Submitted:
11 June 2024
Posted:
11 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Using Ionic Liquids in the Recovery of Rare Earth Elements
2.1. Leaching
- leaching at 85º C (IL:aqueous phase mass ratio 1:1, 1 M NaCl, solid/total liquid ratio 15 mg/g, 3 hours),
- cooling at 25º C,
- removal of CFA residue and addition of ascorbic acid plus betaine (25 mM ascorbic acid/g aqueous phase and 10 mg betaine/g aqueous phase),
- heating at 85º C during 1.5 hours,
- cooling at 25º C and keep at 4º C overnight, and separation of aqueous and IL (containing REEs) phases,
- addition of 1.5 M HCl and heating at 85º C (IL:HCl mass ratio of 1, 1.5 hours),
- cooling at 25º C and keep at 4º C overnight, followed by separation of an acidic phase containing the REEs and an IL regenerated phase. In all the steps, the different aqueous phases were located above the IL due to the higher density of this phase. The recovery of total REEs varies in the 44%-66% range, with Sc, Y, Nd, Sm, Gd, Dy, and Yb extracted preferably into the IL phase, with recovery efficiencies in the 53.8%-66.2% range, while the recovery of other REEs greatly depends on the different CFA sample used in the investigation.
2.2. Electrodeposition
2.3. Ion Exchange Resins
2.4. Membranes
2.5. Liquid-Liquid Extraction
3. Using Ionic Liquids and Rare Earth Elements in the Development of Advanced Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haxel, G. Rare earth elements: critical resources for high technology. 2002, 87. US Department of the Interior. US Geological Survey.
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521. [CrossRef]
- Pernak, J.; Rogoza, J.; Mirska, I. Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides. Eur. J. Med. Chem. 2001, 36, 313–320. [CrossRef]
- Pernak, J.; Kalewska, J.; Ksyci ´nska, H.; Cybulski, J. Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group. Eur. J. Med. Chem. 2001, 36, 899–907. [CrossRef]
- Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D. Ionic liquids are not always green: Hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 2003, 5, 361–363. DOI: DOI: 10.1039/b304400a.
- Heym, F.; Etzold, B.J.M.; Kern, C.; Jess, A. Analysis of evaporation and thermal decomposition of ionic liquids by thermogravimetrical analysis at ambient pressure and high vacuum. Green Chem. 2011, 13, 1453–1466. [CrossRef]
- Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. [CrossRef]
- Martinez, J.; Zuniga-Hinojosa, M.A.; Macias-Salinas, R. Modeling the water solubility in imidazolium-based ionic liquids using the Peng-Robinson equation of state. Ind. Eng. Chem. Res. 2019, 58, 4341–4353. [CrossRef]
- Gonçalves, A.R.P.; Paredes, X.; Cristino, A.F.; Santos, F.J.V.; Queirós, C.S.G.P. Ionic liquids—A review of their toxicity to living organisms. Int. J. Mol. Sci. 2021, 22, 5612. [CrossRef]
- Arrachart, G.; Couturier, J.; Dourdain, S.; Levard, C.; Peller-rostaing, S. Recovery of rare earth elements (REEs) using ionic solvents. Processes 2021, 9, 1202. [CrossRef]
- Kaim, V.; Rintala, J.; He, C. Selective recovery of rare earth elements from e-waste via ionic liquid extraction: a review. Sep. Purif. Technol. 2023, 306, 122699. [CrossRef]
- [12 Deblonde, G.J.-P.; Chagnes, A.; Cote, G. Recent advances in the chemistry of hydrometallurgical methods. Sep. Purif. Rev. 2023, 52, 221–241. [CrossRef]
- Alguacil, F.J.; Robla, J.I. Recent work on the recovery of rare earths using ionic liquids and deep eutectic solvents. Minerals 2023, 13, 1288. [CrossRef]
- Delogu, M.; Berzi, L.; Dattilo, C.A.; Del Pero, F. Definition and sustainability assessment of recycling processes for bonded rare earths permanent magnets used on wind generators. Adv. Mater. Proc. Technol. 2023, 9, 608–654. [CrossRef]
- Do-Thanh, C.-L.; Luo, H.; Dai, S. A perspective on task-specific ionic liquids for the separation of rare earth elements. RSC Sust. 2023, 1, 1168-1176. [CrossRef]
- Kaim, V.; Rintala, J.; He, C. Selective recovery of rare earth elements from e-waste via ionic liquid extraction: a review. Sep. Purif. Technol. 2023, 306, 122699. [CrossRef]
- Salehi, H.; Maroufi, S.; Mofarah, S.S.; Nekouei, R.K.; Sahajwalla, V. Recovery of rare earth metals from Ni-MH batteries: a comprehensive review. Renew. Sust. Energy Rev. 2023, 178, 113248. [CrossRef]
- Xiao, F.; Hu, W.; Zhao, J.; Zhu, H. Technologies of recycling REEs and iron from NdFeB scrap. Metals 2023, 13, 779. [CrossRef]
- Kaczorowska, M.A. The latest achievements of liquid membranes for rare earth elements recovery from aqueous solutions—a mini review. Membranes 2023, 13, 839. [CrossRef]
- Binnemans, K.; Jones, P.T. Ionic Liquids and deep-eutectic solvents in extractive metallurgy: mismatch between academic research and industrial applicability. J. Sustain. Metall. 2023, 9, 423-438. [CrossRef]
- Usma, C.L.; Dourdain, S.; Arrachart, G.; Pellet-Rostaing, S. Solvent extraction of rare earth elements from nitrate media in DMDO-HEMA/ionic liquid systems: performance and mechanism studies. RSC Adv. 2021, 11, 31197. DOI: RSCAdv.2021.11.31197.
- Du, C.; Ma, S.; Xie, M.; Yang, F, ; Zhao, Z.; Chen, Y.; Ma, Y. Recovery of high-value rare earth elements from waste NdFeB by the water-soluble ammonium salt [Hbet]Cl. Sep. Purif. Technol. 2023, 308, 122946. [CrossRef]
- Gómez, M.; Grimes, S.; Bin-Jamaludin, D.; Fowler, G. Novel closed-loop recovery of light rare earth elements, as their oxides, from end-of-life mobile phone speakers using [Hbet][Tf2N]. J. Environ. Chem. Eng. 2023, 11, 111001. [CrossRef]
- Liu, T.; Hower, J.C.; Huang, C.-H. Recovery of rare earth elements from coal fly ash with betainium bis(trifluoromethylsulfonyl)imide: different ash types and broad elemental survey. Minerals 2023, 13, 952. [CrossRef]
- Panias, D.; Balomenos, E. Extraction of Less Common Metals (REEs and Sc) from Greek Bauxite Residue. Min. Metals Mater. Series 2024, 73–85. [CrossRef]
- Sengupta, A.; Goyal, P.; Prava Mantry, S.; Sundararajan, M.; Kumar Verma, P.; Kumar Mohapatra, P. Remarkably high Separation of neodymium from praseodymium by selective dissolution from their oxide mixture using an ionic liquid containing a β-diketone. Chem.-Eur. J. 2024, 30, e202303923. [CrossRef]
- Dobhal, G.S.; Pham, L.N.; Tawfik, S.A.; Pozo-Gonzalo, C.; Walsh, T.R. Exploring coordination of neodymium in ionic liquid: insights to guide sustainable recovery. ACS Sust. Chem. Eng. 2023, 11, 14614-1462. [CrossRef]
- Molodkina, E.B.; Ehrenburg, M.R.; Filippov, V.L.; Shapagin, A.V.; Rudnev, A.V. Electrochemical codeposition of La and Fe-group metals in a dicyanamide ionic liquid. J. Electroanal. Chem. 2023, 950, 117854. [CrossRef]
- Yadav, A.G.; Gujar, R.B.; Valsala, T.P.; Sathe, D.B.; Bhatt, R.B.; Mohapatra, P.K. A comparative study on the uptake of lanthanides from acidic feeds using extraction chromatography resins containing N,N,N’,N’-tetra-n-alkyl diglycolamides with varying alkyl chain lengths in an ionic liquid. J. Chromatogr. A 2023, 1687, 463683. [CrossRef]
- Carretas, J.M.; Ferreira, L.M.; Santos, P.M. P.; Gomes, S.S.; Araújo, M.F.; Maria, L.; Leal, J.P. Tentative approaches for extraction of lanthanides from wastewater with low metal concentration. Membranes 2023, 13, 467. DOI: 10.3390/membranes13050467.
- Dai, Y.; Li, Y.; Hu, W.a; Tao, Q.; Liu, Z. Functionalized ionic liquids based on DODGA with enhanced Eu(III)/U(VI) separation efficiency in highly acidic environment. J. Mol. Liq. 2023, 387, 122557. [CrossRef]
- Emam, Sh.Sh; El-Hefny N.E. Bi-functional ionic liquid based on Aliquat 336 and Cyanex 572 for effective separation of Nd(III) and Ni(II) from chloride solution and recover Nd2O3 from waste Nd-Ni-Fe magnets. Hydrometallurgy 2023, 219, 106064. [CrossRef]
- Gao, Y.; Su, J.; Bie, C.; Dong, Y.; Zeng, Z.; Sun, X. Thermodynamic data of separating yttrium from heavy rare earths via a phenoxypropionate-based ionic liquid. J. Chem. Eng. Data 2023, 68, 1411-1418. [CrossRef]
- Gradwohl, A.; Windisch, J.; Weissensteiner, M.; Keppler, B.K.; Kandioller, W.; Jirsa, F. Extraction of rare earth elements from aqueous solutions using the ionic liquid trihexyltetradecylphosphonium 3-hydroxy-2-naphthoate. RSC Adv. 2023, 13, 24899-24908. DOI: 10.1039/d3ra03967f.
- Kozhevnikova, A.V.; Zinov'eva, I.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. Complex extraction of rare earth elements from nitrate solutions with a tri-n-octylamine-octanoic acid bifunctional ionic liquid. J. Mol. Liq. 2023, 390, 123073. [CrossRef]
- Panda, P.; Mishra, S. Effect of process variables on the extraction of Y(III) from nitrate medium utilizing ionic liquid [THAH]+[DEHP]-. Mater. Today: Proc. 2023. [CrossRef]
- Pati, P.; Mishra, S.; Prusty, S. Evaluation of extraction behaviour of techno metal neodymium from nitrate feed using tri-n-hexylamine di-2-ethyl hexyl phosphate as extractant. Mater. Today: Proc. 2023. [CrossRef]
- Pheasey, C.; Angeli, P. Intensified Nd extraction in small channels for NdFeB magnet recycling. Sep. Purif. Technol. 2023, 311, 122958. [CrossRef]
- Rout, A.; Ramanathan, N. Extraction and selective separation of ZrIV from LnIII/AnIII using an undiluted phosphonium ionic liquid. ChemPlusChem 2023, e202300406. [CrossRef]
- Saha, A..; Kumari, K.; Sharma, S.; Kumar, R.; Sahu, M.; Dumpala, R.M.R.; Shafeeq Pp, M.; Deb, S.B.; Saxena, M.K. Selective extraction of thorium(IV) from uranium and rare earth elements using tetraphenylethane-1,2-diylbis(phosphoramidate. Inorg. Chem. 2023, 62, 9391-9399. [CrossRef]
- Shuai, G.; Zhao, Y.; Ma, Y. Non-saponifiable extraction of Nd with P204-[P4446][NTf2] ionic liquid system. Xiyou Jinshu/Chinese J. Rare Metals 2023, 47, 390-398. [CrossRef]
- Sert, Ş.; Yusan, S. Extraction and separation of thorium from cerium and lanthanum by Cyphos® IL 101 ionic liquid. J. Radioanal. Nucl. Chem. 2023, 332, 2601-2611. [CrossRef]
- Su, H.; Ni, S.; Liu, C.; Sun, X.Q. Purification and enrichment of rare earth in ion-adsorbed rare earth ores using fatty acid based separation processes. Miner. Eng. 2023, 201, 108232. DOI: 10.1016/j.mineng.2023.108232MM.
- Tran, T.T.; Song, S.J.; Oh, C.G.; Lee, M.S. Solvent extraction of Terbium(III) from chloride solution using organophosphorus extractant, its mixture and ionic liquid in the presence of organic acids. Physicochem. Probl. Miner. Process. 2023, 59, 162714. [CrossRef]
- Xing, L.; Ma, X.; Hu, K.; Yuan, H.; Wei, J.; Gao, H.; Nie, Y. Selective separation of Nd from La/Ce/Pr using phosphate-based ionic liquids: solvent extraction studies and density functional theory. Miner. Eng. 2023, 191, 107967. [CrossRef]
- Xing, L.; Yuan, H.; Ma, X.; Gao, H.; Nie, Y. Experimental and theoretical studies on selective separation of Nd from La/Ce/Pr using [Omim][DOP]. Ind. Eng. Chem. Res. 2023, 62, 13943-13952. [CrossRef]
- Zeng, Z.; Gao, Y..; Ni, S.; Zhang, S.; Fu, X.; Sun, X. Investigation on the recovery of thorium and rare earth from radioactive waste residue by functionalized ionic liquids. Sep. Purif. Technol. 2023, 317, 123901. [CrossRef]
- Zhang, F.; Wu, Q.; Sha, L.-T.; Li, Y.; Li, X.-X.; Wang, Z.-Y.; Fu, X.; Huang, Q.-G.; Liu, B.; Yan, Z.-Y. Selective extraction of thorium to directly form self-assembly solid from HNO3 solution. J. Ind. Eng. Chem. 2023, 123, 278-286. DOI: 10.1016/j.jiec.2023.03.044.
- Zhang, N.; Li, F.; Hu, K.; Wang, Z.; Xue, H.; Fan, B.; Zhang, X.; Dong, H. Selective separation Al3+/Gd3+ by designed carboxylic acid-ionic liquid with low acid and alkali consumption. Sep. Purif. Technol. 2023, 318, 123853. [CrossRef]
- Ritcey, G.; Ashbrook, A.W. Solvent Extraction. Part I. Elsevier (Amsterdam), p. 194. 1984. ISBN: 0-444-41770-2.
- Atanassova, M.; Kukeva, R. Improvement of Gd(III) solvent extraction by 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one: non-aqueous systems. Separations 2023, 10, 286. [CrossRef]
- Atanassova, M.; Kukeva, R.; Kurteva, V. New sustainable solvent extraction pathways for rare earth metals via oximes molecules. Molecules 2023, 28, 7467. [CrossRef]
- Ghosh, A.; Pandey, A.; Sengupta, A..; Kathirvelu, V.; Harmalkar, S.S.; Dhuri, S.N.; Singh, K.S.; Ghanty, T.K. Experimental and theoretical investigation on the extractive mass transfer of Eu3+ ions using novel amide ligands in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Inorg. Chem. 2023, 62, 14678-14693. [CrossRef]
- Turanov A.N.; Karandashev V.K.; Artyushin O.I.; Brel V.K. Extraction of actinides and lanthanides from nitric acid solutions with diphosphine dioxides in the presence of an ionic liquid. Radiochemistry 2023, 65, 530-537. [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Baulin, V.E. Extraction of lanthanides(III) from aqueous nitric acid solutions with tetra(n-octyl)diglycolamide into methyltrioctylammonium bis(trifluoromethanesulfonul)imide ionic liquid and its mixtures with molecular organic diluents. Minerals 2023, 13, 736. [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Khvostikov, V.A.; Baulin, V.E.; Baulin, D.V. Extraction of REE(III) from nitric acid media with solutions of tetraoctyldiglycolamide in trioctylammonium bis[(trifluoromethyl)sulfonyl]imide. Russian J. Gen. Chem. 2023, 93, 2041-2047. [CrossRef]
- Asadollahzadeh, M.; Torkaman, R.; Reza Aboudzadeh Rovais, M.; Rafiei-Sarmazdeh, Z. Evaluating the efficiency and characteristics of hydrodynamics in a perforated structure utilized for extraction within a rotating disc column. J. Molec. Liq. 2024, 398, 124088. [CrossRef]
- Janssen C.H.C. Co-extractants based on the Hofmeister effect and the Van ‘t Hoff - LeChatelier effect to increase metal extraction efficiencies. J. Molec. Liq. 2024, 396, 123942. [CrossRef]
- Kaim-Sevalneva, V.; Sariola-Leikas, E.; He, C. Highly selective extraction of scandium(III) from rare earth elements using quaternary ammonium based ionic liquids: Experimental and DFT studies. Sep. Purif. Technol. 2024, 334, 126038. [CrossRef]
- Rout, A.; Sriram S.; Ramanathan N. Understanding the extraction behavior of Eu(III) from acidic medium and the feasibility of separation of simulated high level liquid waste compositions using a phosphonium ionic liquid containing diglycolamide extractant. Sep. Purif. Technol. 2024, 339, 126640. [CrossRef]
- Su, X.; Liu, H.; Tian, G. A green extraction process for the selective recovery of Sc(III) based on hydrophobic betaine derivative ionic liquids. RSC Adv. 2024, 14, 4853-4860. [CrossRef]
- Wu, S.; Bie, C.; Gao, Y.; Sun, X. A novel bifunctional ionic liquid [N1888][OOB] for the separation of rare earth and transition metal in NdFeB magnet. Mater. Today Sust. 2024, 26, 100713. [CrossRef]
- Zeng, Z.; Gao, Y.; Ni, S.; Fu, X.; Sun, X. Efficient separation for yttrium and heavy rare earth elements using functionalized quaternary ammonium ionic liquids. J. Ind. Eng. Chem. 2024. [CrossRef]
- Zhang, N.; Li, F.; Xue, H.; Wang, Z.; Qiu, S.; Fan, B.; Cheng, Y.; Zhang, X. High-efficiency process of aluminum removal from rare earth solutions using a readily industrialized ionic liquid. Hydrometallurgy 2024, 223, 106224. [CrossRef]
- Zhang, S.; Ni, S.; Zeng, Z.; Yu, G.; Huang, B.; Sun, X. A clean process for the recovery of rare earth and transition metals from NiMH battery based on primary amine and lauric acid. J. Environ. Manage. 2024, 351, 119788. [CrossRef]
- Bie, C.; Wu, S.; Sun, X. The fractional extraction for sustainable recovery of rare earth and thorium in radioactive waste with oxoacetate functionalized ionic liquid. Sep. Purif. Technol. 2024, 350, 127898. [CrossRef]
- Cheng, Y.; Li, F.; Wu, Q.; Peng, K.; Fan, B.; Bai, Y.; Wang, Z.; Zhang, N.; Zhang, X. Efficient ethylene/ethane separation by rare earth metal-containing ionic liquids in N,N-dimethylformamide. Sep. Purif. Technol. 2023, 310, 123094. [CrossRef]
- Galdino, N.M.; Souza, V.S.; Rodembusch, F.S.; Bussamara, R.; Scholten, J.D. Biosensors based on graphene oxide functionalized with benzothiadiazole-derived ligands for the detection of cholesterol. ACS Appl. Bio Mater. 2023, 6, 2651-2666. [CrossRef]
- Lee, J.; Fairley, M.; Goff, G.S.; Brennecke, J.F. Quantification of zwitterion betaine in betaine bis(trifluoromethylsulfonyl)imide and its influence on liquid-liquid equilibrium with water. Chem. Commun. 2023, 59, 13599. [CrossRef]
- Liu, K.; Zheng, Z.; Yang, H.; Zhang, Z.; Wen, M.; Ren, G.; Guo, L.; Song, J.; Chen, C.; Lu, Z.; Deng, S. Corrosion resistance of Al2O3/FeAl coatings doped with Er2O3 in liquid Pb-15.7Li. Fusion Eng. Des. 2023, 187, 113372. [CrossRef]
- Lu, X.; Li, X.; Duan, M.; Hai, J.; Liu, S. Preparation of hybrid perovskite-type Li0.33La0.56TiO3 by adding ionic liquids. J. Rare Earths 2023, 41, 758-763. [CrossRef]
- Manjarrez, Y.; Clark, A.M.; Fieser, M.E. Rare earth metal-containing ionic liquid catalysts for synthesis of epoxide/cyclic anhydride copolymers. ChemCatChem 2023, 15, e202300319. [CrossRef]
- Knoop, J.E.; Hammed, V.; Yoder, L.D.; Maselugbo, A.O.; Sadiku, B.L.; Alston, J.R. Synthesis, characterization, and magnetic properties of lanthanide-containing paramagnetic ionic liquids: an Evan's NMR study. ACS Appl. Eng. Mater. 2023, 1, 2831-2846. [CrossRef]
- Nagar, A.; Sengupta, A.; Sk, M.A.; Mohapatra, P.K. Ionic liquid assisted exothermic complexation of trivalent lanthanides with fluorinated β diketone: multitechnique approach with theoretical insight. Inorg. Chem. 2023, 62, 19631–19647. [CrossRef]
- Sun, Q.; Xiao, X.; Zhang, X.; Song, Y.; Zhou, X.; Sheng, Y.; Zheng, K.; Zou, H. Rapid green preparation of Lu7O6F9:RE (RE=Eu3+/Gd3+, Yb3+/Er3+) phosphors using ionic liquids. Ceram. Int. 2023, 49, 20505-20517. [CrossRef]
- Wang, S.-L.; Yuan, W.-L.; Zhao, Y.; Cheng, K.-L.; Tao, G.-H.; He, L. Low-melting multicharge ionic liquids with [Ln(NO3)5]2− (Ln = Ho-Lu): structural, electrostatic, thermochemical, and fluorescence properties. Dalton Trans. 2023, 52, 8975-8985. [CrossRef]
- Zhong, S.; Yin, Q.; Diao, Y.; Yang, F.; He, X.; Liu, S.; Wang, Y. Optimization of synthesis conditions, characterization and magnetic properties of lanthanide metal organic frameworks from Brønsted acidic ionic liquid. J. Mol. Struct. 2023, 1278, 134974. [CrossRef]
- Asare-Bediako, B.B.; Li, M.; Houston, A.; Vilmercati, P.; Mannella, N.; Labbé, N.; Abdoulmoumine, N. Boosting dimethyl carbonate production from CO2 and methanol using ceria-ionic liquid catalyst. ChemSusChem 2024. [CrossRef]
- Bao, W.-L.; Kuai, J.; Gao, H.-Y.; Zheng, M.-Q.; Sun, Z.-H.; He, M.-Y.; Chen, Q.; Zhang, Z.-H. Ionic liquid post-modified carboxylate-rich MOFs for efficient catalytic CO2 cycloaddition under solvent-free conditions. Dalton Trans. 2024, 53, 6215-6223. [CrossRef]
- Chen, C.; Zhao, S.; Li, X.; Tan, T.; Liao, W.; You, H. Preparation of CeO2 particles via ionothermal synthesis and its application to chemical mechanical polishing. Coll. Surf. A: Physicochem. Eng. Asp. 2024, 694, 134194. [CrossRef]
- Cui, X.; Zhu, K.; Yuan, X.; Liu, Z.; Ren, L. Terbium based (poly)ionic liquids for anti-counterfeiting and droplet manipulation. Polym. Chem. 2024. [CrossRef]
- Faden, L.-P.; Reiß, A.; Popescu, R.; Donsbach, C.; Göttlicher, J.; Vitova, T.; Gerthsen, D.; Feldmann, C. Sc, Zr, Hf, and Mn metal nanoparticles: reactive starting materials for synthesis near room temperature. Inorg. Chem. 2024, 63, 1020-1034. [CrossRef]
- {83] Kaur, G.; Sharma, S.; Singh, M. D.; Nalwa, K.S.; Sivasubramanian, S.C.; Dalvi, A. Ionic liquid composites with garnet-type Li6.75Al0.25La3Zr2O12: stability, electrical transport, and potential for energy storage applications. Mater. Chem. Phys. 2024, 317, 129205. [CrossRef]
- Lei, N.; Wang, H.; Fan, L.; Chen, X. Highly luminescent soft aggregates and films assembled by amphiphilic polyoxometalate complex in a polymerizable aprotic ionic liquid. J. Photoch. Photobio. A: Chem. 2024, 448, 115290. [CrossRef]
- Li, H.; Zhang, R.-R.; Li, K.-X.; Wei, S.; Liu, Y.-M.; Liu, R.-X. Construction of multifunctional lanthanum manganese mixed nanoparticles mediated by ionic liquids for selective aerobic oxidation of cyclohexane. Rare Metals 2024, 43, 2205-2221. [CrossRef]
- Li, Y.; Xia, J.-J.; Lu, J.-Z.; Wang, Z.-L.; Wang, M.T. Sensitively detection of ascorbic acid in orange samples with ionic liquid functionalized carbon dots and lanthanide complexes. Dyes Pigm. 2024, 227, 112197. [CrossRef]
- Liang, H.; Jiao, J.; Dou, D.; Li, S. Cheap and efficient strategy for photocatalytic degradation of ionic liquids by La/Ce-codoped TiO2@PAM composites. Water Sci. Technol. 2024, 89, 976-988. [CrossRef]
- Mohammadzadeh Jahani, P.; Beitollahi, H.; Nejad, F.G. Voltammetric determination of bisphenol A using modified carbon paste electrode. Int. J. Environ. Anal. Chem. 2024. [CrossRef]
- Sadeghi, M.; Omiya, T.; Fernandes, F.; Vilhena, L.; Ramalho, A.; Influence of 1-ethyl-3-methylimidazolium diethylphosphate ionic liquid on the performance of Eu- and Gd-doped diamond-like carbon coatings. Lubricants 2024, 12, 18. [CrossRef]
- Shah, S.; Pietsch, T.; Ruck, M. Facile synthesis of anhydrous rare-earth trichlorides from their oxides in chloridoaluminate ionic liquids. Angew. Chem., Int. Ed. Engl. 2024, 63, e202317480. [CrossRef]
| Medium | Ce | Nd | Gd | Pr |
|---|---|---|---|---|
| HCl | 45 | 82 | 99 | 68 |
| [Hbet+]Cl- | 44 | 95 | 99 | 69 |
| Resin | Maximum | Minimum |
|---|---|---|
| TPDGA: n-pentyl | Dy: 41.7 | Sm: 36.8 |
| THDGA: n-hexyl | Dy: 40.9 | Pr: 33.1 |
| TODGA: n-octyl: | Dy: 38.4 | Pr: 29.2 |
| TDDGA: n-decyl | Dy: 32.6 | La: 19.6 |
| Diluent | aY | bNd |
|---|---|---|
| n-hexane n-heptane chloroform carbón tetrachloride kerosene |
73 13 76 96 97 |
81 86 41 35 99 |
| Ionic Liquid | Al | REEs | SFAl/REEs |
|---|---|---|---|
| Methyltrioctylammonium-neodecanoic acid [N1888+][NDA-] Methyltrioctylammonium-decanoic acid [N1888+][DA-] Methyltrioctylammonium-palmitic acid [N1888+][PA-] Methyltrioctylammonium-lauric acid [N1888+][LA-] |
80 65 50 50 |
<1 <1 <1 <1 |
250 175 50 100 |
| Organic Acid | [ALA336+][C272-] | [Ali+][C272-] |
|---|---|---|
| Formic acid Lactic acid Fumaric acid Maleic acid |
80 100 75 90 |
10 10 75 90 |
| REE | D | SF |
|---|---|---|
| Nd(III) Pr(III) Ce(III) La(III) |
768 286 111 56 |
- 2.7 6.9 13.7 |
| Ionic liquid | Acronysm |
|---|---|
| Bis(3,3-dimethyl-2-oxobutyl)dioctylammonium sec-octyl-phenoxyacetate [OB2DTA+][CA12-] Bis(1-ethoxy-1-oxooct-2-yl)dioctylammonium sec-octyl-phenoxyacetate [EO2DTA+][CA12-] (3,3-dimethyl-2-oxobutyl)trioctylammonium sec-octyl-phenoxyacetate [OBTA+][CA12-] (1-ethoxy-1-oxooct-2-yl)trioctylammonium sec-octyl-phenoxyacetate [EOTA+][CA12-] |
IL1 IL2 IL3 IL4 |
| Carboxylic Acid | Derived Anion | aAl | aGd |
|---|---|---|---|
| Cyclopentaneacetic acid Heptanoic acid 3-cyclopentylpropionic acid n-octanoic acid 3-cyclohexanepropionic acid Nonanoic acid |
C7H11O2- C7H13O2- C8H13O2- C8H15O2- C9H15O2- C9H17O2- |
75 60 60 55 57 58 |
11 18 10 25 30 20 |
| Ligand | IL | Remarks | Reference |
|---|---|---|---|
| 1,2-bis(diphenylphosphinyl)-ethane or 1,2-bis(diphenylphosphinyl)benzene tetraoctyldiglycolamide tetraoctyldiglycolamide |
[C4mim+][NTf2-] [N1888+][NTf2-] [TOAH+][NTf2-] |
Use of toxic H2CCl2 as diluent aUse of 1-octanol or n-nonane and 1.1 M TBP as diluents bUse of dodecane:1-octanol (9:1 %v/v) mixture as diluent |
54 55 56 |
| [HNO3], M | % Extraction |
|---|---|
| 0.5 1 3 5 6 8 |
50 85 95 99 99 99 |
| Element | D |
|---|---|
| La Ce Pr Nd Co Ni Mn |
15 quantitative extraction quantitative extraction 125 0.049 0.070 0.028 |
| Response | Biosensor+ChOx | Sensitivity, a.u.dL/mg |
|---|---|---|
| Best Poor |
GO-La:BTDIm (1:1) GO-La:BTDAc (1:1) |
0.0649 <0.0602 |
| PILs | Χ·10−4 | PILs | Χ·10−4 |
|---|---|---|---|
| [C1C8im+]3[HoCl63-] [C1C8im+]3[DyCl63-] [C1C8im+]3[GdCl63-] |
1.759 1.425 1.014 |
[C1C4im+]3[HoCl3Br33-] [C1C4im+]3[DyCl3Br33-] [C1C4im+]3[GdCl3Br33-] |
1.752 1.650 1.011 |
| Temperature, ºC | %Conversion | %Yield | Pressure, MPa | %Conversion | %Yield |
|---|---|---|---|---|---|
| 80 100 120 130 140 |
3 8 15 16 16 |
2 5 8 10 10 |
1 2 4 5 6 |
2 6 11 16 16 |
<1 2 7 10 10 |
| Catalyst | 1-Butyl | 1-Hexyl | 1-Hexyl-3-Methyl |
|---|---|---|---|
| La/Ce-based TiO2P25 |
1st(95%)-6th(90%) 1st(70%)-6th(50%) |
1st(90%)-6th(80%) 1st(55%)-6th(40%) |
1st(85%)-6th(80%) 1st(50%)-6th(35%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
