Submitted:
27 May 2024
Posted:
28 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Pressure
Temperature
Pilots
Use of Pilots
- Feed seawater flow: a control valve at the HPV inlet for the water flow and pressure control, a pressure transmitter, a drop pressure transmitter.
- Permeate flow: a flow meter, a pressure transmitter (the one of the full scale rack).
- Brine flow: three valves, in order to control the brine flow and appropriately make the brine discharge from 65 bars to atmospheric pressure, a flowmeter.
Pareto Analysis
3. Results
Territorial Pareto Diagram
4. Conclusions
Author Contributions
Funding
References
- Jianbo Liao,Shuang Li et al. Multi-Objective Optimization Based on Simulation Integrated Pareto Analysis to Achieve Low-Carbon and Economical Operation of a Wastewater Treatment Plant. Water 2024, 16, 995. [CrossRef]
- Gabriel Anghel, Cristian and Ilinca, Cornel. Evaluation of Various Generalized Pareto Probability Distributions for Flood Frequency Analysis. Water 2023, 15, 1557. [CrossRef]
- Wang, Zhiqi et al. Optimization of the Anaerobic-Anoxic-Oxic Process by Integrating ASM2d with Pareto Analysis of Variance and Response Surface Methodology. Water 2022, 14, 940. [CrossRef]
- Dariane, Alireza B. et al. Integrated Operation of Multi-Reservoir and Many-Objective System Using Fuzzified Hedging Rule and Strength Pareto Evolutionary Optimization Algorithm (SPEA2). Water 2021, 13, 1995. [CrossRef]
- Kong ,Yanjun et al. Multi-Objective Optimization Based on Simulation Integrated Pareto Analysis to Achieve Low-Carbon and Economical Operation of a Wastewater Treatment Plant. Water 2021, 13, 1046. [CrossRef]
- Shi, Jihong et al. Study of the Seawater Desalination Performance by Electrodialysis. Membranes 2022, 12, 767. [CrossRef] [PubMed]
- Alejandro Ruiz; Noemi Melian-Martel; Ignacio Nuez. Short Review on Predicting Fouling in RO Desalination. Membranes 2017, 7, 62. [CrossRef] [PubMed]
- F. Leon; A. Ramos; J. Vaswani; C. Mendieta; S. Brito. Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories. Water 2021, 13, 293. [CrossRef]
- Masaru Kurihara. Seawater Reverse Osmosis Desalination. Membranes 2021, 11, 243. [CrossRef] [PubMed]
- Caudle DD, Tucker JH, Cooper JL, Arnold BB, Papastamataki A, Electrochemical demineralization of water with carbon electrodes,» Washington: U.S. Dept. of the Interior, 1966.
- Almadani, H.M.N., «Renewable Energy,» pp. 1915–1924., 2003.
- María del Pilar Mier López, Raquel Ibáñez Mendizábal, Inmaculada Ortiz Uribe, María José Rivero Martínez, «Electrodiálisis con membranas bipolares: fundamentos y aplicaciones,» Ingeniería química, nº 418, pp. 166–182, 2004.
- S. Porada, R.Zhao, A.van del Wal, V. Presser, P.M. Biesheuvel, «Review on the science and technology of water desalination by capacitive deionization,» Progress in Materials Science, vol. 58, pp. 1388–1442, 2013.
- Lee J-B, Park K-K, Eum H-M, Lee C-W, «Desalination of a thermal power plant wastewater by membrane capacitive deionization,» Desalination, nº 195, p. 125–34, 2006.
- Li H, Gao Y, Pan L, Zhang Y, Chen Y, Sun Z, «Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes,» Water Res, nº 42, p. 4923–8, 2008.
- Biesheuvel PM, van der Wal A., «Membrane capacitive deionization.,» J Membrane Sci, nº 346, p. 256–62, 2009.
- Kim Y-J, Choi J-H. , «Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.,» Water Res , nº 44, pp. 990–6, 2010.
- Biesheuvel PM, Zhao R, Porada S, van der Wal A., «Theory of membrane capacitive deionization including the effect of the electrode pore space.,» J Colloid Interface Sci, nº 360, p. 239–48, 2011.
- Bouhadana Y, Ben-Tzion M, Soffer A, Aurbach D., «A control system for operating and investigating reactors: the demonstration of parasitic reactions in the water desalination by capacitive de-ionization.,» Desalination, nº 268, p. 253–61, 2011.
- Demirer ON, Naylor RM, Rios Perez CA, Wilkes E, Hidrovo C., «Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water.,» Desalination, nº 314, p. 130–8, 2013.
- Dlugolecki P, van der Wal A., «Energy recovery in membrane capacitive deionization.,» Environ Sci Technol, 2013.
- Suss ME, Baumann TF, Bourcier WL, Spadaccini CM, Rose KA, Santiago JG, et al., «Capacitive desalination with flow-through electrodes,» Energy Environ Sci , nº 5, p. 9511–9, 2012.
- Bouhadana Y, Avraham E, Noked M, Ben-Tzion M, Soffer A, Aurbach D, «Capacitive deionization of NaCl solutions at non-steady-state conditions: inversion functionality of the carbon electrodes,» J Phys Chem C , nº 115, p. 16567–73, 2011.
- Jeon S-I, Park H-R, Yeo J-G, Yang S, Cho CH, Han MH, et al., «Desalination via a new membrane capacitive deionization process utilizing flow electrodes,» Energy Environ Sci, 2013.
- Blair JW, Murphy GW, «Electrochemical demineralization of water with porous electrodes of large surface area. Saline watter conversion.,» American Chemical Society, p. 206–23, 1960.
- Arnold BB, Murphy GW., «Studies on electrochemistry of carbon and chemically modified carbon surfaces.,» J Phys Chem, nº 65, p. 135–8, 1961.
- Murphy GW, Cooper JL, Hunter JA. , «Activated carbon used as electrodes in electrochemical demineralization of saline water,» Washington: U.S. Dept. of the Interior, 1969.
- Murphy GW, Caudle DD. , «Mathematical theory of electrochemical demineralization in flowing systems,» Electrochim Acta, nº 12, p. 1655–64, 1967.
- Evans S, Hamilton WS., «The mechanism of demineralization at carbon electrodes,» J Electrochem Soc, nº 113, p. 1314–9, 1966.
- Evans S, Accomazzo MA, Accomazzo JE, «Electrochemically controlled ion exchange,» J Electrochem Soc, nº 116, p. 307–9, 1969.
- Reid GW, Townsend FM, Stevens AM, «Filed operation of a 20 gallons per day pilot plant unit for electrochemical desalination of brackish water,».
- Washington: U.S. Dept. of the Interio, 1968. C. B.E. y i. S. W. N. M. W.G. Pell, «7th International Seminar on Double Layer,» de Florida Educational Seminars: Boca, 1997.
- L. Zubieta y R. Bonert, «Characterization of Double-Layer Capacitors for Power Electronics Applications,» IEEE, 2000.
- B. E. C. A. Lasia, J. Bockris y R. White, «Electrochemical Impedance Spectroscopy and Its Applications, Modern Aspects of Electrochemistry,» New.
- York: Kluwer Academic/Plenum Publishers, 1999. E. Karde, S. Buller y R. D. Doncker, «Electrochim,» 2002.
- C. Schiller, «Main error sources at AC measurements,» 1997.
- EN 62391-1:2006, «Condensadores eléctricos fijos de doble capa para su uso en equipos electrónicos. Parte 1: Especificación genérica (IEC 62391-1:2006) (Ratificada por AENOR en septiembre de 2006),» 2006.
- EN 62391-2-1:2006, «Condensadores eléctricos fijos de doble capa para su uso en equipos electrónicos. Parte 2-1: Especificación marco particular: Condensadores eléctricos de doble capa para aplicación de potencia. Nivel de evaluación EZ (IEC 62391-2-1:2006),» 2006.
- EN 62391-2:2006, «Condensadores eléctricos fijos de doble capa para su uso en equipos electrónicos. Parte 2: Especificación intermedia: Condensadores eléctricos de doble capa para aplicación de potencia (IEC 62391-2:2006) (Ratificada por AENOR en septiembre de 2006),» 2006.
- EN 62576:2010, «Condensadores eléctricos fijos de doble capa para vehículos eléctricos híbridos. Métodos de ensayo de las características eléctricas. (Ratificada por AENOR en febrero de 2011),» 2010.
- H. Gualous, D. Bouquain, A. Berthon y J. M. Kauffmann, «Experimental study of supercapacitor serial resistance and capacitance variations with temperature,» J. Power Sources, 2003.
- H. E. Brouji, J.-M. Vinassa, O. Briat y N. B. a. E. Woirgard, «Ultracapacitors self discharge modelling using a physical description of porous electrode impedance,» IEEE, 2008.
- B. Conway y W. Pell, «Analysis of power limitations at porous,» 2001.
- F. Fabregat, G. G. I. Mora y J. Bisquert, «Cyclic Voltammetry Studies,» J. Phys. Chem, 2003.
- A.BurkeyJ.Miller,«testingof Electrochemical Capacitors: Capacitance,,» Nantes, 2009.
- R. R. Martín, Hernández, «Análisis, modelado e identificación de los Condensadores Electroquímicos de Doble Capa,» 2014.
- Texas Instruments, «OPA548 High-Voltage, High-Current Operational Amplifier,» [On Line]. Available: http://www.ti.com/lit/ds/symlink/opa548.pdf. [May 2018].
- Arduino, «Arduino Nano,» [On Line]. Available: https://store.arduino.cc/usa/arduino-nano. [March 2018].
- BQ, «Arduino Nano pinout,» [On Line]. Available: https://www.bq.com/es/. [April 2018].
- Spark Fun Electronics, «MCP4725,» [On Line]. Available: https://www.sparkfun.com/datasheets/BreakoutBoards/MCP4725.pdf. [April 2018].
- Adafruit, «MCP4725 Breakout Board - 12-Bit DAC w/I2C Interface,» [On Line]. Available: https://www.adafruit.com/product/935. [June 2018].
- Texas Instruments, «ADS111x Ultra-Small, Low-Power, I2C -Compatible, 860-SPS, 16-Bit ADCs With Internal Reference, Oscillator, and Programmable Comparator,» [On Line]. Available: http://www.ti.com/lit/ds/symlink/ads1115.pdf. [May 2018].
- Adafruit, «ADS1115 16-Bit ADC - 4 Channel with Programmable Gain Amplifier,» [On Line]. Available: https://www.adafruit.com/product/1085. [June 2018].
- Texas Instruments, «High Accuracy INSTRUMENTATION AMPLIFIER,» [On Line]. Available: http://www.ti.com/lit/ds/sbos133/sbos133.pdf. [March 2018].
- Analog Devices, «ADM3260,» [On Line]. Available: http://www.analog.com/en/products/interface- isolation/isolation/isopower/adm3260.html#product-overview. [June 2018].
- Texas Instruments, «OPA549 High-Voltage, High-Current Operational Amplifier,» [On Lie]. Available: http://www.ti.com/lit/ds/symlink/opa548.pdf. [June 2018].
- Zhao R, Biesheuvel PM, Van der Wal A. , «Energy consumption and constant current operation in membrane capacitive deionization,» Energy Environ Sci , nº 5, p. 9520–7, 2012.
- Texas instruments, «LMx58-N Low-Power, Dual-Operational Amplifiers,» [On Line]. Available: LMx58-N Low-Power, Dual-Operational Amplifiers. [February 2018].
- D. Song, Y. Wang, S. Xu, J. Gao, Y. Ren, S. Wang, Analysis, experiment and application of a power-saving actuator applied in the piston type energy recovery device. Desalination, 2015, 361, 65–71. [CrossRef]
- E. Dimitriou, E. Mohamed, C. Karavas, G. Papadakis, Experimental comparison of the performance of two reverse osmosis desalination units equipped with different energy recovery devices. Desal. Water Treat., 2015, 55, 3019–3026.
- E. Dimitriou, E. Mohamed, G. Kyriakarakos, G. Papadakis, Experimental investigation of the performance of a reverse osmosis desalination unit under full-and part-load operation.
- Desal. Water Treat., 2015, 53, 3170–3178.
- F.J. García Latorre, S.O. Pérez Báez, A. Gómez Gotor, Energy performance of a reverse osmosis desalination plant operating with variable pressure and flow. Desalination, 2015, 366, 146–153. [CrossRef]
- J. Kherjl, A. Mnif, I. Bejaoui, B. Humrouni, Study of the influence of operating parameters on boron removal by a reverse osmosis membrane. Desal. Water Treat., 2015, 56, 2653–2662. [CrossRef]
- J. Schallenberg-Rodriguez, J.M. Veza, A. Blanco-Marigorta, Energy efficiency and desalination in the Canary Islands. Renew. Sustain. Energy Rev., 2014, 40, 741–748. [CrossRef]
- N. Dow, S. Gray, J. Li, J. Zhang, E. Ostarcevic, A. Liubinas, P. Atherton, G. Roeszler, A. Gibbs, M. Duke, Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment. Desalination, 2016, 391, 30–42. [CrossRef]
- N.M. Mazlan, D. Peshev, A.G. Livingston, Energy consumption for desalination – A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes. Desalination, 2016, 377, 138–151. [CrossRef]
- N.R.G. Walton, Electrical conductivity and total dissolved solids – what is their precise relationship? Desalination, 1989, 72, 275–292. [CrossRef]
- S. Boerlage, N. Nada, Algal toxin removal in seawater desalination processes. Desal. Water Treat., 2015, 55, 2575–2593. [CrossRef]
- T. Bilstad, E. Protasova, A. Simonova, S. Stornes, I. Yuneizi, Wind-powered RO desalination. Desal. Water Treat., 2015, 55, 3106–3110.
- V. GnaneswarGude. Desalination and sustainability – An appraisal and current perspective. Water Res., 2016, 89, 87–106. [CrossRef]
- F. A. Leon, A. Ramos. Analysis of high efficiency membrane pilot testing for membrane design optimization. Desalination and Water Treatment 2017, 73, 208–214. [CrossRef]





| Production (m3 /day) | Advocacy | Colour |
|---|---|---|
| <100 | Very Slight | 1 |
| 100-1000 | Slight | 2 |
| 1000-10000 | Moderate | 3 |
| 10000-100000 | Serious | 4 |
| >100000 | Very Serious | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
