis, keratinase activity, and SUB3 gene expression. J Herb Med 2023, 42. [Google Scholar] [CrossRef]
- He, M.; Du, M.; Fan, M.; Bian, Z. In vitro activity of eugenol against Candida albicans biofilms. Mycopathologia. 2007, 163, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Selestino Neta, M.C.; Vittorazzi, C.; Guimarães, A.C.; Martins, J.D.; Fronza, M.; Endringer, D.C.; Scherer, R. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharm Biol. 2017, 55, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Antonio Carlos, N.S.; Selene, M.d.M.; Elnatan, B.d.S.; Maria Rose, J.R.A.; Hélcio, S.d.S.; Carolina, S.d.P.C.; Halisson, A.d.S.; Raquel, O.d.S.F. Antifungal and antioxidant activities of Vernonia chalybaea Mart. ex DC. essential oil and their major constituent β-caryophyllene. Braz Arch Biol Technol 2020, 63. [Google Scholar] [CrossRef]
- Pibiri, M.C. “Assainissement microbiologique de l’air et des systèmes de ventilation au moyen d’huiles essentielles”. “Thèse de Doctorat.” “Polytechniques Fédérale de Lausanne”. 2005, 177–180.
- Khan, M.S.; Ahmad, I. 2012. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 2012, 67, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Konuk, H.B.; Ergüden, B. Phenolic -OH group is crucial for the antifungal activity of terpenoids via disruption of cell membrane integrity. Folia Microbiol (Praha) 2020, 65, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 1995, 59, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Chami, N.; Bennis, S.; Chami, F.; Aboussekhra, A.; Remmal, A. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol Immunol 2005, 20, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Al-Aamri, M.S.; Al-Abousi, N.M.; Al-Jabri, S.S.; Alam, T.; Khan, S.A. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. J Taibah Univ Med Sci. 2018, 13, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Nagababu, E.; Rifkind, J.M.; Boindala, S.; Nakka, L. Assessment of antioxidant activity of eugenol in vitro and in vivo. Methods Mol Biol. 2010, 610, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Antioxidant activity of eugenol: A structure-activity relationship study. J Med Food 2011, 14, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Candido Júnior, J.R.; Romeiro, L.A.S.; Marinho, E.S.; Monteiro, N.K.V.; de Lima-Neto, P. Antioxidant activity of eugenol and its acetyl and nitroderivatives: The role of quinone intermediates-a DFT approach of DPPH test. J Mol Model 2022, 28, 133. [Google Scholar] [CrossRef] [PubMed]
- Orlo, E.; Nerín, C.; Lavorgna, M.; Wrona, M.; Russo, C.; Stanzione, M.; Nugnes, R.; Isidori, M. Antioxidant activity of coatings containing eugenol for flexible aluminium foils to preserve food shelf-life. Food Packaging Shelf Life 2023, 39, 1–9. [Google Scholar] [CrossRef]
- Shahina, Z.; Ndlovu, E.; Persaud, O.; Sultana, T.; Dahms, T.E.S. Candida albicans reactive oxygen species (ROS)-dependent lethality and ROS-independent hyphal and biofilm inhibition by eugenol and citral. Microbiol Spectr. 2022, 10, e0318322. [Google Scholar] [CrossRef] [PubMed]
- Imlay, J.A. . Pathways of oxidative damage. Annu Rev Microbiol 2003, 57, 395–418. [Google Scholar] [CrossRef] [PubMed]
- Basaranoglu, S.T.; Cekic, S.; Kirhan, E.; Dirican, M.; Kilic, S.S. 2021. Oxidative stress in common variable immunodeficiency. Eur J Inflamm 2021, 19, 1–8. [Google Scholar] [CrossRef]
- Harbige, L.S.; Gershwin, M.E. Antioxidant Nutrition and Immunity. In: Gershwin, M.E., Nestel, P., Keen, C.L. (eds) Handbook of Nutrition and Immunity. Humana Press, Totowa, 2004, NJ. [CrossRef]






| Syzygium aromaticum | ||||||
| KI | Compounds |
Flower buds (%) |
Leaves (%) |
|||
| Oxygenated monoterpenes | ||||||
| 92.72 | 90.54 | |||||
| 989 | Eugenol | 87.08 | 90.54 | |||
| 995 | Phenol-2-methoxy-3-(2-propenyl) | 1.19 | - | |||
| 1047 | Acetyleugenol | 4.45 | - | |||
| Hydrogenated sesquiterpenes | ||||||
| 7.28 | 9.46 | |||||
| 1012 | β-Caryophyllene | 6.40 | 8.42 | |||
| 1023 | Humulene | 0.88 | 1.04 | |||
| (EOFB) | (EOL) | Fluconazole | Ketoconazole | |||||
| Fungal strains | MIC (ppm) | MFC(ppm) | MFC/MIC | MIC (ppm) | MFC (ppm) | MFC/MIC | MIC(ppm) | MIC (ppm) |
| C. albicans | 200 | 400 | 2 | 200 | 400 | 2 | 800 | 25 |
| C. glabrata | 200 | 400 | 2 | 200 | 400 | 2 | 0 | 50 |
| C. tropicalis | 200 | 200 | 1 | 200 | 400 | 2 | 1600 | 50 |
| C. krusei | 200 | 400 | 2 | 200 | 400 | 2 | 0 | 100 |
| Cryptococcus neoformans | 50 | 100 | 2 | 50 | 100 | 2 | 100 | 25 |
| Concentrations (ppm) | 1.56 | 3.13 | 6.25 | 12.5 | 25 | 50 |
| EOs/ BHT | Percentages of free radicals scavenged by the EOs (%) | |||||
| EOFB | 18.54 ± 0,96a | 25.56 ± 1.19b | 32.41 ± 0.63c | 42.03 ± 0.20d | 49.27 ± 1.18e | 67.37 ± 0.31f |
| EOL | 24.29 ± 1.04a | 38.05 ± 1.42b | 57.95 ± 0.43c | 74.56 ± 0.94d | 81.80 ± 0.84e | 83.86 ± 0.94f |
| BHT | 8.04 ± 0.26a | 16.73 ± 0.30b | 25.10 ± 0.45c | 35.12 ± 0.91d | 38.99 ± 0.89e | 52.98 ± 0.79f |
| Essential oils/BHT | SC50 (g/l) | CE50 (g /mol) | AP(mol/g) |
| EOFB | 22.5x10-3 | 2.25×103 | 4.44×10-4 |
| EOL | 4.5x10-3 | 4.5×102 | 2.22×10-3 |
| BHT | 44.510-3 | 4.45×103 | 2.24×10-4 |
| Concentrations (ppm) | 1.56 | 3.13 | 6.25 | 12.5 | 25 | 50 |
| ABTS test | Percentages of inhibition (%) | |||||
| EOFB | 27.18 ± 1.70a | 41.91 ± 0.38b | 68.27 ± 1.49c | 84.36 ± 1.39d | 85.88 ± 0.71d | 87.32 ± 0.21e |
| EOL | 4.18 ± 0.43a | 7.65 ± 0.62b | 13.10 ± 1.04c | 27.98 ± 1.25d | 69.89 ± 1.94e | 85.08 ± 0.21f |
| Concentrations (ppm) | 31.25 | 62.25 | 125 | 250 | 500 | 1000 |
| BHT | 21.83 ± 0.58a | 35.50 ± 1.27b | 56.03 ± 1.36c | 77.16 ± 1.31d | 87.37 ± 1.35e | 88.39 ± 0.06e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
