Submitted:
23 May 2024
Posted:
23 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials & Methods
2.1. Bacterial Strain
2.2. MSCde novo Determination
2.3. Characterization of Colonies that Grew on Ciprofloxacin-Containing Plates
2.4. Mutation Stability Assessment
2.5. Whole Genome Sequencing

3. Results
3.1. Minimal Selective Concentration
3.1.1. N. subflava
3.1.2. Mutations in Fluoroquinolone Target Gene (gyrA)
3.2. Mutation Stability
4. Discussion
References
- Unemo M, del Rio C, Shafer WM (2016) Antimicrobial Resistance Expressed by Neisseria gonorrhoeae: A Major Global Public Health Problem in the 21st Century. Microbiol Spectr 4:10.1128/microbiolspec.ei10-0009–2015. [CrossRef]
- Gullberg E, Cao S, Berg OG, et al (2011) Selection of Resistant Bacteria at Very Low Antibiotic Concentrations. PLOS Pathog 7:1–9. [CrossRef]
- Gullberg E, Albrecht LM, Karlsson C, et al (2014) Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. MBio 5:e01918-14. [CrossRef]
- González N, Abdellati S, De Baetselier I, et al (2022) Ciprofloxacin Concentrations 1/1000th the MIC Can Select for Antimicrobial Resistance in N. gonorrhoeae—Important Implications for Maximum Residue Limits in Food. Antibiotics 11:1430. [CrossRef]
- EMEA (1998) Enrofloxacin (Extension to sheep, rabbits, and lactating cows) summary report.
- Huang L, Mo Y, Wu Z, et al (2020) Occurrence, distribution, and health risk assessment of quinolone antibiotics in water, sediment, and fish species of Qingshitan reservoir, South China. Sci Rep 10:15777. [CrossRef]
- Zheng N, Wang J, Han R, et al (2013) Occurrence of several main antibiotic residues in raw milk in 10 provinces of China. Food Addit Contam Part B, Surveill 6:84–89. [CrossRef]
- Yang Y, Qiu W, Li Y, Liu L (2020) Antibiotic residues in poultry food in Fujian Province of China. Food Addit Contam Part B, Surveill 13:177–184. [CrossRef]
- Wang Q, Duan Y-J, Wang S-P, et al (2020) Occurrence and distribution of clinical and veterinary antibiotics in the faeces of a Chinese population. J Hazard Mater 383:121129. [CrossRef]
- Ji K, Lim Kho Y, Park Y, Choi K (2010) Influence of a five-day vegetarian diet on urinary levels of antibiotics and phthalate metabolites: A pilot study with “Temple Stay” participants. Environ Res 110:375–382. [CrossRef]
- Kenyon C (2021) Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis. Antibiot (Basel, Switzerland) 10:. [CrossRef]
- Gonzalez N, Abdellati S, Manoharan-Basil S, Kenyon C (2021) Association between quinolone use in food animals and gonococcal resistance to ciprofloxacin: an ecological study. bioRxiv. [CrossRef]
- Wilkinson JL, Boxall ABA, Kolpin DW, et al (2022) Pharmaceutical pollution of the world’s rivers. Proc Natl Acad Sci U S A 119:. [CrossRef]
- Kenyon C (2022) Concentrations of Ciprofloxacin in the World’s Rivers Are Associated with the Prevalence of Fluoroquinolone Resistance in Escherichia coli: A Global Ecological Analysis. Antibiotics 11:. [CrossRef]
- Bowler LD, Zhang QY, Riou JY, Spratt BG (1994) Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation. J Bacteriol 176:333–337. [CrossRef]
- Manoharan-Basil SS, Laumen JGE, Van Dijck C, et al (2021) Evidence of Horizontal Gene Transfer of 50S Ribosomal Genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front Microbiol 12:1–17. [CrossRef]
- Shafer WM (2018) Mosaic Drug Efflux Gene Sequences from Commensal Neisseria Can Lead to Low-Level Azithromycin Resistance Expressed by Neisseria gonorrhoeae Clinical Isolates. MBio 9:10.1128/mbio.01747-18. [CrossRef]
- Wadsworth CB, Arnold BJ, Sater MRA, Grad YH (2018) Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae. MBio 9:10.1128/mbio.01419-18. [CrossRef]
- Fiore MA, Raisman JC, Wong NH, et al (2020) Exploration of the Neisseria Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by N. gonorrhoeae through Horizontal Gene Transfer. Antibiotics 9:. [CrossRef]
- Manoharan-Basil SS, González N, Laumen JGE, Kenyon C (2022) Horizontal Gene Transfer of Fluoroquinolone Resistance-Conferring Genes From Commensal Neisseria to Neisseria gonorrhoeae: A Global Phylogenetic Analysis of 20,047 Isolates. Front Microbiol 13:793612. [CrossRef]
- Vanbaelen T, Van Dijck C, Laumen J, et al (2022) Global epidemiology of antimicrobial resistance in commensal Neisseria species: A systematic review. Int J Med Microbiol 312:151551. [CrossRef]
- Kenyon C, Laumen J, Manoharan-Basil S (2021) Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan-Neisseria Genome. A Viewpoint. Antibiot (Basel, Switzerland) 10:. [CrossRef]
- Goytia M, Wadsworth CB (2022) Canary in the Coal Mine: How Resistance Surveillance in Commensals Could Help Curb the Spread of AMR in Pathogenic Neisseria. MBio 13:e0199122. [CrossRef]
- Laumen JGE, Van Dijck C, Abdellati S, et al (2022) Antimicrobial susceptibility of commensal Neisseria in a general population and men who have sex with men in Belgium. Sci Rep 12:9. [CrossRef]
- EUCAST (2022) Clinical breakpoints - breakpoints and guidance.
- Andrews S (2015) FastQC: A Quality Control Tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 16 Apr 2024.
- Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. [CrossRef]
- Shovill ST No Title. In: 2019. https://github.com/tseemann/shovill. Accessed 14 Mar 2022.
- Bankevich A, Nurk S, Antipov D, et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol a J Comput Mol cell Biol 19:455–477. [CrossRef]
- Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. [CrossRef]
- Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. [CrossRef]
- Zhao P, Xu L, Zhang A, et al (2020) Evolutionary analysis of gyrA gene from Neisseria meningitidis bacterial strains of clonal complex 4821 collected in China between 1978 and 2016. BMC Microbiol 20:71. [CrossRef]
- Bengtsson-Palme J, Larsson DGJ (2016) Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int 86:140–149. [CrossRef]
- Klümper U, Recker M, Zhang L, et al (2019) Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J 13:2927–2937. [CrossRef]
- Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399. [CrossRef]
- Gestels Z, Saïd A, Sheeba M-BS, Kenyon C (2024) Could traces of antibiotics in food induce antimicrobial resistance in Escherichia coli and Klebsiella pneumoniae? An in vivo study in Galleria mellonella with important implications for maximum residue limits in food. (In Press).
- Murray CJL, Ikuta KS, Sharara F, et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. [CrossRef]
- White A, Hughes JM (2019) Critical Importance of a One Health Approach to Antimicrobial Resistance. Ecohealth 16:404–409. [CrossRef]
| Colony | Ciprofloxacin MIC (µg/mL) |
MALDI-TOF-MS ID | MALDI-TOF score | Whole genome sequencing |
|---|---|---|---|---|
| 1/100-4.1 | 0.19 | N. flavescens subflava group | 2.16 | ✓ |
| 1/100-4.2 | 0.19 | N. flavescens subflava group | 2.17 | x |
| 1/100-4.3 | 0.19 | N. flavescens subflava group | 2.26 | x |
| 1/100-4.4 | 0.19 | N. flavescens subflava group | 2.17 | x |
| 1/100-4.5 | 0.25 | N. flavescens subflava group | 2.21 | x |
| 1/100-4.6 | 0.19 | N. flavescens subflava group | 2.06 | x |
| 1/100-4.7 | 0.25 | N. flavescens subflava group | 2.01 | ✓ |
| 1/100-4.8 | 0.19 | N. flavescens subflava group | 2.12 | x |
| 1/100-4.9 | 0.19 | N. flavescens subflava group | 2.27 | x |
| 1/100-4.10 | 0.19 | N. flavescens subflava group | 2.3 | x |
| 1/100-4.11 | 0.19 | N. flavescens subflava group | 2.28 | x |
| 1/100-4.12 | 0.19 | N. flavescens subflava group | 2.19 | x |
| 1/100-4.13 | 0.19 | N. flavescens subflava group | 2.27 | x |
| 1/100-4.14 | 0.19 | N. flavescens subflava group | 2.25 | ✓ |
| 1/100-4.15 | 0.25 | N. flavescens subflava group | 2.07 | x |
| 1/100-4.16 | 0.25 | N. flavescens subflava group | 2.05 | x |
| 1/100-4.17 | 0.25 | N. flavescens subflava group | 2.11 | x |
| 1/100-4.18 | 0.25 | N. flavescens subflava group | 2.28 | x |
| 1/100-4.19 | 0.19 | N. flavescens subflava group | 2.28 | x |
| 1/100-4.20 | 0.25 | N. flavescens subflava group | 2.32 | x |
| 1/100-4.21 | 0.19 | N. flavescens subflava group | 2.31 | ✓ |
| 1/100-4.22 | 0.19 | N. flavescens subflava group | 2.25 | x |
| 1/100-4.23 | 0.19 | N. flavescens subflava group | 2.13 | x |
| 1/100-4.24 | 0.25 | N. flavescens subflava group | 2.27 | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
