Submitted:
07 June 2024
Posted:
11 June 2024
You are already at the latest version
Abstract
Keywords:
MSC: 37H10; 37H20
1. Introduction
2. Mean Square Analysis of Stochastic Equilibria
2.1. First Approximation System and Its Mean Square Analysis
2.2. Asymptotics for the Case of Weak Noise, Stochastic Sensitivity of the Equilibrium
3. Examples
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horsthemke, W.; Lefever, R. Noise-Induced Transitions; Springer: Berlin, 1984; p. 338. [Google Scholar]
- Anishchenko, V.S.; Astakhov, V.V.; Neiman, A.B.; Vadivasova, T.E.; Schimansky-Geier, L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development; Springer-Verlag: Berlin, Heidelberg, 2007; p. 535. [Google Scholar]
- Lindner, B.; Garcia-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L. Effects of noise in excitable systems. Physics Reports 2004, 392, 321–424. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, J. Non-differentiability of quasi-potential and non-smooth dynamics of optimal paths in the stochastic Morris-Lecar model: Type I and II excitability. Nonlinear dynamics 2019, 96, 2293–2305. [Google Scholar] [CrossRef]
- Lima Dias Pinto, I.; Copelli, M. Oscillations and collective excitability in a model of stochastic neurons under excitatory and inhibitory coupling. Phys. Rev. E 2019, 100, 062416. [Google Scholar] [CrossRef] [PubMed]
- Anishchenko, V.S.; Khairulin, M.E. Effect of noise-induced crisis of attractor on characteristics of Poincaré recurrence. Technical Physics Letters 2011, 37, 561–564. [Google Scholar] [CrossRef]
- Cisternas, J.; Descalzi, O. Intermittent explosions of dissipative solitons and noise-induced crisis. Phys. Rev. E 2013, 88, 022903. [Google Scholar] [CrossRef]
- Arnold, L. Random Dynamical Systems; Springer-Verlag: Berlin, 1998; p. 600. [Google Scholar]
- Zakharova, A.; Kurths, J.; Vadivasova, T.; Koseska, A. Analysing dynamical behavior of cellular networks via stochastic bifurcations. PLoS ONE 2011, 6, e19696. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.B.; Hwang, S.K.; Liu, J.M. When can noise induce chaos? Phys. Rev. Lett. 1999, 82, 1132–1135. [Google Scholar] [CrossRef]
- Lai, Y.C.; Tel, T. Transient Chaos. Complex Dynamics on Finite Time Scales; Springer-Verlag: New York, 2011; p. 502. [Google Scholar]
- Pikovsky, A.S.; Kurths, J. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 1997, 78, 775–778. [Google Scholar] [CrossRef]
- Schmid, G.; Hänggi, P. Intrinsic coherence resonance in excitable membrane patches. Math. Biosci. 2007, 207, 235–245. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, M.D.; Stocks, N.G.; Pearce, C.E.M.; Abbott, D. Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization; Cambridge University Press, 2008; p. 446.
- Bashkirtseva, I.; Chen, G.; Ryashko, L. Stabilizing stochastically-forced oscillation generators with hard excitement: a confidence-domain control approach. European Physical Journal B 2013, 86, 437. [Google Scholar] [CrossRef]
- Xu, C.; Yuan, S.; Zhang, T. Confidence domain in the stochastic competition chemostat model with feedback control. Appl. Math. J. Chinese Univ. 2018, 33, 379–389. [Google Scholar] [CrossRef]
- Bashkirtseva, I.; Ryazanova, T.; Ryashko, L. Confidence domains in the analysis of noise-induced transition to chaos for Goodwin model of business cycles. International Journal of Bifurcation and Chaos 2014, 24, 1440020. [Google Scholar] [CrossRef]
- Bashkirtseva, I. Stochastic sensitivity analysis: theory and numerical algorithms. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 192, 012024. [Google Scholar] [CrossRef]
- Bashkirtseva, I.; Ryashko, L. Stochastic Sensitivity Analysis of Noise-Induced Phenomena in Discrete Systems. In Recent Trends in Chaotic, Nonlinear and Complex Dynamics; World Scientific Series on Nonlinear Science Series B, 2021; chapter 8, pp. 173–192. [CrossRef]
- Mil’shtein, G.; Ryashko, L. A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations. Journal of Applied Mathematics and Mechanics 1995, 59, 47–56. [Google Scholar] [CrossRef]
- Freidlin, M.I.; Wentzell, A.D. Random Perturbations of Dynamical Systems; Springer: New York, 1984. [Google Scholar]
- Sun, Y.; Hong, L.; Jiang, J. Stochastic sensitivity analysis of nonautonomous nonlinear systems subjected to Poisson white noise. Chaos, Solitons & Fractals 2017, 104, 508–515. [Google Scholar] [CrossRef]
- Bashkirtseva, I.; Ryashko, L. Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps. Chaos, Solitons and Fractals 2019, 126, 78–84. [Google Scholar] [CrossRef]
- Kolinichenko, A.; Bashkirtseva, I.; Ryashko, L. Self-organization in randomly forced diffusion systems: A stochastic sensitivity technique. Mathematics 2023, 11. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Bashkirtseva, I.A.; Crucifix, M.; Ryashko, L.B. Nonlinear climate dynamics: From deterministic behaviour to stochastic excitability and chaos. Physics Reports 2021, 902, 1–60. [Google Scholar] [CrossRef]
- Garain, K.; Sarathi Mandal, P. Stochastic sensitivity analysis and early warning signals of critical transitions in a tri-stable prey-predator system with noise. Chaos 2022, 32, 033115. [Google Scholar] [CrossRef] [PubMed]
- Ryashko, L.; Bashkirtseva, I. Stochastic bifurcations and excitement in the ZS-model of a thermochemical reaction. Mathematics 2022, 10, 960. [Google Scholar] [CrossRef]
- Slepukhina, E.; Bashkirtseva, I.; Ryashko, L.; Kügler, P. Stochastic mixed-mode oscillations in the canards region of a cardiac action potential model. Chaos, Solitons & Fractals 2022, 164, 112640. [Google Scholar] [CrossRef]
- Bashkirtseva, I.; Ryashko, L.; Chen, G. Stochastic sensitivity synthesis in nonlinear systems with incomplete information. Journal of the Franklin Institute 2020, 357, 5187–5198. [Google Scholar] [CrossRef]
- Huang, M.; Yang, A.; Yuan, S.; Zhang, T. Stochastic sensitivity analysis and feedback control of noise-induced transitions in a predator-prey model with anti-predator behavior. Mathematical Biosciences and Engineering 2023, 20, 4219–4242. [Google Scholar] [CrossRef] [PubMed]
- Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications; Springer: Berlin, 1984. [Google Scholar]
- Ryashko, L. Stabilization of linear stochastic systems with state and control dependent perturbations. Journal of Applied Mathematics and Mechanics 1981, 43, 655–663. [Google Scholar] [CrossRef]
- Mao, X. Exponential Stability of Stochastic Differential Equations; Marcel Dekker, 1994; p. 307.
- Ryashko, L.; Bashkirtseva, I. Exponential Mean Square Stability Analysis of Invariant Manifolds for Nonlinear SDE’s. In Stochastic Differential Equations, Ed. N. Halidias, Series: Mathematics Research Developments; Nova Science Publishers, 2011; chapter 4, pp. 67–95.
- Khasminskii, R. Stochastic Stability of Differential Equations; Springer: Berlin, 2012. [Google Scholar]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
