Submitted:
05 June 2024
Posted:
07 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol 2020, 184, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 2020, 148, 80–89. [Google Scholar] [PubMed]
- Miransari, M.; Mahdavi, S.; Smith, D. The biological approaches of altering the growth and biochemical properties of medicinal plants under salinity stress. Applied Microbiol Biotechnol 2021, 105, 7201–7213. [Google Scholar]
- Chen, Y.; Garcia De Lomana, M.; Friedrich, N.O.; Kirchmair, J. Characterization of the Chemical Space of Known and Readily Obtainable Natural Products. J Chem Inf Model 2018, 58, 1518–1532. [Google Scholar] [PubMed]
- Schenone, M.; Dančík, V.; Wagner, B.K.; Clemons, P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 2013, 9, 232–240. [Google Scholar]
- Veeresham, C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 2012, 3, 200–201. [Google Scholar] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021, 20, 200–216. [Google Scholar] [PubMed]
- Wang, N.; Tan, H.Y.; Li, L.; Yuen, M.F.; Feng, Y. Berberine and Coptidis Rhizoma as potential anticancer agents: recent updates and future perspectives. J Ethnopharmacol 2015, 176, 35–48. [Google Scholar]
- Luo, H. ; Vong, C, T. ; Chen, H.; Gao, Y.; Liu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; Yao, P.; Gao, C.; Wei, J.; Ung, C.O.L.; Wang, S.; Zhong, Z.; Wang, Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019, 6, 14–48. [Google Scholar]
- Aniszewski, T. Alkaloids: Chemistry, Biology, Ecology, and Applications, 2nd ed, Elsevier, USA, 2012, 1-475.
- Buckingham, J.; Baggaley, K.H.; Roberts, A.D.; Szabo, L.F. Dictionary of Alkaloids with CD-ROM, 2nd ed, USA, Boca Raton, CRC Press, 2010.
- Boysen, R.I.; Hearn, M.T.W. Comprehensive Natural Products II. Comprehensive Natural Products II, 2nd ed, Elsevier Science, 2010.
- Kukula-Koch, W.A.; Widelski, J. Pharmacognosy Fundamentals, Applications and Strategies, Boston, Academic Press, 2017.
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach: Third Edition. Medicinal Natural Products: A Biosynthetic Approach, 1st ed, John Wiley and Sons, 2009.
- McGraw-Hill concise encyclopedia of chemistry. Choice Reviews Online. 1st ed, McGraw Hill, 2005.
- Qian, S.; Golubnitschaja, O.; Zhan, X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles, EPMA J 2019, 10, 365-381.
- Almeida, M. C; Resende, D.I.S.P.; da Costa, P.M.; Pinto, M.M.M.; Sousa, E. Tryptophan Derived Natural Marine Alkaloids and Synthetic Derivatives as Promising Antimicrobial Agents. Eur J Med Chem 2021, 209. [Google Scholar]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, Antiviral and Antimicrobial Activities of Alkaloids, Flavonoids, and Phenolic Acids. Pharm Biol 2011, 49, 396–402. [Google Scholar] [CrossRef]
- Warowicka, A.; Nawrot, R.; Goździcka-Józefiak, A. Antiviral Activity of Berberine. Arch Virol 2020, 165, 1935–1945. [Google Scholar] [CrossRef]
- Pang, B.; Zhao, L.H.; Zhou, Q.; Zhao, T.Y.; Wang, H.; Gu, C.J.; Tong, X.L. Application of berberine on treating type 2 diabetes mellitus. Int J Endocrinol 2015, 2015, 905749. [Google Scholar] [CrossRef]
- Nugraha, A.S.; Damayanti, Y.D.; Wangchuk, P.; Keller, P.A. Anti-Infective and Anti-Cancer Properties of the Annona Species: Their Ethnomedicinal Uses, Alkaloid Diversity, and Pharmacological Activities. Molecules 2019, 24, 4419. [Google Scholar] [CrossRef]
- Shishido, T.K.; Popin, R.V.; Jokela, J.; Wahlsten, M.; Fiore, M.F; Fewer, D.P.; Herfindal, L.; Sivonen, K. Dereplication of Natural Products with Antimicrobial and Anticancer Activity from Brazilian Cyanobacteria. Toxins 2019, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing, and antivirulence activities. Int Journal of Antimicrob Agents 2014, 44, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, B.C.; Roxo, M.; Borges, M.C.; Peixoto, H.; Crevelin, E.J.; Bertoni, B.W.; Contini, S.H.T; Lopes, A.A.; Franca, S.C.; Pereira, A.M.S.; Wink, M. Antioxidant Activity of an Aqueous Leaf Extract from Uncaria Tomentosa and Its Major Alkaloids Mitraphylline and Isomitraphylline in Caenorhabditis Elegans. Molecules 2019, 24, 3299. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Peinado, N.; Cortes-Serra, N.; Torras-Claveria, L.; Pinazo, M.J.; Gascon, J.; Bastida, J.; Alonso-Padilla, J. Amaryllidaceae Alkaloids with Anti-Trypanosoma Cruzi Activity. Parasit Vectors 2020, 13, 299. [Google Scholar] [CrossRef]
- LI, J.; Larregieu, C.A.; Benet, L.Z. Classification of natural products as sources of drugs according to the biopharmaceutics drug disposition classification system (BDDCS). Chin J Nat Med 2016, 14, 888–897. [Google Scholar] [CrossRef]
- Tiwari, R.; Latheef, S.K.; Ahmed, I.; Lqbal, H.M.N.; Bule, M.H. ; Dhama K, Samad, H. A.; Karthik, K.; Alagawany, M.; Abd El-Hack, M.E.; Yatoo, M.L.; Farag, M.R. Herbal immunomodulators, a remedial panacea for the designing and developing effective drugs and medicines: Current scenario and prospects. Curr Drug Metab 2018, 19, 264–301. [Google Scholar]
- Yatoo, M.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Ruchi, T.; Dhana, K.; Lqbal, H.M.N. Anti-Inflammatory Drugs and Herbs with Special Emphasis on Herbal Medicines for Countering Inflammatory Diseases and Disorders - A Review. Recent Pat Inflamm Allergy Drug Discov 2018, 12, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Xu, Z. Indole Alkaloids with Potential Anticancer Activity. Curr Top Med Chem 2020, 20, 1938–1949. [Google Scholar] [CrossRef]
- Qing, Z.X.; Huang, J.L; Yang, X.Y.; Liu, J.H.; Cao, H.L. Xiang, F. ; Cheng, P.; Zeng, J. G. Anticancer and Reversing Multidrug Resistance Activities of Natural Isoquinoline Alkaloids and their Structure-activity Relationship. Curr Med Chem 2018, 25, 5088–5114. [Google Scholar] [PubMed]
- Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar, Y. M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur J Med Chem 2017, 5, 143–189. [Google Scholar] [CrossRef] [PubMed]
- Garuti, L.; Roberti, M.; Pizzirani, D. Nitrogen-Containing Heterocyclic Quinones: A Class of Potential Selective Antitumor Agents. Mini Rev Med Chem 2007, 7, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur J Med Chem 2020, 1. [Google Scholar] [CrossRef] [PubMed]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076). [Google Scholar] [CrossRef]
- Al-Warhi, T.; Sabt, A.; Elkaeed, E.B.; Eldehna, W.M. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg Chem 2020, 103, 104163. [Google Scholar] [CrossRef]
- Mao, Y.; Soni, K.; Sangani, C.; Yao, Y. An Overview of Privileged Scaffold: Quinolines and Isoquinolines in Medicinal Chemistry as Anticancer Agents. Curr Top Med Chem 2020, 20, 2599–2633. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Singh, RK. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg Chem 2019, 89, 103021. [Google Scholar] [CrossRef]
- Kramer, C. S. Privileged Scaffolds in Medicinal Chemistry. The Royal Society of Chemistry 2015, 468. [Google Scholar]
- Newman, D.J; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Ritchie, T.J.; Macdonald, S.J.F. Physicochemical descriptors of aromatic character and their use in drug discovery. J Med Chem 2014, 57, 7206–7215. [Google Scholar] [CrossRef]
- Danishuddin, Khan, A. U. Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov Today, 2016, 21, 1291–1302.
- Gupta, A.; Kumar, V.; Aparoy, P. Role of Topological, Electronic, Geometrical, Constitutional and Quantum Chemical Based Descriptors in QSAR: mPGES-1 as a Case Study. Curr Top Med Chem 2018, 18, 1075–1090. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules 2020, 25, 1375. [Google Scholar] [CrossRef]
- Carvalho, A.L.; Trincão, J.; Romão, M.J. X-ray crystallography in drug discovery. Methods in Mol Biol 2009, 572, 31–56. [Google Scholar]
- Sugiki, T.; Furuita, K.; Fujiwara, T.; Kojima, C. Current NMR techniques for structure-based drug discovery. Molecules 2018, 23, 148. [Google Scholar] [CrossRef]
- Jacobson, K.A.; Costanzi, S. New insights for drug design from the X-ray crystallographic structures of G-protein-coupled receptors. Mol Pharmacol 2012, 82, 361–371. [Google Scholar] [CrossRef]
- Kist, R.; Timmers, L.F.S.M.; Caceres, R.A. Searching for potential mTOR inhibitors: Ligand-based drug design, docking and molecular dynamics studies of rapamycin binding site. J Mol Graph Model 2018, 80, 251–263. [Google Scholar] [CrossRef]
- Myatt, G.; Bower, D.; Cross, K.; Hasselgren, C.; Miller, S.; Quigley, D. In silico toxicology protocols and software platforms. Toxicol Lett 2017, 280, S286. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, Y.; Yu, M.; Wang, B.; Xu, S.; Zhang, J.; Li, X.; Ye, X. In-vitro and in-vivo anti-breast cancer activity of synergistic effect of berberine and exercise through promoting the apoptosis and immunomodulatory effects. Int Immunopharmacol 2020, K, 106787. [Google Scholar] [CrossRef]
- Schett, G.; Neurath, M.F. Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat Commun 2018, 9, 3261. [Google Scholar] [CrossRef]
- Leyva, M.A.P.; Robles, R.E.Z.; Razo, R.S.H. , Berber, L. P.Á.; Lara, K.O.; Ruiz, E.B.; Galvez, J.C.R. Berberine as Source of Antiproliferative Hybrid Compounds: In Vitro Antiproliferative Activity and Quantitative Structure-activity Relationship. Anticancer Agents Med Chem 2019, 19, 1820–1834. [Google Scholar]
- Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). Recent Advances in Natural Products Analysis 2020, 505–67. [Google Scholar]
- Kadayat, T.M.; Banskota, S.; Bist, G.; Gurung, P.; Magar, T.B.T.; Shrestha, A.; Kim, J. A.; Lee, E.S. Synthesis and biological evaluation of pyridine-linked indanone derivatives: Potential agents for inflammatory bowel disease. Bioorg Med Chem Lett 2018, 28, 2436–2441. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H. The Roles of Junctional Adhesion Molecules (JAMs) in Cell Migration. Front Cell and Dev Biol, 2022, 10, 843671. [Google Scholar] [CrossRef]
- Kumar, R.; Awasthi, M.; Sharma, A.; Padwad, Y.; Sharma, R. Berberine induces dose-dependent quiescence and apoptosis in A549 cancer cells by modulating cell cyclins and inflammation independent of mTOR pathway. Life Sci 2020, 244. [Google Scholar] [CrossRef]
- Chang, W. Non-coding RNAs, and Berberine: A new mechanism of its anti-diabetic activities. Eur Journal of Pharmacol 2017, 795, 8–12. [Google Scholar] [CrossRef]
- Li, C.L.; Tan, L.H.; Wang, Y.F.; Luo, C.D.; Chen, H.B.; Lu, Q.; Li, Y.C.; Yang, X.B.; Chen, J.N.; Liu, Y.H.; Xie, J.H.; Su, Z.R. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma Coptidis in vitro and in vivo. Phytomedicine 2019, 52, 272–283. [Google Scholar] [CrossRef]
- Wang, Y.X.; Pang, W.Q.; Zeng, Q.X.; Deng, Z.S.; Fan, T.Y.; Jiang, J.D.; Deng, H.B.; Song, D.Q. Synthesis and biological evaluation of new berberine derivatives as cancer immunotherapy agents through targeting IDO1. Eur J Med Chem 2018, 143, 1858–1868. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, H.; Chen, K.X.; Zuo, J.P.; Guo, Y.W.; Tang, W.; Li, X.W. Design and Synthesis of Marine Phidianidine Derivatives as Potential Immunosuppressive Agents. J Med Chem 2018, 61, 11298–11308. [Google Scholar] [CrossRef] [PubMed]
- Costa de Oliveira, R.; Soares, G.; Kostyuk, A.; Coutinho, G.B.; Dhyani, A.; Shvydenko, T.; Shvydenko, K.; Grafov, A. Anticancer and Immunomodulatory Activities of a Novel Water-Soluble Derivative of Ellipticine. Molecules 2020, 25, 2130. [Google Scholar] [CrossRef] [PubMed]
- Márquez, E.; Mora, J.R.; Flores, V.; Insuasty, D.; Calle, L. Modeling the Antileukemia Activity of Ellipticine-Related Compounds: QSAR and Molecular Docking Study. Molecules 2020, 25, 24. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.; Chen, S.; Wang, M.; Ma, H.; Liu, F.; Lin, C.; Zhu, C. β-Carboline alkaloids from Picrasma quassioides and their 3D-QSAR study on anti-inflammation in LPS-induced RAW 264.7 cells. Fitoterapia 2023, 166, 105437. [Google Scholar] [CrossRef]
- Li, X.; Li, N.; Sui, Z.; Bi, K.; Li, Z. An investigation on the quantitative structure-activity relationships of the anti-inflammatory activity of diterpenoid alkaloids. Molecules 2017, 22, 363. [Google Scholar] [CrossRef]

| Classification | Derivates | Compound | Activity | References |
|---|---|---|---|---|
| True alkaloids | Aspartate | Pyridine-linked hydroxylated Indanones | Anti-Inflammatory Bowel Disease | 53 |
| Phenylalanine and Tyrosine | Berberine | Anti-proliferative, anti-bacterial | 51, 58 | |
| Protoalkaloids | Tryptophan Indole | Phidianidines | Cytotoxic, Neuroprotective dopamine transporter inhibitory and protein tyrosine phosphatase-1B inhibitory | 59 |
| Ellipticine | Immunomodulation | 60, 61 | ||
| β-carboline | 62 | |||
| Pseudoalkaloids | Diterpenoid | songorine, delsolin, and fulzulin | NO Inhibition | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
