Submitted:
07 June 2024
Posted:
11 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Datasets
2.1.1. GPM-DPR
2.1.2. Disdrometer Locations
2.1.3. Disdrometer Data
2.2. Methodology
2.2.1. Comparison of Independent Datasets
2.2.2. Matching Approaches
- Point: The disdrometer location was found within the footprint of the DPR (within the 5 km2 pixel area) so could be compared directly.
- Mean 5 km: Disdrometer data was compared with the average of all DPR pixels within a 5 km radius around the disdrometer.
- Mean 10 km: Disdrometer data was compared with the average of all DPR pixels within a radius of 10 km around the disdrometer.
- Optimal: Disdrometer data was compared with the DPR pixel closest to the disdrometer within a 5 km radius and the nine DPR pixels containing the disdrometer. Finally, among these nine pixels, the pixel with closest radar reflectivity factor to that of the disdrometer was selected for comparison.
2.2.3. Verification Metrics
3. Results
3.1. GPM CO vs Disdrometer Derived Independent Estimates
3.1.1. Rain Rate Effects
3.1.2. Stratiform vs Convective Regimes
3.2. Analysis of Satellite Overpass Events Coincident with Disdrometer Data
3.2.1. Single vs Dual Frequency Derived Estimates
3.2.2. Stratiform vs Convective Regimes
4. Discussion
5. Conclusions
- The behavior of DSD-derived variables among the inland, mountain, and coastal regions showed little variability according to the disdrometer data, which was captured by the DPR DF algorithm. However, the GPM DSD parameters show an overestimation of Dm by about 0.1 mm at low and moderate precipitation rates (0.1-1, 1-2, 2-4 mm/h) and by 0.4 mm at precipitation rates greater than 4 mm/h by the DF algorithm with respect to the disdrometer. In contrast, the behavior of Nw was underestimated by the DPR, with a maximum value close to 6 dBNw at moderate precipitation rates (4-8 mm/h).
- Disdrometer data indicated that the shape parameter mode over the area of study corresponds to the DPR fixed value (µ=3), but the median was higher (µ=7). Moreover, µ presents a distribution with a substantial natural variability which implies an increase in the uncertainty of DSD estimates based on the constant value assumption.
- The superiority of the optimal matching approach was observed when validating the GPM DPR rainfall parameters with disdrometers. The GPM DPR estimates showed better verification statistics for the radar reflectivity factor in both Ku and Ka bands and the mass-weighted mean diameter, while worse results were found for the rainfall rate and the shape parameter Nw.
- According to the available sample of overpass matches (41 cases) the DPR DF rainfall classification algorithm showed little ability to detect events identified as convective by the disdrometers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of Geophysics 2018, 56, 79–107. [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. Journal of atmospheric and oceanic technology 1998, 15, 809–817.
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bulletin of the American Meteorological Society 2014, 95, 701–722. [CrossRef]
- Adler, R.F.; Gu, G.; Huffman, G.J.; Sapiano, M.R.; Wang, J.-J. GPCP and the Global Characteristics of Precipitation. Satellite Precipitation Measurement: Volume 2 2020, 677–697.
- GPM Core Observatory Available online: https://gpm.nasa.gov/missions/GPM/core-observatory (accessed on 8 April 2024).
- Liao, L.; Meneghini, R. GPM DPR Retrievals: Algorithm, Evaluation, and Validation. Remote Sensing 2022, 14, 843. [CrossRef]
- Tokay, A.; D’Adderio, L.P.; Wolff, D.B.; Petersen, W.A. Development and Evaluation of the Raindrop Size Distribution Parameters for the NASA Global Precipitation Measurement Mission Ground Validation Program. Journal of Atmospheric and Oceanic Technology 2020, 37, 115–128. [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.-L.; Lan, C.-H.; Huang, M.-Q. Evaluation of GPM DPR Rain Parameters with North Taiwan Disdrometers. Journal of Hydrometeorology 2023, 25, 47–64. [CrossRef]
- Liao, L.; Meneghini, R.; Tokay, A. Uncertainties of GPM DPR Rain Estimates Caused by DSD Parameterizations. Journal of Applied Meteorology and Climatology 2014, 53, 2524–2537. [CrossRef]
- Radhakrishna, B.; Satheesh, S.K.; Narayana Rao, T.; Saikranthi, K.; Sunilkumar, K. Assessment of DSDs of GPM-DPR with Ground-Based Disdrometer at Seasonal Scale over Gadanki, India. Journal of Geophysical Research: Atmospheres 2016, 121, 11,792-11,802. [CrossRef]
- D’Adderio, L.P.; Porcù, F.; Panegrossi, G.; Marra, A.C.; Sanò, P.; Dietrich, S. Comparison of the GPM DPR Single- and Double-Frequency Products Over the Mediterranean Area. IEEE Transactions on Geoscience and Remote Sensing 2019, 57, 9724–9739. [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, L.; Hao, X.; Lei, H.; Zheng, H. Validation of GPM Precipitation Products by Comparison with Ground-Based Parsivel Disdrometers over Jianghuai Region. Water 2019, 11, 1260. [CrossRef]
- Chase, R.J.; Nesbitt, S.W.; McFarquhar, G.M. Evaluation of the Microphysical Assumptions within GPM-DPR Using Ground-Based Observations of Rain and Snow. Atmosphere 2020, 11, 619. [CrossRef]
- Del Castillo-Velarde, C.; Kumar, S.; Valdivia-Prado, J.M.; Moya-Álvarez, A.S.; Flores-Rojas, J.L.; Villalobos-Puma, E.; Martínez-Castro, D.; Silva-Vidal, Y. Evaluation of GPM Dual-Frequency Precipitation Radar Algorithms to Estimate Drop Size Distribution Parameters, Using Ground-Based Measurement over the Central Andes of Peru. Earth Syst Environ 2021, 5, 597–619. [CrossRef]
- Adirosi, E.; Montopoli, M.; Bracci, A.; Porcù, F.; Capozzi, V.; Annella, C.; Budillon, G.; Bucchignani, E.; Zollo, A.L.; Cazzuli, O.; et al. Validation of GPM Rainfall and Drop Size Distribution Products through Disdrometers in Italy. Remote Sensing 2021, 13, 2081. [CrossRef]
- Sun, Y.; Dong, X.; Cui, W.; Zhou, Z.; Fu, Z.; Zhou, L.; Deng, Y.; Cui, C. Vertical Structures of Typical Meiyu Precipitation Events Retrieved from GPM-DPR. Journal of Geophysical Research: Atmospheres 2020, 125, e2019JD031466.
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nature Clim Change 2018, 8, 972–980. [CrossRef]
- Kidd, C.; Huffman, G.; Maggioni, V.; Chambon, P.; Oki, R. The Global Satellite Precipitation Constellation: Current Status and Future Requirements. Bulletin of the American Meteorological Society 2021, 102, E1844–E1861. [CrossRef]
- Seto, S.; Iguchi, T.; Oki, T. The Basic Performance of a Precipitation Retrieval Algorithm for the Global Precipitation Measurement Mission’s Single/Dual-Frequency Radar Measurements. IEEE Transactions on Geoscience and Remote Sensing 2013, 51, 5239–5251. [CrossRef]
- Seto, S.; Iguchi, T.; Meneghini, R.; Awaka, J.; Kubota, T.; Masaki, T.; Takahashi, N. The Precipitation Rate Retrieval Algorithms for the GPM Dual-Frequency Precipitation Radar. Journal of the Meteorological Society of Japan. Ser. II 2021, 99, 205–237. [CrossRef]
- Iguchi, T.; Seto, S.; Meneghini, R.; Yoshida, N.; Awaka, J.; Le, M.; Chandrasekar, V.; Kubota, T. GPM/DPR Level-2 Algorithm Theoretical Basis Document. NASA Goddard Space Flight Center 2021.
- Seto, S.; Iguchi, T. Intercomparison of Attenuation Correction Methods for the GPM Dual-Frequency Precipitation Radar. Journal of Atmospheric and Oceanic Technology 2015, 32, 915–926. [CrossRef]
- Udina, M.; Peinó, E.; Polls, F.; Mercader, J.; Guerrero, I.; Valmassoi, A.; Paci, A.; Bech, J. Irrigation Impact on Boundary Layer and Precipitation Characteristics in Weather Research and Forecasting Model Simulations during LIAISE-2021. Quarterly Journal of the Royal Meteorological Society n/a. [CrossRef]
- González, S.; Bech, J.; Garcia-Benadí, A.; Udina, M.; Codina, B.; Trapero, L.; Paci, A.; Georgis, J.-F. Vertical Structure and Microphysical Observations of Winter Precipitation in an Inner Valley during the Cerdanya-2017 Field Campaign. Atmospheric Research 2021, 264, 105826. [CrossRef]
- HydroMet, O.T.T. Operating Instructions Present Weather Sensor OTT Parsivel 2. OTT HydroMet: Kempten, Germany 2016, 52.
- Messtechnik, O.T.T. Operating Instructions: Present Weather Sensor–Parsivel. Kempten, Germany 2009.
- Friedrich, K.; Higgins, S.; Masters, F.J.; Lopez, C.R. Articulating and Stationary PARSIVEL Disdrometer Measurements in Conditions with Strong Winds and Heavy Rainfall. Journal of Atmospheric and Oceanic Technology 2013, 30, 2063–2080. [CrossRef]
- Casanovas, C.; Salio, P.; Galligani, V.; Dolan, B.; Nesbitt, S.W. Drop Size Distribution Variability in Central Argentina during RELAMPAGO-CACTI. Remote Sensing 2021, 13, 2026. [CrossRef]
- Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler Radar Characteristics of Precipitation at Vertical Incidence. Reviews of Geophysics 1973, 11, 1–35.
- WMO CODE TABLE 4677 Available online: https://www.nodc.noaa.gov/archive/arc0021/0002199/1.1/data/0-data/HTML/WMO-CODE/WMO4677.HTM (accessed on 8 April 2024).
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis. Journal of the Atmospheric Sciences 2003, 60, 354–365. [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.-L.; Reddy, K.K.; Shirooka, R.; Wang, P.K. A Comparison Study of Summer Season Raindrop Size Distribution Between Palau and Taiwan, Two Islands in Western Pacific. Journal of Geophysical Research: Atmospheres 2017, 122, 11,787-11,805. [CrossRef]
- Ulbrich, C.W.; Atlas, D. Rainfall Microphysics and Radar Properties: Analysis Methods for Drop Size Spectra. Journal of Applied Meteorology and Climatology 1998, 37, 912–923. [CrossRef]
- Leinonen, J. High-Level Interface to T-Matrix Scattering Calculations: Architecture, Capabilities and Limitations. Opt. Express, OE 2014, 22, 1655–1660. [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Mackowski, D.W. T-Matrix Computations of Light Scattering by Nonspherical Particles: A Review. Journal of Quantitative Spectroscopy and Radiative Transfer 1996, 55, 535–575. [CrossRef]
- Thurai, M.; Huang, G.J.; Bringi, V.N.; Randeu, W.L.; Schönhuber, M. Drop Shapes, Model Comparisons, and Calculations of Polarimetric Radar Parameters in Rain. Journal of Atmospheric and Oceanic Technology 2007, 24, 1019–1032. [CrossRef]
- Group, S.M. Python Interface to T-Matrix Scattering Computations (PyTMatrix) Available online: https://www.techbriefs.com/component/content/article/25465-npo-49724 (accessed on 29 February 2024).
- Pytmatrix/Pytmatrix/Tmatrix_aux.Py at Master · Jleinonen/Pytmatrix Available online: https://github.com/jleinonen/pytmatrix/blob/master/pytmatrix/tmatrix_aux.py (accessed on 9 February 2024).
- Hamada, A.; Takayabu, Y.N. Improvements in Detection of Light Precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). Journal of Atmospheric and Oceanic Technology 2016, 33, 653–667. [CrossRef]
- Brooks, H.E.; Flora, M.L.; Baldwin, M.E. A Rose by Any Other Name: On Basic Scores from the 2 × 2 Table and the Plethora of Names Attached to Them. Artificial Intelligence for the Earth Systems 2024, 3. [CrossRef]
- Ghada, W.; Casellas, E.; Herbinger, J.; Garcia-Benadí, A.; Bothmann, L.; Estrella, N.; Bech, J.; Menzel, A. Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar. Remote Sensing 2022, 14, 4563. [CrossRef]
- Livezey, R.E. Deterministic Forecasts of Multi-Category Events. Forecast Verification: A Practitioner’s Guide in Atmospheric Science 2011, 61–75.
- Tharwat, A. Classification Assessment Methods. Applied computing and informatics 2020, 17, 168–192.
- Peinó, E.; Bech, J.; Udina, M.; Polls, F. Disentangling Satellite Precipitation Estimate Errors of Heavy Rainfall at the Daily and Sub-Daily Scales in the Western Mediterranean. Remote Sensing 2024, 16, 457. [CrossRef]
- Dolan, B.; Fuchs, B.; Rutledge, S.A.; Barnes, E.A.; Thompson, E.J. Primary Modes of Global Drop Size Distributions. Journal of the Atmospheric Sciences 2018, 75, 1453–1476. [CrossRef]
- Bringi, V.N.; Huang, G.-J.; Munchak, S.J.; Kummerow, C.D.; Marks, D.A.; Wolff, D.B. Comparison of Drop Size Distribution Parameter (D0) and Rain Rate from S-Band Dual-Polarized Ground Radar, TRMM Precipitation Radar (PR), and Combined PR–TMI: Two Events from Kwajalein Atoll. Journal of Atmospheric and Oceanic Technology 2012, 29, 1603–1616. [CrossRef]
- Bringi, V.N.; Tolstoy, L.; Thurai, M.; Petersen, W.A. Estimation of Spatial Correlation of Drop Size Distribution Parameters and Rain Rate Using NASA’s S-Band Polarimetric Radar and 2D Video Disdrometer Network: Two Case Studies from MC3E. Journal of Hydrometeorology 2015, 16, 1207–1221.
- Watters, D.C. The Global Precipitation Measurement Mission: Product Validation and Model Evaluation Studies, University of Leicester, 2021.
- Ulbrich, C.W. Natural Variations in the Analytical Form of the Raindrop Size Distribution. Journal of Applied Meteorology and Climatology 1983, 22, 1764–1775. [CrossRef]
- Meneghini, R.; Liao, L.; Iguchi, T. A Generalized Dual-Frequency Ratio (DFR) Approach for Rain Retrievals. Journal of Atmospheric and Oceanic Technology 2022, 39, 1309–1329. [CrossRef]









| DPR Version |
Disdrometer Type |
Variables Studied* |
Region, Country |
Reference |
|---|---|---|---|---|
| - | OTT Parsivel2 | RR, Nw, Dm, Z, k | Iowa, USA | Liao et al., (2014) [9] |
| V03 | RD-80 | RR, Nw, Dm, Z, k | Gadanki, India | Radhakrishna et al., (2016) [10] |
| V05 | 2DVD | RR, DSD, Z | Italian Peninsula | D’Adderio et al. , (2019) [11] |
| V06 | OTT Parsivel2 | RR, Nw, Dm, Z, µ | Jianghuai, China | Wu et al., (2019) [12] |
| V06 | 2DVD | RR, Dm | USA | Chase et al., (2020) [13] |
| V06 | OTT Parsivel2 | RR, Nw, Dm, Z, k | Central Andes, Peru | Del Castillo-Velarde et al. , (2021)[14] |
| V06 | Thies, OTT Parsivel2 | RR, Nw, Dm, Z | Italian Peninsula | Adirosi et al., (2021) [15] |
| V07 | Joss–Waldvogel | RR, Nw, Dm, Z | North Taiwan, Taiwan | Seela et al., (2023) [8] |
| Disdrometer Type |
Disdrometer Site |
Label (Subregions) |
Lon (°E) | Lat (°N) |
Height (m) | Start Date |
End Date |
Valid Data (min) |
|---|---|---|---|---|---|---|---|---|
| Parsivel1 | Barcelona University | C01 (Coast) | 2.11 | 41.38 | 79 | 01-01-2015 | 01-02-2024 | 51679 |
| Parsivel2 | Fabra Observatory | C02 (Coast) | 2.12 | 41.42 | 411 | 26-07-2022 | 13-02-2024 | 12537 |
| Parsivel1,2 | Das | M01 (Mountain) | 1.87 | 42.39 | 1097 | 09-12-2016 | 08-02-2024 | 59388 |
| Parsivel2 | Tarrega | P01 (Plain) | 1.16 | 41.67 | 427 | 04-05-2021 | 14-06-2022 | 10218 |
| Parsivel2 | Mollerussa | P02 (Plain) | 0.87 | 41.62 | 247 | 27-04-2021 | 05-12-2022 | 12855 |
| Parsivel2 | Tordera | P03 (Plain) | 1.22 | 41.68 | 388 | 30-04-2021 | 14-06-2022 | 12035 |
| Parsivel2 | Cendrosa | P04 (Plain) | 0.93 | 41.69 | 239 | 09-04-2021 | 12-10-2021 | 3616 |
| Name | Formula | Perfect Score |
|---|---|---|
| Correlation Coefficient (CC) | 1 | |
| Normalized Mean Bias (NBias) | 0 | |
| Normalized Mean Absolute Error (MAE) | 0 | |
| Normalized Root Mean Square Error (RMSE) | 0 | |
| Accuracy | 1 | |
| Precision | 1 | |
| Recall | 1 |
| Observed Class | |||||
|---|---|---|---|---|---|
| A | B | C | Total | ||
| Predicted Class | A | TPA | FBA | FCA | TPA+ FBA+ FCA |
| B | FAB | TPB | FCB | FAB+TPB+FCB | |
| C | FAC | FBC | TPC | FAC +FBC +TPC | |
| Total | TPA+ FAB+ FAC | FBA +TPB +FBC | FCA +FCB +TPC | All classifications | |
| Dataset | ZKa (dBZ) | ZKu (dBZ) | R (mm/h) | Nw (dB) | Dm (mm) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| N | Median | Max | Median | Max | Median | Max | Median | Max | Median | Max | |
| C01 | 51679 | 24.77 | 47.27 | 24.92 | 51.86 | 0.89 | 60.83 | 33.75 | 51.61 | 1.19 | 6.28 |
| C02 | 12537 | 22.79 | 52.40 | 22.68 | 55.83 | 0.77 | 183.27 | 35.23 | 53.06 | 1.04 | 4.40 |
| M01 | 59388 | 21.13 | 49.74 | 20.92 | 54.88 | 0.60 | 107.70 | 36.16 | 52.04 | 0.96 | 7.86 |
| P01 | 10218 | 20.30 | 47.83 | 20.04 | 52.47 | 0.48 | 74.61 | 34.77 | 50.17 | 0.98 | 3.85 |
| P02 | 12855 | 21.49 | 50.26 | 21.38 | 53.97 | 0.54 | 115.74 | 34.09 | 49.98 | 1.06 | 4.91 |
| P03 | 12035 | 21.04 | 50.16 | 20.79 | 53.76 | 0.56 | 114.86 | 35.27 | 50.00 | 1.00 | 7.59 |
| P04 | 3616 | 21.56 | 50.71 | 21.44 | 55.20 | 0.54 | 132.65 | 34.75 | 50.88 | 1.04 | 4.75 |
| Coast | 64216 | 24.39 | 52.40 | 24.48 | 55.83 | 0.87 | 183.27 | 34.02 | 53.06 | 1.17 | 6.28 |
| Mountain | 59388 | 21.13 | 49.74 | 20.92 | 54.88 | 0.60 | 107.70 | 36.16 | 52.04 | 0.96 | 7.86 |
| Plain | 38724 | 21.02 | 50.71 | 20.82 | 55.20 | 0.53 | 132.65 | 34.73 | 50.88 | 1.01 | 7.59 |
| All | 162328 | 22.32 | 52.40 | 22.21 | 55.83 | 0.67 | 183.27 | 34.96 | 53.06 | 1.05 | 7.86 |
| Dataset | ZKa (dBZ) | ZKu (dBZ) | R (mm/h) | Nw (dB) | Dm (mm) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N | Median | Max | N | Median | Max | Median | Max | Median | Max | Median | Max | |
| C01 | 291 | 25.10 | 45.70 | 351 | 24.46 | 51.13 | 0.96 | 57.07 | 33.19 | 51.29 | 1.19 | 3.00 |
| C02 | 312 | 25.00 | 42.34 | 376 | 24.24 | 51.13 | 0.90 | 36.33 | 33.24 | 51.29 | 1.18 | 4.45 |
| M01 | 360 | 23.47 | 37.54 | 423 | 23.25 | 46.34 | 0.78 | 18.49 | 33.04 | 50.65 | 1.16 | 3.00 |
| P01 | 262 | 23.16 | 41.37 | 304 | 22.38 | 51.05 | 0.68 | 27.75 | 33.11 | 43.93 | 1.12 | 5.00 |
| P02 | 203 | 24.23 | 38.67 | 232 | 23.18 | 44.61 | 0.75 | 11.71 | 33.34 | 41.34 | 1.12 | 3.00 |
| P03 | 269 | 23.63 | 41.37 | 304 | 22.20 | 51.05 | 0.67 | 27.75 | 33.13 | 43.93 | 1.11 | 4.99 |
| P04 | 234 | 23.42 | 37.44 | 273 | 22.38 | 47.42 | 0.68 | 13.18 | 33.34 | 41.51 | 1.11 | 3.56 |
| Coast | 603 | 25.05 | 45.70 | 727 | 24.40 | 51.13 | 0.92 | 57.07 | 33.21 | 51.29 | 1.18 | 4.45 |
| Mountain | 360 | 23.47 | 37.54 | 423 | 23.25 | 46.34 | 0.78 | 18.49 | 33.04 | 50.65 | 1.16 | 3.00 |
| Plain | 968 | 23.55 | 41.37 | 1113 | 22.59 | 51.05 | 0.69 | 27.75 | 33.21 | 43.93 | 1.11 | 5.00 |
| All | 1931 | 23.89 | 45.70 | 2263 | 23.19 | 51.12 | 0.77 | 57.07 | 33.17 | 51.29 | 1.14 | 5.00 |
| Stratiform | Convective | Ambiguous | Outlier | |
|---|---|---|---|---|
| Disdrometer | 57 | 28 | 14 | 2 |
| GPM DPR (DF) | 73 | 18 | 8 | 1 |
| Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | |||
|---|---|---|---|---|---|---|---|---|
| Vapor Deposition |
Weak Convection |
Aggregation/ Riming |
Collision- Coalescence |
Iced Based |
Ambiguous | Outlier | ||
| Disdrometer | 8 | 32 | 4 | 14 | 0 | 1 | 8 | 33 |
| GPM DPR (DF) | 4 | 15 | 0 | 22 | 0 | 2 | 11 | 46 |
| GPM Product | Group A: GPM CO Overpasses with Rain without Necessarily Matching Disdrometer Data |
Group B: GPM CO Overpasses with Rain Matching Disdrometer Data |
||||||
|---|---|---|---|---|---|---|---|---|
| Matching Method | Point | 5 km | 10 km | 9 pixels | Point | Mean 5km | Mean 10 km | Optimal |
| DPR-FS | 142 | 272 | 460 | 567 | 19 | 33 | 39 | 40 |
| Ka-FS | 69 | 157 | 289 | 328 | 12 | 27 | 33 | 34 |
| Ku-FS | 142 | 270 | 463 | 569 | 20 | 34 | 41 | 41 |
| Point | Mean 5 km | Mean 10 km | Optimal | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NBIAS | NMAE | NRMSE | CC | NBIAS | NMAE | NRMSE | CC | NBIAS | NMAE | NRMSE | CC | NBIAS | NMAE | NRMSE | CC | ||
| R | DF | -46.12 | 0.70 | 1.20 | 0.48* | -39.21 | 0.66 | 1.02 | 0.31 | -16.88 | 0.59 | 0.90 | 0.70* | 0.26 | 0.61 | 1.60 | 0.77* |
| SF | -49.84 | 0.69 | 1.18 | 0.37* | -46.93 | 0.64 | 1.01 | 0.30* | -31.63 | 0.66 | 0.99 | 0.44* | -35.35 | 0.43 | 0.78 | 0.78* | |
| ZKa | DF | -6.07 | 0.19 | 0.27 | 0.61 | -7.55 | 0.17 | 0.22 | 0.61* | -4.68 | 0.18 | 0.23 | 0.66* | -2.58 | 0.09 | 0.14 | 0.88* |
| SF | -13.55 | 0.16 | 0.20 | 0.27 | -11.58 | 0.16 | 0.19 | 0.42* | -7.37 | 0.17 | 0.21 | 0.48* | -2.81 | 0.10 | 0.16 | 0.77* | |
| ZKu | DF | -10.23 | 0.20 | 0.29 | 0.63* | -10.75 | 0.18 | 0.25 | 0.63* | -8.27 | 0.20 | 0.26 | 0.66* | -6.04 | 0.12 | 0.16 | 0.88* |
| SF | -9.23 | 0.20 | 0.29 | 0.63* | -11.53 | 0.18 | 0.27 | 0.64* | -8.12 | 0.20 | 0.25 | 0.65* | -5.37 | 0.10 | 0.16 | 0.88* | |
| Dm | DF | -1.08 | 0.24 | 0.28 | 0.65* | 2.05 | 0.21 | 0.27 | 0.56* | 1.82 | 0.22 | 0.28 | 0.51* | 0.96 | 0.14 | 0.18 | 0.83* |
| SF | -1.68 | 0.23 | 0.27 | 0.67* | 2.82 | 0.23 | 0.32 | 0.38* | 5.30 | 0.23 | 0.34 | 0.33* | 2.99 | 0.14 | 0.19 | 0.83* | |
| Nw | DF | -7.01 | 0.12 | 0.16 | 0.34 | -7.59 | 0.11 | 0.14 | 0.32 | -5.83 | 0.09 | 0.12 | 0.35* | -5.12 | 0.11 | 0.13 | 0.39* |
| SF | -6.77 | 0.12 | 0.15 | 0.34 | -8.61 | 0.12 | 0.15 | 0.16 | -8.36 | 0.12 | 0.15 | -0.01 | 0.29 | 0.12 | 0.14 | 0.19 | |
| Disdrometer | |||||
|---|---|---|---|---|---|
| Ambiguous | Convective | Stratiform | Total | ||
| DPR DF | Ambiguous | 1 | 0 | 1 | 2 |
| Convective | 2 | 0 | 0 | 2 | |
| Stratiform | 5 | 15 | 17 | 37 | |
| Total | 8 | 15 | 18 | 41 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
