Submitted:
24 May 2024
Posted:
24 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Beyond Bacteria: Unveiling the Potential of Yeasts
3. Saccharomyces boulardii: A Pioneering Probiotic Yeast
4. Probiotic Yeast Effects
4.1. Interactions with Gut Microbiota
4.2. Immune Modulation Capabilities
4.3. Overall Impact on Gut Health
5. Yeast “New” Strains as Probiotics: Myth or Reality?
6. Fermentation Process: Boosting Nutrition and Flavor
7. Commercial Formulas with Yeast Probiotics
8. Synergy with Bacteria: A Powerful Duo
- (1)
- Enhanced Microbial Growth. Certain probiotic yeasts, like S. boulardii, may produce specific compounds such as prebiotics. These prebiotics act as food for beneficial bacteria strains like Bifidobacteria and lactobacilli, stimulating their growth and colonization in the gut [3].
- (2)
- Improved Barrier Function. Numerous investigations demonstrated a correlation between S. boulardii and a decreased level of Firmicutes and Proteobacteria in the gut microbiota and a greater proportion of Bacteroidetes. Additionally, by increasing the synthesis of short-chain fatty acids and inducing proinflammatory immune responses, this yeast can reduce inflammation [29]. Furthermore, S.boulardii have been shown by Kunyeit et al., to dramatically decrease the adherence of the multidrug-resistant species C. auris to the abiotic surface, suggesting that this would be a useful strategy for managing this yeast [73].
- (3)
9. The Future
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, G.; Li, B.; Yang, C.; Wang, Y.; Bian, X.; Li, W.; Liu, F.; Huo, G. Major Traditional Probiotics: Comparative Genomic Analyses and Roles in Gut Microbiome of Eight Cohorts. Front Microbiol 2019, 10, 712. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef] [PubMed]
- Staniszewski, A.; Kordowska-Wiater, M. Probiotic and Potentially Probiotic Yeasts-Characteristics and Food Application. Foods 2021, 10, 1306. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; Aadil, R.M. Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol 2022, 13, 999001. [Google Scholar] [CrossRef] [PubMed]
- Pais, P.; Almeida, V.; Yılmaz, M.; Teixeira, M.C. Saccharomyces boulardii: What Makes It Tick as Successful Probiotic? J Fungi (Basel) 2020, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, S.; Ganapathy, S.; Mitra, M.N.; Kumar, J.D.; Veligandla, K.C.; Rathod, R.; Kotak, B.P. Unique Properties of Yeast Probiotic Saccharomyces boulardii CNCM I-745: A Narrative Review. Cureus 2023, 15, e46314. [Google Scholar] [CrossRef] [PubMed]
- Abid, R.; Waseem, H.; Ali, J.; Ghazanfar, S.; Muhammad Ali, G.; Elasbali, A.M.; Alharethi, S.H. Probiotic Yeast Saccharomyces: Back to Nature to Improve Human Health. J Fungi (Basel) 2022, 8, 444. [Google Scholar] [CrossRef] [PubMed]
- Shingel, K.M.; Maguen, E.; Lin, H.H.; Blaut, D.; Chang, F. Microbiome Engineering Using Probiotic Yeast: Saccharomyces boulardii and the Secreted Human Lysozyme Lead to Changes in the Gut Microbiome and Metabolome of Mice. Microbiol Spectr 2018, 6, e00031–18. [Google Scholar]
- Sun, S.; Xu, X.; Liang, L.; Wang, X.; Bai, X.; Zhu, L.; He, Q.; Liang, H.; Xin, X.; Wang, L.; Lou, C.; Cao, X.; Chen, X.; Li, B.; Wang, B.; Zhao, J. Lactic Acid-Producing Probiotic Saccharomyces cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Front Immunol 2021, 12, 777665. [Google Scholar] [CrossRef]
- Sen, S.; Mansell, T.J. Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genet Biol 2020, 137, 103333. [Google Scholar] [CrossRef]
- Huang, Q.; Zhu, Y.; Yu, J.; Fang, L.; Li, Y.; Wang, M.; Liu, J.; Yan, P.; Xia, J.; Liu, G.; Yang, X.; Zeng, J.; Guo, L.; Ruan, G. Effects of sulfated β-glucan from Saccharomyces cerevisiae on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii). Fish Shellfish Immunol 2022, 127, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Wu, C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Front Nutr 2022, 8, 634897. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, Y.; Yang, Z.; Li, C.; Liang, H.; Wu, Z.; Pu, W. Yeast Probiotics Shape the Gut Microbiome and Improve the Health of Early-Weaned Piglets. Front Microbiol 2018, 9, 2011. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Giraldo, C.; Fresno, S.; Moreno-Haguenauer, J. Killer yeasts: An expanding horizon in yeast antifungal defense. Trends Microbiol 2018, 26, 709–721. [Google Scholar]
- Nascimento, B.L.; Delabeneta, M.F.; Rosseto, L.R.B.; Junges, D.S.B.; Paris, A.P.; Persel, C.; Gandra, R.F. Yeast Mycocins: a great potential for application in health. FEMS Yeast Res 2020, 20, foaa016. [Google Scholar] [CrossRef] [PubMed]
- Junges, D.S.B.; Delabeneta, M.F.; Rosseto, L.R.B.; Nascimento, B.L.; Paris, A.P.; Persel, C.; Loth, E.A.; Simão, R.C.G.; Menolli, R.A.; Paula, C.R.; Gandra, R.F. Antibiotic Activity of Wickerhamomyces anomalus Mycocins on Multidrug-Resistant Acinetobacter baumannii. Microb Ecol 2020, 80, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, B.L.; Martelli, E.C.; da Silva, J.C.; Delabeneta, M.F.; Rosseto, L.R.B.; Junges, D.S.B.; Paris, A.P.; Persel, C.; Paula, C.R.; Simão, R.C.G.; Gandra, R.F. Inhibition of Klebsiella pneumonia carbapenemases by mycocins produced by Wickerhamomyces anomalus. Arch Microbiol 2022, 204, 702. [Google Scholar] [CrossRef] [PubMed]
- Calazans, G.F.; da Silva, J.C.; Delabeneta, M.F.; Paris, A.P.; Yassuda Filho, P.; Auler, M.E.; Menolli, R.A.; Paula, C.R.; Simão, R.C.G.; Gandra, R.F. Antimicrobial activity of Wickerhamomyces anomalus mycocins against strains of Staphylococcus aureus isolated from meats. Food Science Technol 2020, 41, 388–394. [Google Scholar] [CrossRef]
- Santos, R.R.; Silva, J.M.; Ribeiro, R.L.; Marques, M.T.; Senes, L.C.; Rosa, C.A.; Magalhães, K.G. Yeast Probiotics Shape the Gut Microbiome and Improve the Health of Early-Weaned Piglets. Front Microbiol 2018, 9, 1484. https://www.frontiersin.org/journals/cellular-and-infection-microbiology/sections/intestinal-microbiome].
- Li, B.; Zhang, H.; Shi, L.; Li, R.; Luo, Y.; Deng, Y.; Li, S.; Li, R.; Liu, Z. Saccharomyces boulardii alleviates DSS-induced intestinal barrier dysfunction and inflammation in humanized mice. Food Funct 2022, 13, 102–112. [Google Scholar] [CrossRef]
- Bastos, T.S.; Souza, C.M.M.; Legendre, H.; Richard, N.; Pilla, R.; Suchodolski, J.S.; de Oliveira, S.G.; Lesaux, A.A.; Félix, A.P. Effect of Yeast Saccharomyces cerevisiae as a Probiotic on Diet Digestibility, Fermentative Metabolites, and Composition and Functional Potential of the Fecal Microbiota of Dogs Submitted to an Abrupt Dietary Change. Microorganisms 2023, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, S.; Ohga, S.; Yonezawa, M.; lida, T.; Kodama, Y.; Saito, T.; Ando, A. Saccharomyces boulardii modulates intestinal immunity in vitro and in vivo via toll-like receptor 4 signaling. FEMS Immunol Med Microbiol 2016, 76, 189–197. [Google Scholar]
- Smith, I.M.; Christensen, J.E.; Arneborg, N.; Jespersen, L. Yeast modulation of human dendritic cell cytokine secretion: an in vitro study. PLoS One 2014, 9, e96595. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.M.; Baker, A.; Christensen, J.E.; Boekhout, T.; Frøkiær, H.; Arneborg, N.; Jespersen, L. Kluyveromyces marxianus and Saccharomyces boulardii Induce Distinct Levels of Dendritic Cell Cytokine Secretion and Significantly Different T Cell Responses In Vitro. PLoS One 2016, 11, e0167410. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Tsuzuki, Y.; Sugihara, N.; Nishii, S.; Shibuya, N.; Mizoguchi, A.; Itoh, S.; Tanemoto, R.; Inaba, K.; Hanawa, Y.; Horiuchi, K.; Wada, A.; Higashiyama, M.; Watanabe, C.; Kurihara, C.; Komoto, S.; Tomita, K.; Miura, S.; Hokari, R. Novel probiotic yeast from Miso promotes regulatory dendritic cell IL-10 production and attenuates DSS-induced colitis in mice. J Gastroenterol 2021, 56, 829–842. [Google Scholar] [CrossRef] [PubMed]
- Miranda, V.C.; Santos, S.S.; Assis, H.C.; Faria, A.M.C.; Quintanilha, M.F.; Morão, R.P.; Nicoli, J.R.; Cara, D.C.; Martins, F.S. Effect of Saccharomyces cerevisiae UFMG A-905 in a murine model of food allergy. Benef Microbes 2020, 11, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.M.B.; Milani, T.M.S.; Prado, R.; Bonato, V.L.D.; Ramos, S.G.; Martins, F.S.; Vianna, E.O.; Borges, M.C. Oral administration of Saccharomyces cerevisiae UFMG A-905 prevents allergic asthma in mice. Respirology 2017, 22, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Im, S.H. Probiotics as a Potential Immunomodulating Pharmabiotics in Allergic Diseases: Current Status and Future Prospects. Allergy Asthma Immunol Res 2018, 10, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.A.K.; Sarker, M.; Li, T.; Yin, J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. Biomed Res Int 2018, 2018, 9478630. [Google Scholar] [CrossRef]
- Gou, H.Z.; Zhang, Y.L.; Ren, L.F.; Li, Z.J.; Zhang, L. How do intestinal probiotics restore the intestinal barrier? Front Microbiol 2022, 13, 929346. [Google Scholar] [CrossRef]
- Filidou, E.; Kolios, G. Probiotics in Intestinal Mucosal Healing: A New Therapy or an Old Friend? Pharmaceuticals (Basel) 2021, 14, 1181. [Google Scholar] [CrossRef] [PubMed]
- D'Souza, A.L.; Rajkumar, C.; Cooke, J.; Bulpitt, C.J. Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ 2002, 324, 1361. [Google Scholar] [CrossRef] [PubMed]
- Villarruel, G.; Rubio, D.M.; Lopez, F.; Cintioni, J.; Gurevech, R.; Romero, G.; Vandenplas, Y. Saccharomyces boulardii in acute childhood diarrhoea: a randomized, placebo-controlled study. Acta Paediatr 2007, 96, 538–541. [Google Scholar] [CrossRef]
- Kelesidis, T.; Pothoulakis, C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol 2012, 5, 111–125. [Google Scholar] [CrossRef]
- McFarland, L.V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 2010, 16, 2202–2222. [Google Scholar] [CrossRef] [PubMed]
- Mourey, F.; Decherf, A.; Jeanne, J.F.; Clément-Ziza, M.; Grisoni, M.L.; Machuron, F.; Legrain-Raspaud, S.; Bourreille, A.; Desreumaux, P. Saccharomyces cerevisiae I-3856 in irritable bowel syndrome with predominant constipation. World J Gastroenterol 2022, 28, 2509–2522. [Google Scholar] [CrossRef]
- Cayzeele-Decherf, A.; Pélerin, F.; Leuillet, S.; Douillard, B.; Housez, B.; Cazaubiel, M.; Jacobson, G.K.; Jüsten, P.; Desreumaux, P. Saccharomyces cerevisiae CNCM I-3856 in irritable bowel syndrome: An individual subject meta-analysis. World J Gastroenterol 2017, 23, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Moslehi-Jenabian, S.; Pedersen, L.L.; Jespersen, L. Beneficial effects of probiotic and food borne yeasts on human health. Nutrients 2010, 2, 449–473. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Sun, Z.; Liu, X.; Tian, H.; Shen, J.; Jing, H. Saccharomyces boulardii modulates gut microbiota in weaned piglets. Front Microbiol 2018, 9, 1403. [Google Scholar]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2325; 54, 2325–2340. [Google Scholar] [CrossRef]
- Staniszewski, A.; Kordowska-Wiater, M. Probiotic Yeasts and How to Find Them-Polish Wines of Spontaneous Fermentation as Source for Potentially Probiotic Yeasts. Foods 2023, 12, 3392. [Google Scholar] [CrossRef] [PubMed]
- Astuti, R.I.; Prastya, M.E.; Wulan, R.; Anam, K.; Meryandini, A. Current trends and future perspective of probiotic yeasts research in Indonesia. FEMS Yeast Res 2023, 23, foad013. [Google Scholar] [CrossRef] [PubMed]
- Homayouni-Rad, A.A.A.; Oroojzadeh, P.; Pourjafar, H. Kluyveromyces marxianus as a Probiotic Yeast: A Mini-review. Curr Nutr Food Sci 2020, 16, 1163–1169. [Google Scholar] [CrossRef]
- Ochangco, H.S.; Gamero, A.; Smith, I.M.; Christensen, J.E.; Jespersen, L.; Arneborg, N. In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties. World J Microbiol Biotechnol 2016, 32, 141. [Google Scholar] [CrossRef]
- Karim, A.; Gerliani, N.; Aïder, M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int J Food Microbiol 2020, 333, 108818. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Guo, P.; Ning, M.; Yue, Y.; Yuan, Y.; Yue, T. Kluyveromyces marxianus supplementation ameliorates alcohol-induced liver injury associated with the modulation of gut microbiota in mice. Food Funct 2023, 14, 9920–9935. [Google Scholar] [CrossRef] [PubMed]
- Nag, D.; Goel, A.; Padwad, Y.; Singh, D. In Vitro Characterisation Revealed Himalayan Dairy Kluyveromyces marxianus PCH397 as Potential Probiotic with Therapeutic Properties. Probiotics Antimicrob Proteins 2023, 15, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Becerril, M.; Alamillo, E.; Angulo, C. Probiotic and Immunomodulatory Activity of Marine Yeast Yarrowia lipolytica Strains and Response Against Vibrio parahaemolyticus in Fish. Probiotics Antimicrob Proteins 2021, 13, 1292–1305. [Google Scholar] [CrossRef]
- Miller, K.K.; Alper, H.S. Yarrowia lipolytica: more than an oleaginous workhorse. Appl Microbiol Biotechnol 2019, 103, 9251–9262. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Esteban, M.Á.; Angulo, C. Yarrowia lipolytica, health benefits for animals. Appl Microbiol Biotechnol 2021, 105, 7577–7592. [Google Scholar] [CrossRef]
- Shruthi, B.; Deepa, N.; Somashekaraiah, R.; Adithi, G.; Divyashree, S.; Sreenivasa, M.Y. Exploring biotechnological and functional characteristics of probiotic yeasts: A review. Biotechnol Rep (Amst) 2022, 34, e00716. [Google Scholar] [CrossRef] [PubMed]
- Licona-Jain, A.; Campa-Córdova, Á.; Luna-González, A.; Racotta, I.S.; Tello, M.; Angulo, C. Dietary supplementation of marine yeast Yarrowia lipolytica modulates immune response in Litopenaeus vannamei. Fish Shellfish Immunol 2020, 105, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Madzak, C.; Poiret, S.; Salomé Desnoulez, S.; Foligné, B.; Lafont, F.; Daniel, C. Study of the persistence and dynamics of recombinant mCherry-producing Yarrowia lipolytica strains in the mouse intestine using fluorescence imaging. Microb Biotechnol 2023, 16, 618–631. [Google Scholar] [CrossRef] [PubMed]
- Czech, A.; Smolczyk, A.; Ognik, K.; Wlazło, Ł.; Nowakowicz-Dębek, B.; Kiesz, M. Effect of dietary supplementation with Yarrowia lipolytica or Saccharomyces cerevisiae yeast and probiotic additives on haematological parameters and the gut microbiota in piglets. Res Vet Sci 2018, 119, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pacheco, P.; Ramos Monge, I.M.; Fernández-González, M.; Poveda Colado, J.M.; Arévalo-Villena, M. Safety Evaluation of Yeasts With Probiotic Potential. Front Nutr 2021, 8, 659328. [Google Scholar] [CrossRef] [PubMed]
- Ganapathiwar, S.; Bhukya, B. In vitro assessment for the probiotic potential of Pichia kudriavzevii. Bioinformation 2023, 19, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Greppi, A.; Saubade, F.; Botta, C.; Humblot, C.; Guyot, J.P.; Cocolin, L. Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiol 2017, 62, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Alakeji, T.P.; Oloke, J. Association of probiotic potential of strains of Pichia kudriavzevii isolated from “ogi” with the number of open reading frame (ORF) in the nucleotide sequences. Afr J Biotechnol 2020, 19, 148–155. [Google Scholar] [CrossRef]
- Agarbati, A.; Canonico, L.; Marini, E.; Zannini, E.; Ciani, M.; Comitini, F. Potential Probiotic Yeasts Sourced from Natural Environmental and Spontaneous Processed Foods. Foods 2020, 9, 287. [Google Scholar] [CrossRef]
- Diguță, C.F.; Mihai, C.; Toma, R.C.; Cîmpeanu, C.; Matei, F. In Vitro Assessment of Yeasts Strains with Probiotic Attributes for Aquaculture Use. Foods 2022, 12, 124. [Google Scholar] [CrossRef]
- Demirgul, F.; Simsek, O.; Sagdic, O. Amino acid, mineral, vitamin B contents and bioactivities of extracts of yeasts isolated from sourdough. Food Bioscience 2022, 50(part A), 102040. [Google Scholar] [CrossRef]
- Ansari, F.; Alian Samakkhah, S.; Bahadori, A.; Jafari, S.M.; Ziaee, M.; Khodayari, M.T.; Pourjafar, H. Health-promoting properties of Saccharomyces cerevisiae var. boulardii as a probiotic; characteristics, isolation, and applications in dairy products. Crit Rev Food Sci Nutr 2023, 63, 457–485. [Google Scholar] [CrossRef] [PubMed]
- Alkalbani, N.S.; Osaili, T.M.; Al-Nabulsi, A.A.; Olaimat, A.N.; Liu, S.Q.; Shah, N.P.; Apostolopoulos, V.; Ayyash, M.M. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 2022, 8, 365. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Nigam, P.S. Biotherapy Using Probiotics as Therapeutic Agents to Restore the Gut Microbiota to Relieve Gastrointestinal Tract Inflammation, IBD, IBS and Prevent Induction of Cancer. Int J Mol Sci 2023, 24, 5748. [Google Scholar] [CrossRef] [PubMed]
- Hatoum, R.; Labrie, S.; Fliss, I. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 2012, 3, 421. [Google Scholar] [CrossRef] [PubMed]
- Merenstein, D.; Pot, B.; Leyer, G.; Ouwehand, A.C.; Preidis, G.A.; Elkins, C.A.; Hill, C.; Lewis, Z.T.; Shane, A.L.; Zmora, N.; Petrova, M.I.; Collado, M.C.; Morelli, L.; Montoya, G.A.; Szajewska, H.; Tancredi, D.J.; Sanders, M.E. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 2023, 15, 2185034. [Google Scholar] [CrossRef] [PubMed]
- Long, S.; He, T.; Kim, S.W.; Shang, Q.; Kiros, T.; Mahfuz, S.U.; Wang, C.; Piao, X. Live Yeast or Live Yeast Combined with Zinc Oxide Enhanced Growth Performance, Antioxidative Capacity, Immunoglobulins and Gut Health in Nursery Pigs. Animals (Basel) 2021, 11, 1626. [Google Scholar] [CrossRef] [PubMed]
- Angulo, M.; Reyes-Becerril, M.; Medina-Córdova, N.; Tovar-Ramírez, D.; Angulo, C. Probiotic and nutritional effects of Debaryomyces hansenii on animals. Appl Microbiol Biotechnol 2020, 104, 7689–7699. [Google Scholar] [CrossRef] [PubMed]
- Navarrete, C.; Estrada, M.; Martínez, J.L. Debaryomyces hansenii: an old acquaintance for a fresh start in the era of the green biotechnology. World J Microbiol Biotechnol 2022, 38, 99. [Google Scholar] [CrossRef]
- Helmy, E.A.; Abdel-Fadeel, R.H.; Yosri, M.; Hassan, E. Does Torulaspora delbrueckii has some probiotic capabilities? In vitro and in vivo assessment. Nutrire 2024, 49, 15. [Google Scholar] [CrossRef]
- González-Orozco, B.D.; Kosmerl, E.; Jiménez-Flores, R.; Alvarez, V.B. Enhanced probiotic potential of Lactobacillus kefiranofaciens OSU-BDGOA1 through co-culture with Kluyveromyces marxianus bdgo-ym6. Front Microbiol 2023, 14, 1236634. [Google Scholar] [CrossRef] [PubMed]
- Kunyeit, L.; Kurrey, N.K.; Anu-Appaiah, K.A.; Rao, R.P. Probiotic Yeasts Inhibit Virulence of Non-albicans Candida Species. mBio 2019, 10, e02307–19. [Google Scholar] [CrossRef] [PubMed]
- Pihurov, M.; Păcularu-Burada, B.; Cotârleţ, M.; Vasile, M.A.; Bahrim, G.E. Novel Insights for Metabiotics Production by Using Artisanal Probiotic Cultures. Microorganisms 2021, 9, 2184. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P.; Lama, S. Probiotic properties of yeasts in traditional fermented foods and beverages. J Appl Microbiol 2022, 132, 3533–3542. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P.; Lama, S. Diversity of yeasts in Indian fermented foods and alcoholic beverages. FEMS Yeast Res 2023, 23, foad011. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pacheco, P.; Ramos Monge, I.M.; Poveda, J.M.; Díaz-Maroto, M.C.; Arévalo-Villena, M. Use of probiotic yeasts with biocontrol activity for fermentation of ewe's milk. J Sci Food Agric. 2023, 103, 4107–4118, Epub 2023 Jan 4. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Mansell, T.J. Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genet Biol 2020, 137, 103333. [Google Scholar] [CrossRef]
- Murali, S.K.; Mansell, T.J. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024, 72, 108336. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
