Submitted:
13 July 2024
Posted:
15 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Study Area
3. Hydrological and Geological Setting
4. Materials and Methods
4.1. Preparation of Thematic Maps
4.1.1. Lineaments Extractions
4.1.2. Drainage Density Analysis
4.1.3. Slope and Land Use Analysis
4.1.4. Lithology and Soil Analysis
4.1.5. Rainfall Map Preparation
4.1.6. Delineation of Groundwater Potential Zones
4.2. Analytic Hierarchy Process (AHP)
4.3. Validation of the Analysis
| Themes | Feature/ Classes |
Category of Groundwater Potential Storage | Rank assigned | Weight % |
|---|---|---|---|---|
| Land use/land cover (LULC) | Dense forest Semi dense forest Agricultural land Buildup area Road Barren land Waterbody |
Very High Very High High Low Very low Moderate High |
5 5 4 2 1 3 4 |
6.9 |
| Lineament density (km2) | 0-1.3 1.3-2.5 2.5-3.7 3.7-5.0 5.0-6.5 |
Very low Low Moderate High Very high |
1 2 3 4 5 |
5.1 |
| Drainage density (km2) | 0-2.0 2.0-4.0 4.0-6.0 6.0-8.0 8.0-10.0 |
Very High High Moderate Low Very Low |
5 4 3 2 1 |
8.9 |
| Slope (degrees) | 0-10 10-20 20-30 30-40 40-60 |
Very high High Moderate Low Very low |
5 4 3 2 1 |
13.4 |
| Geology | Gneiss Schist Phyllite Garnetiferous schist Quartzite |
Low Low Moderate Low Very low |
1 1 3 2 1 |
24.4 |
| Soil | Leptosol Luvisol Chernozems |
Very High Moderate Moderate |
5 3 3 |
3.9 |
| Rainfall (mm) | 956-959 960-962 963-966 967-969 970-973 |
Very low Low Moderate High Very high |
1 2 3 4 5 |
37.4 |
5. Results
5.1. Soil Map
5.2. Lithology Map
5.3. Lineament Density Map
5.4. Drainage Density Map
5.5. Land Use and Land Cover (LULC)
5.6. Slope Map
5.7. Rainfall Map
5.8. Validation of Groundwater Potential Zones
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelkareem, M., Abdalla, F., Alshehri, F., & Pande, C. B. (2023). Mapping Groundwater Prospective Zones Using Remote Sensing and Geographical Information System Techniques in Wadi Fatima, Western Saudi Arabia. Sustainability, 15(21), 15629. [CrossRef]
- Adiat, K. A. N., Nawawi, M. N. M., & Abdullah, K. (2012). Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool–a case of predicting potential zones of sustainable groundwater resources. Journal of Hydrology, 440, 75-89. [CrossRef]
- Adnan, N. A., & Atkinson, P. M. (2011). Exploring the impact of climate and land use changes on streamflow trends in a monsoon catchment. International journal of climatology, 31(6), 815-831. [CrossRef]
- Agarwal A, Bhatnagar NK, Nema RK, et al. (2012) Rainfall dependence of springs in the Midwestern Himalayan hills of Uttarakhand. Mountain Research and Development 32(4): 446-455. [CrossRef]
- Patel, A., Rai, S. P., Akpataku, K. V., Puthiyottil, N., Singh, A. K., Pant, N., .. & Noble, J. (2023). Hydrogeochemical characterization of groundwater in the shallow aquifer system of Middle Ganga Basin, India. Groundwater for Sustainable Development, 21, 100934.
- Ali, S., Fakhri, Y., Golbini, M., Thakur, S. K., Alinejad, A., Parseh, I., .. & Bhattacharya, P. (2019). Concentration of fluoride in groundwater of India: a systematic review, meta-analysis and risk assessment. Groundwater for Sustainable Development, 9, 100224.
- Al-Shabeeb, A. R., Hamdan, I., Al-Fugara, A. K., Al-Adamat, R., & Alrawashdeh, M. (2023). Spatial mapping of water spring potential using four data mining models. Water Supply, 23(5), 1743-1759. [CrossRef]
- Chapagain, P. S., Ghimire, M., & Shrestha, S. (2019). Status of natural springs in the Melamchi region of the Nepal Himalayas in the context of climate change. Environment, Development and Sustainability, 21, 263-280. [CrossRef]
- Chowdary, V. M., Chakraborthy, D., Jeyaram, A., Murthy, Y. K., Sharma, J. R., & Dadhwal, V. K. (2013). Multi-criteria decision making approach for watershed prioritization using analytic hierarchy process technique and GIS. Water resources management, 27, 3555-3571. [CrossRef]
- Saranya, T., & Saravanan, S. (2020). Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2), 1105-1122. [CrossRef]
- Clark, C. D., & Wilson, C. (1994). Spatial analysis of lineaments. Computers & Geosciences, 20(7-8), 1237-1258. [CrossRef]
- Danert, K., & Theis, S. (2017). Professional Management of Water Well Drilling Projects and Programmes Online Course 2018; Report for Course Participants. UNICEF-Skat Foundation Collaboration, 2019.
- Dinesh Kumar PK, Gopinath G, Seralathan P (2007) Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest cost of India.Int J Remote Sens 28(24):5583–5601. [CrossRef]
- Ettazarini, S. (2007). Groundwater potentiality index: a strategically conceived tool for water research in fractured aquifers. Environmental Geology, 52(3), 477-487. [CrossRef]
- Foster, S. (2022). The key role for groundwater in urban water-supply security. Journal of Water and Climate Change, 13(10), 3566-3577. [CrossRef]
- Ganapuram, S., Kumar, G. V., Krishna, I. M., Kahya, E., & Demirel, M. C. (2009). Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Advances in Engineering Software, 40(7), 506-518. [CrossRef]
- Ghimire, M., Chapagain, P. S., & Shrestha, S. (2019). Mapping of groundwater spring potential zone using geospatial techniques in the Central Nepal Himalayas: a case example of Melamchi–Larke area. Journal of Earth System Science, 128(2), 26. [CrossRef]
- Gnanachandrasamy, G., Zhou, Y., Bagyaraj, M., Venkatramanan, S., Ramkumar, T., & Wang, S. (2018). Remote sensing and GIS based groundwater potential zone mapping in Ariyalur District, Tamil Nadu. Journal of the Geological Society of India, 92, 484-490. [CrossRef]
- Guru, B., Seshan, K., & Bera, S. (2017). Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. Journal of King Saud University-Science, 29(3), 333-347. [CrossRef]
- Heim, A. (1939). Central Himalaya. Denkschr. Schweiz. Naturforsch. Ges., 73, 1-245.
- Hobbs WH (1904). Lineaments of the Atlantic border region. Geol. Soc. Am. Bull. 15:483-506. [CrossRef]
- Hoque, S. F., Hope, R., Arif, S. T., Akhter, T., Naz, M., & Salehin, M. (2019). A social-ecological analysis of drinking water risks in coastal Bangladesh. Science of The Total Environment, 679, 23–34. [CrossRef]
- Islam, F., Tariq, A., Guluzade, R., Zhao, N., Shah, S. U., Ullah, M., .. & Aslam, M. (2023). Comparative analysis of GIS and RS based models for delineation of groundwater potential zone mapping. Geomatics, Natural Hazards and Risk, 14(1), 2216852. [CrossRef]
- Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18(7), 1713-1728. [CrossRef]
- Kebede, S. (2012). Groundwater in Ethiopia: features, numbers and opportunities. Springer Science & Business Media.
- Khosravi, K., Panahi, M., & Tien Bui, D. (2018). Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrology and Earth System Sciences, 22(9), 4771-4792. [CrossRef]
- Kumar T, Gautam AK, Kumar T (2014) Appraising the accuracy of GIS multi-criteria decision making technique for delineation of groundwater potential zone. Water Resour Manage 28:4449–4466. [CrossRef]
- Kumar, R., Dwivedi, S.B., Gaur, S., 2021. A comparative study of machine learning and Fuzzy-AHP technique to groundwater potential mapping in the data-scarce region. Comput. Geosci. 155. [CrossRef]
- Kumar, V., & Sen, S. (2018). Evaluation of spring discharge dynamics using recession curve analysis: a case study in data-scarce region, Lesser Himalayas, India. Sustainable Water Resources Management, 4, 539-557. [CrossRef]
- Li, P., Qian, H., & Wu, J. (2018). Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China. International Journal of Water Resources Development, 34(3), 337-353. [CrossRef]
- Machiwal, D., Jha, M. K., & Mal, B. C. (2011). Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water resources management, 25, 1359-1386. [CrossRef]
- Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience frontiers, 3(2), 189-196. [CrossRef]
- Mahamuni, K., & Kulkarni, H. (2012). Groundwater resources and spring hydrogeology in South Sikkim, with special reference to climate change, climate change in Sikkim patterns, impacts and initiatives. Information and Public Relations Department, Government of Sikkim.
- Maupin, Molly A. Summary of estimated water use in the United States in 2015. No. 2018-3035. US Geological Survey, 2018.
- Merh, S. S., & Vashi, N. M. (1965). Structure and metamorphism of the Ranikhet area of Almora District, Uttar Pradesh. Indian Mineralogist, 6, 55-66.
- Moghaddam, D. D., Rezaei, M., Pourghasemi, H. R., Pourtaghie, Z. S., & Pradhan, B. (2015). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences, 8, 913-929. [CrossRef]
- Muheeb MA, Rasheed AJ (2009) Evaluation of aquifers vulnerability to contamination in the Yarmouk river watershed, Jordan, based on DRASTIC method. Arab J Geosci 3:273–282.
- Muralitharan, J., & Palanivel, K. (2015). Groundwater targeting using remote sensing, geographical information system and analytical hierarchy process method in hard rock aquifer system, Karur district, Tamil Nadu, India. Earth Science Informatics, 8, 827-842. [CrossRef]
- Nag S 2005 Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Baghmundi block in Purulia district, West Bengal; J. Indian Soc. Remote Sens. 33(4) 521–529. [CrossRef]
- Upadhyay, R. K., Tripathi, G., Đurin, B., Šamanović, S., Cetl, V., Kishore, N., .. & Bhardwaj, V. (2023). Groundwater potential zone mapping in the Ghaggar River Basin, North-West India, using integrated remote sensing and GIS techniques. Water, 15(5), 961. [CrossRef]
- Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics, 8, 171-186. [CrossRef]
- Nampak, H., Pradhan, B., & Abd Manap, M. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283-300. [CrossRef]
- National Groundwater Association. NGWA Groundwater Facts. Available online: https://www.ngwa.org/what-is-groundwater/About-groundwater/groundwater-facts (accessed on 3 February 2024).
- Paul, S., & Roy, D. (2023). Geospatial modeling and analysis of groundwater stress-prone areas using GIS-based TOPSIS, VIKOR, and EDAS techniques in Murshidabad district, India. Modeling Earth Systems and Environment, 10(1), 121-141. [CrossRef]
- Pradhan, B. (2009). Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Central European Journal of Geosciences, 1, 120-129. [CrossRef]
- Prasad Jha, M. K., Chowdhury, A., Chowdary, V. M., & Peiffer, S. (2007). Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water resources management, 21, 427-467. [CrossRef]
- Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental geology, 55, 467-475. [CrossRef]
- Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8, 7059-7071. [CrossRef]
- Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena, 137, 360-372. [CrossRef]
- Rai, S. P. (1993) Hydrological and geomorphological studies of the Sya hidevi-Binsar Area, District Almora. Unpublished Ph D thesis, Kumaun University, Nainital, p 160.
- Rai, S. P., Valdiya, K. S., & Rawat, J. S. (1998). Management of water resources: Spring sanctuaries. The Khulgad Project: An Experiment in Sustainable Development, Gyanodaya Prakashan, Nainital, India, 41-60.
- Rajesh, J., Pande, C.B., Kadam, S.A., Gorantiwar, S.D., Shinde, M.G., 2021. Exploration of groundwater potential zones using analytical hierarchical process (AHP) approach in the Godavari River basin of Maharashtra in India. Appl Water Sci 11, 182. [CrossRef]
- Rana, S., & Gupta, V. (2009). Watershed management in the indian himalayan region: issues and challenges. Proceedings of the World Environmental and Water Resources Congress; 2009. [CrossRef]
- Ranjan, P., Pandey, P. K., & Pandey, V. (2023). Groundwater spring potential zonation using AHP and fuzzy-AHP in Eastern Himalayan region: Papum Pare district, Arunachal Pradesh, India. Environmental Science and Pollution Research, 31(7), 10317-10333. [CrossRef]
- Rao, N. S., Gugulothu, S., & Das, R. (2022). Deciphering artificial groundwater recharge suitability zones in the agricultural area of a river basin in Andhra Pradesh, India using geospatial techniques and analytical hierarchical process method. Catena, 212, 106085. [CrossRef]
- Rawat, J. S. (2010). Database management system for Khulgad WatershedKhulgad micro watershed, Kumaun Lesser Himalaya, Uttarakhand, India. Current Science, 98(10), 1340–1348.
- Rawat, J. S., & Rawat, G. (2020). Dying and dwindling of non-glacial fed rivers under climate change (a case study from the upper kosi watershed, central Himalaya, India). Geoecology of Landscape Dynamics, 53-74. [CrossRef]
- Rawat, S. S., Jose, P. G., Rai, S. P., & Hakhoo, N. (2018). spring sanctuary development: sustaining water security in the himalayan region in changing climate.
- Shahid S, Nath SK, Ray J (2000) Groundwater potential modeling in softrock using a GIS. Int J Remote Sens 21:1919–1924.
- Shekhar, S., & Pandey, A. C. (2015). Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto International, 30(4), 402-421. [CrossRef]
- Sathiyamoorthy, M., Masilamani, U. S., Chadee, A. A., Golla, S. D., Aldagheiri, M., Sihag, P., .. & Martin, H. (2023). Sustainability of groundwater potential zones in coastal areas of Cuddalore District, Tamil Nadu, South India using integrated approach of remote sensing, GIS and AHP techniques. Sustainability, 15(6), 5339. [CrossRef]
- Srivastava, P. K., & Bhattacharya, A. K. (2006). Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. International Journal of Remote Sensing, 27(20), 4599-4620. [CrossRef]
- Tambe, S., Arrawatia, M. L., Bhutia, N. T., & Swaroop, B. (2011). Rapid, cost-effective and high-resolution assessment of climate-related vulnerability of rural communities of Sikkim Himalaya, India. Current Science, 101(2), 165–173.
- Tariq, A., Ali, S., Basit, I., Jamil, A., Farmonov, N., Khorrami, B., .. & Hatamleh, W. A. (2023). Terrestrial and groundwater storage characteristics and their quantification in the Chitral (Pakistan) and Kabul (Afghanistan) river basins using GRACE/GRACE-FO satellite data. Groundwater for Sustainable Development, 23, 100990. [CrossRef]
- Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., .. & Treidel, H. (2013). Ground water and climate change. Nature climate change, 3(4), 322-329. [CrossRef]
- U.N., 2023. The Sustainable Development Goals Report special edition. United Nations .
- Valdiya, K. S. (1980). The two intracrustal boundary thrusts of the Himalaya. Tectonophysics, 66(4), 323-348. [CrossRef]
- Waikar, M. L., & Nilawar, A. P. (2014). Identification of groundwater potential zone using remote sensing and GIS technique. International Journal of Innovative Research in Science, Engineering and Technology, 3(5), 12163-12174.
- Wei, A., Li, D., Bai, X., Wang, R., Fu, X., & Yu, J. (2022). Application of machine learning to groundwater spring potential mapping using averaging, bagging, and boosting techniques. Water Supply, 22(8), 6882-6894. [CrossRef]
- Yousefi, S., Sadhasivam, N., Pourghasemi, H. R., Nazarlou, H. G., Golkar, F., Tavangar, S., & Santosh, M. (2020). Groundwater spring potential assessment using new ensemble data mining techniques. Measurement, 157, 107652. [CrossRef]
- Aayog, N. I. T. I. "Inventory and revival of springs in the Himalayas for water security." Dept. of Science and Technology, Government of India, New Delhi (2017).
- Hinton, J. C. (1996) "GIS and remote sensing integration for environmental applications." International Journal of Geographical Information Systems 10.7 877-890. [CrossRef]
- Zektser, I. S., & Everett, L. G. (2004). Groundwater resources of the world and their use.
- Zhao, R., Fan, C., Arabameri, A., Santosh, M., Mohammad, L., & Mondal, I. (2024). Groundwater spring potential mapping: Assessment the contribution of hydrogeological factors. Advances in Space Research. [CrossRef]
- Mahato R, Bushi D, Nimasow G, Nimasow OD, Joshi RC (2022) AHP and GIS-based delineation of groundwater potential of Papum Pare District of Arunachal Pradesh, India. J Geol Soc India 98(1):102–112. [CrossRef]
- Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York, p 287.
- Goitsemang T, Das DM, Raul SK, Subudhi CR, Panigrahi B (2020) Assessment of groundwater potential in the Kalahandi District of Odisha (India) using remote sensing, geographic information system and analytical hierarchy process. J Indian Soc Remote Sens 48(12):1739–1753.
- Nijesh, P., Akpataku, K. V., Patel, A., Rai, P., & Rai, S. P. (2021). Spatial variability of hydrochemical characteristics and appraisal of water quality in stressed phreatic aquifer of Upper Ganga Plain, Uttar Pradesh, India. Environmental Earth Sciences, 80, 1-15. [CrossRef]
- Singh, A., Kumar, R., Kumar, R., Pippal, P. S., Sharma, P., & Sharma, A. (2024). Delineation of groundwater potential zone using geospatial tools and analytical hierarchy process (AHP) in the State of Uttarakhand, India. Advances in Space Research, 73(6), 2939-2954. [CrossRef]
- Roy, S. K., Hasan, M. M., Mondal, I., Akhter, J., Roy, S. K., Talukder, S., .. & Karuppannan, S. (2024). Empowered machine learning algorithm to identify sustainable groundwater potential zone map in Jashore District, Bangladesh. Groundwater for Sustainable Development, 25, 101168. [CrossRef]
- Zerouali, B., Bailek, N., Islam, A. R. M. T., Katipoğlu, O. M., Ayek, A. A. E., Santos, C. A. G., .. & Elbeltagi, A. (2024). Enhancing Groundwater Potential Zone Mapping with a Hybrid Analytical Method: The Case of semiarid basin. Groundwater for Sustainable Development, 101261. [CrossRef]
- Raj, S., Rawat, K. S., Singh, S. K., & Mishra, A. K. (2024). Groundwater potential zones identification and validation in Peninsular India. Geology, Ecology, and Landscapes, 8(1), 86-100.
- Kom, K. P., Gurugnanam, B., & Sunitha, V. (2024). Delineation of groundwater potential zones using GIS and AHP techniques in Coimbatore district, South India. International Journal of Energy and Water Resources, 8(1), 85-109. [CrossRef]
- Pawar, U., Suppawimut, W., & Rathnayake, U. (2024). Mapping of groundwater potential zones in a drought prone Marathwada Region using frequency ratio and statistical index methods, India. Results in Engineering, 22, 101994. [CrossRef]
- Patel, A., Rai, S. P., Puthiyottil, N., Singh, A. K., Noble, J., Singh, R., .. & Akpataku, K. V. (2024). Refining aquifer heterogeneity and understanding groundwater recharge sources in an intensively exploited agrarian dominated region of the Ganga Plain. Geoscience Frontiers, 15(4), 101808. [CrossRef]
- Doke AB, Zolekar RB, Patel H, Das S (2021) Geospatial mapping of groundwater potential zones using multicriteria decision-making AHP approach in a hardrock basaltic terrain in India. Ecol Indic127:1–16. [CrossRef]
- Ghimire M, Chapagain PS, Shrestha S (2019) Mapping of groundwater spring potential zone using geospatial techniques in the Central Nepal Himalayas: a case example of Melamchi-Larke area. J Earth Syst Sci 128(2):1–24. [CrossRef]












| Factors | Rain | GLG | SL | DD | LULC | LD | Soil |
|---|---|---|---|---|---|---|---|
| Rain | 1 | 3.0 | 3.0 | 5.0 | 5.0 | 5.0 | 7.0 |
| GLG | 0.3 | 1 | 3.0 | 3.0 | 5.0 | 5.0 | 5.0 |
| SL | 0.3 | 0.3 | 1 | 1.0 | 3.0 | 3.0 | 5.0 |
| DD | 0.2 | 0.3 | 1.0 | 1 | 1.0 | 2.0 | 3.0 |
| LULC | 0.2 | 0.2 | 0.3 | 1.0 | 1 | 1.0 | 3.0 |
| LD | 0.2 | 0.2 | 0.3 | 0.5 | 1.0 | 1 | 1.0 |
| Soil | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 1.0 | 1 |
| Factors | Rain | GLG | SL | DD | LULC | LD | Soil | Criteria Sum | Criteria weight | Weight% |
|---|---|---|---|---|---|---|---|---|---|---|
| Rain | 0.42 | 0.57 | 0.34 | 0.42 | 0.31 | 0.28 | 0.28 | 2.62 | 0.4 | 37.4 |
| GLG | 0.14 | 0.19 | 0.34 | 0.25 | 0.31 | 0.28 | 0.20 | 1.71 | 0.2 | 24.4 |
| SL | 0.14 | 0.06 | 0.11 | 0.08 | 0.18 | 0.17 | 0.20 | 0.94 | 0.1 | 13.4 |
| DD | 0.08 | 0.06 | 0.11 | 0.08 | 0.06 | 0.11 | 0.12 | 0.62 | 0.1 | 8.9 |
| LULC | 0.08 | 0.04 | 0.04 | 0.08 | 0.06 | 0.06 | 0.12 | 0.48 | 0.1 | 6.9 |
| LD | 0.08 | 0.04 | 0.04 | 0.04 | 0.06 | 0.06 | 0.04 | 0.36 | 0.1 | 5.1 |
| Soil | 0.06 | 0.04 | 0.02 | 0.03 | 0.02 | 0.06 | 0.04 | 0.27 | 0.0 | 3.9 |
| Factors | Rain | GLG | SL | DD | LULC | LD | Soil | Weight sum | Criteria weight | λ | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Rain | 0.37 | 0.73 | 0.41 | 0.45 | 0.34 | 0.26 | 0.26 | 2.82 | 0.37 | 7.6 | |
| GLG | 0.12 | 0.24 | 0.41 | 0.27 | 0.34 | 0.26 | 0.19 | 1.83 | 0.24 | 7.5 | |
| SL | 0.12 | 0.08 | 0.14 | 0.09 | 0.21 | 0.15 | 0.19 | 0.98 | 0.14 | 7.2 | |
| DD | 0.07 | 0.08 | 0.14 | 0.09 | 0.07 | 0.1 | 0.11 | 0.66 | 0.09 | 7.3 | |
| LULC | 0.07 | 0.05 | 0.05 | 0.09 | 0.07 | 0.05 | 0.11 | 0.49 | 0.07 | 7.2 | |
| LD | 0.07 | 0.05 | 0.05 | 0.05 | 0.07 | 0.05 | 0.04 | 0.38 | 0.05 | 7.3 | |
| Soil | 0.05 | 0.05 | 0.03 | 0.03 | 0.02 | 0.05 | 0.04 | 0.27 | 0.04 | 7.2 |
| N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| RI | 0 | 0 | 0.58 | 0.89 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
| Potential Zones | Area (Km2) | %Area |
|---|---|---|
| Poor | 0.36 | 1.1 |
| Fair | 9.18 | 27.8 |
| Good | 7.69 | 23.3 |
| Very Good | 8.78 | 26.6 |
| Excellent | 7.01 | 21.2 |
| Themes | Potentiality for Groundwater Storage |
Assigned Rank | % Area |
|---|---|---|---|
| Land use and land cover | Very High (Dense forest) | 5 | 45.1 |
| Very High (Forested land) | 5 | 6.5 | |
| High (Agricultural land) | 4 | 19.0 | |
| Low (Buildup area) | 2 | 10.0 | |
| Very low (Road) | 1 | 1.4 | |
| Moderate (Barren land) | 3 | 16.3 | |
| High (Water body) | 4 | 1.7 | |
| Lineament density (km/km2) | Very low | 1 | 26.3 |
| Low | 2 | 17.9 | |
| Moderate | 3 | 30.1 | |
| High | 4 | 16.8 | |
| Very high | 5 | 8.8 | |
| Drainage density (km/km2) | Very High | 5 | 25.0 |
| High | 4 | 26.2 | |
| Moderate | 3 | 23.3 | |
| Low | 2 | 19.2 | |
| Very Low | 1 | 6.3 | |
| Slope (degrees) | Very high | 5 | 13.9 |
| High | 4 | 29.0 | |
| Moderate | 3 | 30.3 | |
| Low | 2 | 20.0 | |
| Very low | 1 | 6.9 | |
| Geology | Moderate (Augen gneiss) | 3 | 16.4 |
| Low (Schist) | 2 | 0.9 | |
| Moderate (Daili phyllite) | 3 | 8.1 | |
| Low(Garnetiferous schist) | 2 | 28.2 | |
| Very low (Quartzite) | 1 | 27.4 | |
| Very low (Devolikhan quartzite) | 1 | 6.2 | |
| Kathpuria schist | 2 | 10.3 | |
| Soil | Very High (Leptosol) | 5 | 52.8 |
| Moderate (Luvisol) | 3 | 0.5 | |
| Moderate (Chernozems) | 3 | 46.5 | |
| Rainfall (mm) | Very low | 1 | 25.2 |
| Low | 2 | 14.9 | |
| Moderate | 3 | 17.4 | |
| High | 4 | 18.4 | |
| Very high | 5 | 24.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
