Submitted:
22 May 2024
Posted:
23 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Tryptophan Metabolism in Mammals
3. Main Pathways of Tryptophan Metabolism in the Foetus
4. Tryptophan Metabolism in the Human Newborn
5. Genetics, Epigenetics and Tryptophan Metabolism
6. DOHaD—Early and Late Roles of Tryptophan Metabolites in Neurodevelopment
The Serotonin Pathway
7. Kynurenine Pathway
8. Final Considerations
Author Contributions
Funding
Conflicts of Interest
References
- Katsnelson, A. Did Disordered Proteins Help Launch Life on Earth? ACS Cent. Sci. 2020, 6, 1854–1857. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Hanson, M.A.; Mitchell, M.D. Developmental origins of health and disease: reducing the burden of chronic disease in the next generation. Genome Med. 2010, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Hanson, M.A.; Beedle, A.S. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2007, 19, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, G.P.; Stein, Z.A.; Susser, M.W. Obesity in young men after famine exposure in utero and early infancy. New Engl. J. Med. 1976, 295, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Eriksson, J.G.; Forsén, T.; Osmond, C. Fetal origins of adult disease: strength of effects and biological basis. Int. J. Epidemiol. 2002, 31, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Koemel, N.A.; Skilton, M.R. Epigenetic Aging in Early Life: Role of Maternal and Early Childhood Nutrition. Curr. Nutr. Rep. 2022, 11, 318–328. [Google Scholar] [CrossRef] [PubMed]
- McMillen, I.C.; Robinson, J.S. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 2005, 85, 571–633. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.; Judd, F.; Olsson, C.A.; Castle, D.; Bousman, C.; Sheehan, P.; Pantelis, C.; Craig, J.M.; Komiti, A.; Everall, I. Early origins of mental disorder—risk factors in the perinatal and infant period. BMC Psychiatry 2016, 16, 270. [Google Scholar] [CrossRef] [PubMed]
- de Souza, J.A.; Pinto, F.C.S.; de Souza, S.L. Early-life undernutrition and depression later in life: a systematic review. Nutr. Rev. 2023, 82, 90–103. [Google Scholar] [CrossRef]
- De Luca, S.N.; Ziko, I.; Sominsky, L.; Nguyen, J.C.; Dinan, T.; Miller, A.A.; Jenkins, T.A.; Spencer, S.J. Early life overfeeding impairs spatial memory performance by reducing microglial sensitivity to learning. J. Neuroinflammation 2016, 13, 112. [Google Scholar] [CrossRef]
- Canani, R.B.; Costanzo, M.D.; Leone, L.; Bedogni, G.; Brambilla, P.; Cianfarani, S.; Nobili, V.; Pietrobelli, A.; Agostoni, C. Epigenetic mechanisms elicited by nutrition in early life. Nutr. Res. Rev. 2011, 24, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.S.; de Oliveira, L.M.; Graeff, F.G. Early life protein malnutrition changes exploration of the elevated plus-maze and reactivity to anxiolytics. Psychopharmacology 1991, 103, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Giriko, C.; Andreoli, C.A.; Mennitti, L.V.; Hosoume, L.F.; Souto Tdos, S.; Silva, A.V.; Mendes-da-Silva, C. Delayed physical and neurobehavioral development and increased aggressive and depression-like behaviors in the rat offspring of dams fed a high-fat diet. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 2013, 31, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Souto, T.D.S.; Nakao, F.S.N.; Giriko, C.; Dias, C.T.; Cheberle, A.; Lambertucci, R.H.; Mendes-da-Silva, C. Lard-rich and canola oil-rich high-fat diets during pregnancy promote rats’ offspring neurodevelopmental delay and behavioral disorders. Physiol. Behav. 2020, 213, 112722. [Google Scholar] [CrossRef] [PubMed]
- Curi, H.T.; Dias, C.T.; da Luz Camargo, M.L.M.; Dos Santos Gomez, P.; Gomes, M.F.P.; Beserra-Filho, J.I.A.; Medeiros, A.; Ribeiro, A.M.; Simabuco, F.M.; Lambertucci, R.H.; Mendes-da-Silva, C. Maternal high-fat diet increases anhedonic behavior and modulates hippocampal Mash1 and BDNF expression in adult offspring. Neurosci. Lett. 2021, 764, 136239. [Google Scholar] [CrossRef] [PubMed]
- Lopes de Souza, S.; Orozco-Solis, R.; Grit, I.; Manhães de Castro, R.; Bolaños-Jiménez, F. Perinatal protein restriction reduces the inhibitory action of serotonin on food intake. Eur. J. Neurosci. 2008, 27, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, E.; Guzman-Quevedo, O.; Delacourt, N.; da Silva Aragão, R.; Perez-Garcia, G.; de Souza, S.L.; Manhães-de-Castro, R.; Bolaños-Jiménez, F.; Kaeffer, B. Long-lasting effect of perinatal exposure to L-tryptophan on circadian clock of primary cell lines established from male offspring born from mothers fed on dietary protein restriction. PloS One 2013, 8, e56231. [Google Scholar] [CrossRef] [PubMed]
- Tavares, G.A.; Almeida, L.; de Souza, J.A.; Braz, G.R.F.; da Silva, M.C.; Lagranha, C.J.; do Nascimento, E.; de Souza, S.L. Early weaning disrupts feeding patterns in female juvenile rats through 5HT-system modulations. Behav. Process. 2020, 170, 103981. [Google Scholar] [CrossRef]
- Stone, T.W. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol. Rev. 1993, 45, 309–379. [Google Scholar]
- Rind, H.B.; Russo, A.F.; Whittemore, S.R. Developmental regulation of tryptophan hydroxylase messenger RNA expression and enzyme activity in the raphe and its target fields. Neuroscience 2000, 101, 665–677. [Google Scholar] [CrossRef]
- Gardner, K.L.; Hale, M.W.; Oldfield, S.; Lightman, S.L.; Plotsky, P.M.; Lowry, C.A. Adverse experience during early life and adulthood interact to elevate tph2 mRNA expression in serotonergic neurons within the dorsal raphe nucleus. Neuroscience 2009, 163, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Penatti, E.M.; Barina, A.E.; Raju, S.; Li, A.; Kinney, H.C.; Commons, K.G.; Nattie, E.E. Maternal dietary tryptophan deficiency alters cardiorespiratory control in rat pups. Journal of applied physiology (Bethesda, Md. 1985) 2011, 110, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Mage, D.T.; Kollander, M. Brainstem serotonin in sudden infant death syndrome. Jama 2010, 303, 1810; author reply 1810-1. [Google Scholar] [CrossRef] [PubMed]
- Zoratto, F.; Fiore, M.; Ali, S.F.; Laviola, G.; Macrì, S. Neonatal tryptophan depletion and corticosterone supplementation modify emotional responses in adult male mice. Psychoneuroendocrinology 2013, 38, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Bender, D.A. Biochemistry of tryptophan in health and disease. Mol. Asp. Med. 1983, 6, 101–197. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.M. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. Plant Cell 1995, 7, 907–919. [Google Scholar] [CrossRef]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J. Amino Acids 2016, 2016, 8952520. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Wurtman, R.J. Brain serotonin content: increase following ingestion of carbohydrate diet. Sci. (New York N.Y.) 1971, 174, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Vécsei, L.; Szalárdy, L.; Fülöp, F.; Toldi, J. Kynurenines in the CNS: recent advances and new questions. Nat. Rev. Drug Discov. 2013, 12, 64–82. [Google Scholar] [CrossRef]
- Munn, D.H.; Zhou, M.; Attwood, J.T.; Bondarev, I.; Conway, S.J.; Marshall, B.; Brown, C.; Mellor, A.L. Prevention of allogeneic fetal rejection by tryptophan catabolism. Sci. (New York N.Y.) 1998, 281, 1191–1193. [Google Scholar] [CrossRef]
- Plitman, E.; Iwata, Y.; Caravaggio, F.; Nakajima, S.; Chung, J.K.; Gerretsen, P.; Kim, J.; Takeuchi, H.; Chakravarty, M.M.; Remington, G.; Graff-Guerrero, A. Kynurenic Acid in Schizophrenia: A Systematic Review and Meta-analysis. Schizophr. Bull. 2017, 43, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Wirleitner, B.; Neurauter, G.; Schröcksnadel, K.; Frick, B.; Fuchs, D. Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr. Med. Chem. 2003, 10, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Li, G.; Zheng, Q.; Gu, X.; Shi, Q.; Su, Y.; Chu, Q.; Yuan, X.; Bao, Z.; Lu, J.; Li, L. Tryptophan metabolism in health and disease. Cell Metab. 2023, 35, 1304–1326. [Google Scholar] [CrossRef] [PubMed]
- Chiarugi, A.; Carpenedo, R.; Molina, M.T.; Mattoli, L.; Pellicciari, R.; Moroni, F. Comparison of the neurochemical and behavioral effects resulting from the inhibition of kynurenine hydroxylase and/or kynureninase. J. Neurochem. 1995, 65, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Salter, M.; Pogson, C.I. The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes. Biochem. J. 1985, 229, 499–504. [Google Scholar] [CrossRef]
- Hayaishi, O. Properties and function of indoleamine 2,3-dioxygenase. J. Biochem. 1976, 79, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Maes, M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 42, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.M.; Park, S.; Kim, H. Serotonin as a New Therapeutic Target for Diabetes Mellitus and Obesity. Diabetes Metab. J. 2016, 40, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Q.; Fichna, J.; Bashashati, M.; Li, Y.Y.; Storr, M. Distribution, function and physiological role of melatonin in the lower gut. World J. Gastroenterol. 2011, 17, 3888–3898. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, S.; Ma, N.; Johnston, L.J.; Wu, C.; Ma, X. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation. Med. Res. Rev. 2021, 41, 1061–1088. [Google Scholar] [CrossRef]
- Wei, G.Z.; Martin, K.A.; Xing, P.Y.; Agrawal, R.; Whiley, L.; Wood, T.K.; Hejndorf, S.; Ng, Y.Z.; Low, J.Z.Y.; Rossant, J.; Nechanitzky, R.; Holmes, E.; Nicholson, J.K.; Tan, E.K.; Matthews, P.M.; Pettersson, S. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. United States Am. 2021, 118. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Bose, C.; Mande, S.S. Tryptophan Metabolism by Gut Microbiome and Gut-Brain-Axis: An in silico Analysis. Front. Neurosci. 2019, 13, 1365. [Google Scholar] [CrossRef] [PubMed]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef] [PubMed]
- Perez-Castro, L.; Garcia, R.; Venkateswaran, N.; Barnes, S.; Conacci-Sorrell, M. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J. 2023, 290, 7–27. [Google Scholar] [CrossRef] [PubMed]
- Mawe, G.M.; Hoffman, J.M. Serotonin signalling in the gut--functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Michaudel, C.; Danne, C.; Agus, A.; Magniez, A.; Aucouturier, A.; Spatz, M.; Lefevre, A.; Kirchgesner, J.; Rolhion, N.; Wang, Y.; Lavelle, A.; Galbert, C.; Da Costa, G.; Poirier, M.; Lapière, A.; Planchais, J.; Nádvorník, P.; Illes, P.; Oeuvray, C.; Creusot, L.; Michel, M.L.; Benech, N.; Bourrier, A.; Nion-Larmurier, I.; Landman, C.; Richard, M.L.; Emond, P.; Seksik, P.; Beaugerie, L.; Arguello, R.R.; Moulin, D.; Mani, S.; Dvorák, Z.; Bermúdez-Humarán, L.G.; Langella, P.; Sokol, H. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut 2023, 72, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Si, Q.; Qi, R.; Liu, W.; Li, M.; Guo, M.; Wei, L.; Yao, Z. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor. Front. Immunol. 2021, 12, 800630. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Tomek, P. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO. Front. Immunol. 2021, 12, 636081. [Google Scholar] [CrossRef] [PubMed]
- Tow, D.H.; Chan, C.H.; Howe, J.R.; Ear, P.H. A luminescent sensor for investigating serotonin metabolism in neuroendocrine cancer. Surgery 2024, 175, 726–734. [Google Scholar] [CrossRef]
- Laurent, L.; Deroy, K.; St-Pierre, J.; Côté, F.; Sanderson, J.T.; Vaillancourt, C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie 2017, 140, 159–165. [Google Scholar] [CrossRef]
- Sedlmayr, P.; Blaschitz, A.; Stocker, R. The role of placental tryptophan catabolism. Front. Immunol. 2014, 5, 230. [Google Scholar] [CrossRef] [PubMed]
- Ranzil, S.; Ellery, S.; Walker, D.W.; Vaillancourt, C.; Alfaidy, N.; Bonnin, A.; Borg, A.; Wallace, E.M.; Ebeling, P.R.; Erwich, J.J.; Murthi, P. Disrupted placental serotonin synthetic pathway and increased placental serotonin: Potential implications in the pathogenesis of human fetal growth restriction. Placenta 2019, 84, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, A.; Goeden, N.; Chen, K.; Wilson, M.L.; King, J.; Shih, J.C.; Blakely, R.D.; Deneris, E.S.; Levitt, P. A transient placental source of serotonin for the fetal forebrain. Nature 2011, 472, 347–350. [Google Scholar] [CrossRef]
- Kliman, H.J.; Quaratella, S.B.; Setaro, A.C.; Siegman, E.C.; Subha, Z.T.; Tal, R.; Milano, K.M.; Steck, T.L. Pathway of Maternal Serotonin to the Human Embryo and Fetus. Endocrinology 2018, 159, 1609–1629. [Google Scholar] [CrossRef] [PubMed]
- Karahoda, R.; Abad, C.; Horackova, H.; Kastner, P.; Zaugg, J.; Cerveny, L.; Kucera, R.; Albrecht, C.; Staud, F. Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation. Front. Cell Dev. Biol. 2020, 8, 574034. [Google Scholar] [CrossRef] [PubMed]
- Hudon Thibeault, A.A.; Laurent, L.; Vo Duy, S.; Sauvé, S.; Caron, P.; Guillemette, C.; Sanderson, J.T.; Vaillancourt, C. Fluoxetine and its active metabolite norfluoxetine disrupt estrogen synthesis in a co-culture model of the feto-placental unit. Mol. Cell. Endocrinol. 2017, 442, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Hudon Thibeault, A.A.; López de Los Santos, Y.; Doucet, N.; Sanderson, J.T.; Vaillancourt, C. Serotonin and serotonin reuptake inhibitors alter placental aromatase. J. Steroid Biochem. Mol. Biol. 2019, 195, 105470. [Google Scholar] [CrossRef] [PubMed]
- Staud, F.; Karahoda, R. Trophoblast: The central unit of fetal growth, protection and programming. Int. J. Biochem. Cell Biol. 2018, 105, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Baković, P.; Kesić, M.; Perić, M.; Bečeheli, I.; Horvatiček, M.; George, M.; Čičin-Šain, L.; Desoye, G.; Wadsack, C.; Panzenboeck, U.; Štefulj, J. Differential Serotonin Uptake Mechanisms at the Human Maternal-Fetal Interface. Int. J. Mol. Sci. 2021, 22. [Google Scholar] [CrossRef]
- Lanoix, D.; Beghdadi, H.; Lafond, J.; Vaillancourt, C. Human placental trophoblasts synthesize melatonin and express its receptors. J. Pineal Res. 2008, 45, 50–60. [Google Scholar] [CrossRef]
- Berbets, A.; Koval, H.; Barbe, A.; Albota, O.; Yuzko, O. Melatonin decreases and cytokines increase in women with placental insufficiency. J. Matern. -Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obs. 2021, 34, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Schröcksnadel, K.; Widner, B.; Bergant, A.; Neurauter, G.; Schröcksnadel, H.; Fuchs, D. Tryptophan degradation during and after gestation. Adv. Exp. Med. Biol. 2003, 527, 77–83. [Google Scholar] [PubMed]
- Minatogawa, Y.; Suzuki, S.; Ando, Y.; Tone, S.; Takikawa, O. Tryptophan pyrrole ring cleavage enzymes in placenta. Adv. Exp. Med. Biol. 2003, 527, 425–434. [Google Scholar] [PubMed]
- Karahoda, R.; Horackova, H.; Kastner, P.; Matthios, A.; Cerveny, L.; Kucera, R.; Kacerovsky, M.; Duintjer Tebbens, J.; Bonnin, A.; Abad, C.; Staud, F. Serotonin homeostasis in the materno-foetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol. (Oxf. Engl. ) 2020, 229, e13478. [Google Scholar] [CrossRef] [PubMed]
- Kanai, M.; Funakoshi, H.; Takahashi, H.; Hayakawa, T.; Mizuno, S.; Matsumoto, K.; Nakamura, T. Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol. Brain 2009, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Ceresoli-Borroni, G.; Schwarcz, R. Perinatal kynurenine pathway metabolism in the normal and asphyctic rat brain. Amino Acids 2000, 19, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Pershing, M.L.; Bortz, D.M.; Pocivavsek, A.; Fredericks, P.J.; Jørgensen, C.V.; Vunck, S.A.; Leuner, B.; Schwarcz, R.; Bruno, J.P. Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: implications for schizophrenia. Neuropharmacology 2015, 90, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Nayman, R.; Thomson, M.E.; Scriver, C.R.; Clow, C.L. Observations on the composition of milk-substitute products for treatment of inborn errors of amino acid metabolism. Comparisons with human milk. A proposal to rationalize nutrient content of treatment products. Am. J. Clin. Nutr. 1979, 32, 1279–1289. [Google Scholar] [CrossRef]
- Zanardo, V.; Bacolla, G.; Biasiolo, M.; Allegri, G. Free and bound tryptophan in human milk during early lactation. Biol. Neonate 1989, 56, 57–59. [Google Scholar] [CrossRef]
- Kulski, J.K.; Hartmann, P.E. Changes in human milk composition during the initiation of lactation. Aust. J. Exp. Biol. Med. Sci. 1981, 59, 101–114. [Google Scholar] [CrossRef]
- O’Rourke, L.; Clarke, G.; Nolan, A.; Watkins, C.; Dinan, T.G.; Stanton, C.; Ross, R.P.; Ryan, C.A. Tryptophan metabolic profile in term and preterm breast milk: implications for health. J. Nutr. Sci. 2018, 7, e13. [Google Scholar] [CrossRef] [PubMed]
- Girgin, G.; Sanajou, S.; Meric-Deliveli, S.; Baydar, T. Verification studies of tryptophan and kynurenine determination using HPLC and evaluation of the kynurenine pathway and neopterin levels in human colostrum samples. Biomed. Chromatogr. BMC 2024, 38, e5791. [Google Scholar] [CrossRef] [PubMed]
- Bourgoin, S.; Faivre-Bauman, A.; Benda, P.; Glowinski, J.; Hamon, M. Plasma tryptophan and 5-HT metabolism in the CNS of the newborn rat. J. Neurochem. 1974, 23, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Tricklebank, M.D.; Pickard, F.J.; de Souza, S.W. Free and bound tryptophan in human plasma during the perinatal period. Acta Paediatr. Scand. 1979, 68, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Loizou, L.A. Uptake of monoamines into central neurones and the blood-brain barrier in the infant rat. Br. J. Pharmacol. 1970, 40, 800–813. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.S.; Giarman, N.J. Schedule of appearance of 5-hydroxy-tryptamine (serotonin) and associated enzymes in the developing rat brain. J. Neurochem. 1965, 12, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Lytle, L.D.; Messing, R.B.; Fisher, L.; Phebus, L. Effects of long-term corn consumption on brain serotonin and the response to electric shock. Sci. (New York N.Y.) 1975, 190, 692–694. [Google Scholar] [CrossRef]
- Pascucci, T.; Andolina, D.; Ventura, R.; Puglisi-Allegra, S.; Cabib, S. Reduced availability of brain amines during critical phases of postnatal development in a genetic mouse model of cognitive delay. Brain Res. 2008, 1217, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, S.; Quagliariello, E.; Rubino, A. Interrelation of tryptophan and nicotinic acid in man during the first month of life. Nature 1960, 186, 639–640. [Google Scholar] [CrossRef]
- Ardura, J.; Gutierrez, R.; Andres, J.; Agapito, T. Emergence and evolution of the circadian rhythm of melatonin in children. Horm. Res. 2003, 59, 66–72. [Google Scholar] [CrossRef]
- Bruffaerts, R.; Demyttenaere, K.; Borges, G.; Haro, J.M.; Chiu, W.T.; Hwang, I.; Karam, E.G.; Kessler, R.C.; Sampson, N.; Alonso, J.; Andrade, L.H.; Angermeyer, M.; Benjet, C.; Bromet, E.; de Girolamo, G.; de Graaf, R.; Florescu, S.; Gureje, O.; Horiguchi, I.; Hu, C.; Kovess, V.; Levinson, D.; Posada-Villa, J.; Sagar, R.; Scott, K.; Tsang, A.; Vassilev, S.M.; Williams, D.R.; Nock, M.K. Childhood adversities as risk factors for onset and persistence of suicidal behaviour. Br. J. Psychiatry J. Ment. Sci. 2010, 197, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Pietrek, C.; Elbert, T.; Weierstall, R.; Müller, O.; Rockstroh, B. Childhood adversities in relation to psychiatric disorders. Psychiatry Res. 2013, 206, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Edwards, V.J.; Holden, G.W.; Felitti, V.J.; Anda, R.F. Relationship between multiple forms of childhood maltreatment and adult mental health in community respondents: results from the adverse childhood experiences study. Am. J. Psychiatry 2003, 160, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Caspi, A.; Sugden, K.; Moffitt, T.E.; Taylor, A.; Craig, I.W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Sci. (New York N.Y.) 2003, 301, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Fergusson, D.M.; Horwood, L.J.; Miller, A.L.; Kennedy, M.A. Life stress, 5-HTTLPR and mental disorder: findings from a 30-year longitudinal study. Br. J. Psychiatry J. Ment. Sci. 2011, 198, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, S.; Janowitz, D.; Schulz, A.; Homuth, G.; Nauck, M.; Völzke, H.; Rose, M.; Meyer zu Schwabedissen, H.; Freyberger, H.J.; Grabe, H.J. Interaction among childhood trauma and functional polymorphisms in the serotonin pathway moderate the risk of depressive disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264 (Suppl. 1), S45–S54. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, Q.; Zhang, P.; Liu, H.; Ye, Z. Interaction between childhood trauma experience and TPH2 rs7305115 gene polymorphism in brain gray matter volume. Behav. Brain Funct. BBF 2023, 19, 22. [Google Scholar] [CrossRef] [PubMed]
- Appel, K.; Schwahn, C.; Mahler, J.; Schulz, A.; Spitzer, C.; Fenske, K.; Stender, J.; Barnow, S.; John, U.; Teumer, A.; Biffar, R.; Nauck, M.; Völzke, H.; Freyberger, H.J.; Grabe, H.J. Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2011, 36, 1982–1991. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, T.; Malyszczak, K.; Pawlak, D.; Inglot, M.; Zalewska, M.; Grzywacz, A.; Radkowski, M.; Laskus, T.; Janocha-Litwin, J.; Frydecka, D. HTR1A, TPH2, and 5-HTTLPR Polymorphisms and Their Impact on the Severity of Depressive Symptoms and on the Concentration of Tryptophan Catabolites during Hepatitis C Treatment with Pegylated Interferon-α2a and Oral Ribavirin (PEG-IFN-α2a/RBV). Cells 2023, 12. [Google Scholar] [CrossRef]
- Ottenhof, K.W.; Sild, M.; Lévesque, M.L.; Ruhé, H.G.; Booij, L. TPH2 polymorphisms across the spectrum of psychiatric morbidity: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2018, 92, 29–42. [Google Scholar] [CrossRef]
- Li, D.; He, L. Meta-analysis shows association between the tryptophan hydroxylase (TPH) gene and schizophrenia. Hum. Genet. 2006, 120, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Pratelli, M.; Pasqualetti, M. Serotonergic neurotransmission manipulation for the understanding of brain development and function: Learning from Tph2 genetic models. Biochimie 2019, 161, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Alenina, N.; Kikic, D.; Todiras, M.; Mosienko, V.; Qadri, F.; Plehm, R.; Boyé, P.; Vilianovitch, L.; Sohr, R.; Tenner, K.; Hörtnagl, H.; Bader, M. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc. Natl. Acad. Sci. United States Am. 2009, 106, 10332–10337. [Google Scholar] [CrossRef] [PubMed]
- Buydens-Branchey, L.; Branchey, M.H.; Noumair, D.; Lieber, C.S. Age of alcoholism onset. II. Relationship to susceptibility to serotonin precursor availability. Arch. Gen. Psychiatry 1989, 46, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Zaniewska, M.; Mosienko, V.; Bader, M.; Alenina, N. Tph2 Gene Expression Defines Ethanol Drinking Behavior in Mice. Cells 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, D.M.; Marsh, D.M.; Mathias, C.W.; Dawes, M.A.; Bradley, D.M.; Morgan, C.J.; Badawy, A.A. The effects of alcohol on laboratory-measured impulsivity after L: -Tryptophan depletion or loading. Psychopharmacology 2007, 193, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Jessa, M.; Krzaścik, P.; Kostowski, W. Neonatal treatment with 5,7-dihydroxytryptamine induces decrease in alcohol drinking in adult animals. Pol. J. Pharmacol. 2001, 53, 109–116. [Google Scholar] [PubMed]
- Higley, J.D.; Bennett, A.J. Central nervous system serotonin and personality as variables contributing to excessive alcohol consumption in non-human primates. Alcohol Alcohol. (Oxf. Oxfs.) 1999, 34, 402–418. [Google Scholar] [CrossRef]
- Mosienko, V.; Bert, B.; Beis, D.; Matthes, S.; Fink, H.; Bader, M.; Alenina, N. Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Transl. Psychiatry 2012, 2, e122. [Google Scholar] [CrossRef]
- Meng, X.; Grandjean, J.; Sbrini, G.; Schipper, P.; Hofwijks, N.; Stoop, J.; Calabrese, F.; Homberg, J. Tryptophan Hydroxylase 2 Knockout Male Rats Exhibit a Strengthened Oxytocin System, Are Aggressive, and Are Less Anxious. ACS Chem. Neurosci. 2022, 13, 2974–2981. [Google Scholar] [CrossRef]
- Sabihi, S.; Dong, S.M.; Maurer, S.D.; Post, C.; Leuner, B. Oxytocin in the medial prefrontal cortex attenuates anxiety: Anatomical and receptor specificity and mechanism of action. Neuropharmacology 2017, 125, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lukas, M.; Toth, I.; Reber, S.O.; Slattery, D.A.; Veenema, A.H.; Neumann, I.D. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2011, 36, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Mosienko, V.; Matthes, S.; Hirth, N.; Beis, D.; Flinders, M.; Bader, M.; Hansson, A.C.; Alenina, N. Adaptive changes in serotonin metabolism preserve normal behavior in mice with reduced TPH2 activity. Neuropharmacology 2014, 85, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Goyal, D.; Limesand, S.W.; Goyal, R. Epigenetic responses and the developmental origins of health and disease. J. Endocrinol. 2019, 242, T105–T119. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An operational definition of epigenetics. Genes Dev. 2009, 23, 781–783. [Google Scholar] [CrossRef] [PubMed]
- Heim, C.; Nemeroff, C.B. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry 2001, 49, 1023–1039. [Google Scholar] [CrossRef] [PubMed]
- van, I.M.H.; Caspers, K.; Bakermans-Kranenburg, M.J.; Beach, S.R.; Philibert, R. Methylation matters: interaction between methylation density and serotonin transporter genotype predicts unresolved loss or trauma. Biol. Psychiatry 2010, 68, 405–407. [Google Scholar]
- Beach, S.R.; Brody, G.H.; Todorov, A.A.; Gunter, T.D.; Philibert, R.A. Methylation at 5HTT mediates the impact of child sex abuse on women’s antisocial behavior: an examination of the Iowa adoptee sample. Psychosom. Med. 2011, 73, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Schübeler, D. Function and information content of DNA methylation. Nature 2015, 517, 321–326. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Shi, Y.; Pu, M.; Yuan, Y.; Zhang, X.; Li, L.; Reynolds, G.P. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J. Psychopharmacol. (Oxf. Engl.) 2012, 26, 349–359. [Google Scholar] [CrossRef]
- Xu, Z.; Reynolds, G.P.; Yuan, Y.; Shi, Y.; Pu, M.; Zhang, Z. TPH-2 Polymorphisms Interact with Early Life Stress to Influence Response to Treatment with Antidepressant Drugs. Int. J. Neuropsychopharmacol. 2016, 19. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Li, X.; Chen, L.; Chen, Z.; Tan, T.; Hua, T.; Chen, B.; Yuan, Y.; Zhang, Z.; Kuney, L.; Xu, Z. The relationship of tryptophan hydroxylase-2 methylation to early-life stress and its impact on short-term antidepressant treatment response. J. Affect. Disord. 2020, 276, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, J.; Zhou, Q. Prognostic role of indoleamine 2,3-dioxygenase 1 expression in solid tumors: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 954495. [Google Scholar] [CrossRef]
- Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 2003, 9, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Sun, S.Y.; Dong, Q.Q.; Wu, X.X.; Tang, W.; Xing, Y.Q. Recent advances in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. MedChemComm 2019, 10, 1740–1754. [Google Scholar] [CrossRef] [PubMed]
- Dewi, D.L.; Mohapatra, S.R.; Blanco Cabañes, S.; Adam, I.; Somarribas Patterson, L.F.; Berdel, B.; Kahloon, M.; Thürmann, L.; Loth, S.; Heilmann, K.; Weichenhan, D.; Mücke, O.; Heiland, I.; Wimberger, P.; Kuhlmann, J.D.; Kellner, K.H.; Schott, S.; Plass, C.; Platten, M.; Gerhäuser, C.; Trump, S.; Opitz, C.A. Suppression of indoleamine-2,3-dioxygenase 1 expression by promoter hypermethylation in ER-positive breast cancer. Oncoimmunology 2017, 6, e1274477. [Google Scholar] [CrossRef] [PubMed]
- Farrelly, L.A.; Thompson, R.E.; Zhao, S.; Lepack, A.E.; Lyu, Y.; Bhanu, N.V.; Zhang, B.; Loh, Y.E.; Ramakrishnan, A.; Vadodaria, K.C.; Heard, K.J.; Erikson, G.; Nakadai, T.; Bastle, R.M.; Lukasak, B.J.; Zebroski, H. 3rd; Alenina, N.; Bader, M.; Berton, O.; Roeder, R.G.; Molina, H.; Gage, F.H.; Shen, L.; Garcia, B.A.; Li, H.; Muir, T.W.; Maze, I. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 2019, 567, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Bader, M. Serotonylation: Serotonin Signaling and Epigenetics. Front. Mol. Neurosci. 2019, 12, 288. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.H.; Wang, Y.H.; Hu, L.P.; Wang, X.; Li, J.; Zhang, X.L.; Zhang, Z.G. The physiology, pathology and potential therapeutic application of serotonylation. J. Cell Sci. 2021, 134. [Google Scholar] [CrossRef] [PubMed]
- Anastas, J.N.; Shi, Y. Histone Serotonylation: Can the Brain Have “Happy” Chromatin? Mol. Cell 2019, 74, 418–420. [Google Scholar] [CrossRef]
- Al-Kachak, A.; Fulton, S.L.; Di Salvo, G.; Chan, J.C.; Farrelly, L.A.; Lepack, A.E.; Bastle, R.M.; Kong, L.; Cathomas, F.; Newman, E.L.; Menard, C.; Ramakrishnan, A.; Safovich, P.; Lyu, Y.; Covington, H.E. 3rd; Shen, L.; Gleason, K.; Tamminga, C.A.; Russo, S.J.; Maze, I. Histone H3 serotonylation dynamics in dorsal raphe nucleus contribute to stress- and antidepressant-mediated gene expression and behavior. Biorxiv : Prepr. Serv. Biol. 2023. [Google Scholar]
- Romano-López, A.; Méndez-Díaz, M.; García, F.G.; Regalado-Santiago, C.; Ruiz-Contreras, A.E.; Prospéro-García, O. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats. Dev. Neurobiol. 2016, 76, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Kronman, H.; Torres-Berrío, A.; Sidoli, S.; Issler, O.; Godino, A.; Ramakrishnan, A.; Mews, P.; Lardner, C.K.; Parise, E.M.; Walker, D.M.; van der Zee, Y.Y.; Browne, C.J.; Boyce, B.F.; Neve, R.; Garcia, B.A.; Shen, L.; Peña, C.J.; Nestler, E.J. Long-term behavioral and cell-type-specific molecular effects of early life stress are mediated by H3K79me2 dynamics in medium spiny neurons. Nat. Neurosci. 2021, 24, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, L.; Petrelli, C.; Serretti, A. The role of specific early trauma in adult depression: A meta-analysis of published literature. Childhood trauma and adult depression. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2015, 30, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.; Alenina, N.; Cunningham, A.M.; Ramakrishnan, A.; Shen, L.; Bader, M.; Maze, I. Serotonin Transporter-dependent Histone Serotonylation in Placenta Contributes to the Neurodevelopmental Transcriptome. J. Mol. Biol. 2024, 436, 168454. [Google Scholar] [CrossRef] [PubMed]
- Bartesaghi, R.; Guidi, S.; Ciani, E. Is it possible to improve neurodevelopmental abnormalities in Down syndrome? Rev. Neurosci. 2011, 22, 419–455. [Google Scholar] [CrossRef] [PubMed]
- Stagni, F.; Giacomini, A.; Guidi, S.; Ciani, E.; Bartesaghi, R. Timing of therapies for Down syndrome: the sooner, the better. Front. Behav. Neurosci. 2015, 9, 265. [Google Scholar] [CrossRef]
- Dongol, A.; Chen, X.; Zheng, P.; Seyhan, Z.B.; Huang, X.F. Quinolinic acid impairs mitophagy promoting microglia senescence and poor healthspan in C. elegans: a mechanism of impaired aging process. Biol. Direct 2023, 18, 86. [Google Scholar] [CrossRef] [PubMed]
- Hestad, K.; Alexander, J.; Rootwelt, H.; Aaseth, J.O. The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules 2022, 12. [Google Scholar] [CrossRef]
- Kim, Y.K.; Jeon, S.W. Neuroinflammation and the Immune-Kynurenine Pathway in Anxiety Disorders. Curr. Neuropharmacol. 2018, 16, 574–582. [Google Scholar] [CrossRef]
- Lauder, J.M.; Bloom, F.E. Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J. Comp. Neurol. 1974, 155, 469–481. [Google Scholar] [CrossRef]
- Lidov, H.G.; Molliver, M.E. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res. Bull. 1982, 8, 389–430. [Google Scholar] [CrossRef] [PubMed]
- Woolley, D.W.; Vanderhoeven, T. SEROTONIN DEFICIENCY IN INFANCY AS ONE CAUSE OF A MENTAL DEFECT IN PHENYLKETONURIA. Sci. (New York N.Y.) 1964, 144, 883–884. [Google Scholar] [CrossRef] [PubMed]
- Woolley, D.W.; Vanderhoeven, T. PREVENTION OF A MENTAL DEFECT OF PHENYLKETONURIA WITH SEROTONIN CONGENERS SUCH AS MELATONIN OR HYDROXYTRYPTOPHAN. Sci. (New York N.Y.) 1964, 144, 1593–1594. [Google Scholar] [CrossRef] [PubMed]
- Booij, L.; Tremblay, R.E.; Leyton, M.; Séguin, J.R.; Vitaro, F.; Gravel, P.; Perreau-Linck, E.; Lévesque, M.L.; Durand, F.; Diksic, M.; Turecki, G.; Benkelfat, C. Brain serotonin synthesis in adult males characterized by physical aggression during childhood: a 21-year longitudinal study. PloS One 2010, 5, e11255. [Google Scholar] [CrossRef] [PubMed]
- Booij, L.; Benkelfat, C.; Leyton, M.; Vitaro, F.; Gravel, P.; Lévesque, M.L.; Arseneault, L.; Diksic, M.; Tremblay, R.E. Perinatal effects on in vivo measures of human brain serotonin synthesis in adulthood: a 27-year longitudinal study. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2012, 22, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Mercado, C.P.; Kilic, F. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels. Mol. Interv. 2010, 10, 231–241. [Google Scholar] [CrossRef]
- Fouquet, G.; Coman, T.; Hermine, O.; Côté, F. Serotonin, hematopoiesis and stem cells. Pharmacol. Res. 2019, 140, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Horackova, H.; Karahoda, R.; Cerveny, L.; Vachalova, V.; Ebner, R.; Abad, C.; Staud, F. Effect of Selected Antidepressants on Placental Homeostasis of Serotonin: Maternal and Fetal Perspectives. Pharmaceutics 2021, 13. [Google Scholar] [CrossRef]
- Yonkers, K.A.; Wisner, K.L.; Stewart, D.E.; Oberlander, T.F.; Dell, D.L.; Stotland, N.; Ramin, S.; Chaudron, L.; Lockwood, C. The management of depression during pregnancy: a report from the American Psychiatric Association and the American College of Obstetricians and Gynecologists. Obstet. Gynecol. 2009, 114, 703–713. [Google Scholar] [CrossRef]
- Glover, M.E.; McCoy, C.R.; Shupe, E.A.; Unroe, K.A.; Jackson, N.L.; Clinton, S.M. Perinatal exposure to the SSRI paroxetine alters the methylome landscape of the developing dentate gyrus. Eur. J. Neurosci. 2019, 50, 1843–1870. [Google Scholar] [CrossRef] [PubMed]
- Van der Knaap, N.; Wiedermann, D.; Schubert, D.; Hoehn, M.; Homberg, J.R. Perinatal SSRI exposure affects brain functional activity associated with whisker stimulation in adolescent and adult rats. Sci. Rep. 2021, 11, 1680. [Google Scholar] [CrossRef] [PubMed]
- Domingues, R.R.; Wiltbank, M.C.; Hernandez, L.L. Maternal serotonin: implications for the use of selective serotonin reuptake inhibitors during gestation†. Biol. Reprod. 2023, 109, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.J.; Corbin, L.A.; Sundell, K.L. Effects of first-trimester fluoxetine exposure on the newborn. Obstet. Gynecol. 1997, 89, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.J. Effects of third trimester fluoxetine exposure on the newborn. J. Clin. Psychopharmacol. 1995, 15, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Misri, S.; Burgmann, A.; Kostaras, D. Are SSRIs safe for pregnant and breastfeeding women? Can. Fam. Physician Med. De Fam. Can. 2000, 46, 626–628, 631–633. [Google Scholar]
- Favrelière, S.; Nourrisson, A.; Jaafari, N.; Pérault Pochat, M.C. [Treatment of depressed pregnant women by selective serotonin reuptake inhibitors: risk for the foetus and the newborn]. L’Encephale 2010, 36 (Suppl. 2), D133–D138. [Google Scholar] [CrossRef] [PubMed]
- Manhães de Castro, R.; Barreto Medeiros, J.M.; Mendes da Silva, C.; Ferreira, L.M.; Guedes, R.C.; Cabral Filho, J.E.; Costa, J.A. Reduction of intraspecific aggression in adult rats by neonatal treatment with a selective serotonin reuptake inhibitor. Braz. J. Med. Biol. Res. = Rev. Bras. De Pesqui. Medicas E Biol. 2001, 34, 121–124. [Google Scholar] [CrossRef]
- Mendes-da-Silva, C.; de Souza, S.L.; Barreto-Medeiros, J.M.; de Freitas-Silva, S.R.; Antunes, D.E.; Cunha, A.D.; Ribas, V.R.; de França, M.F.; Nogueira, M.I.; Manhães-de-Castro, R. Neonatal treatment with fluoxetine reduces depressive behavior induced by forced swim in adult rats. Arq. De Neuro-Psiquiatr. 2002, 60, 928–931. [Google Scholar] [CrossRef]
- de Souza, S.L.; Nogueira, M.I.; de Jesus Deiró, T.C.; de Castro, F.M.; da Silva, C.M.; da Silva, M.C.; de Lira, L.O.; Azmitia, E.C.; de Castro, R.M. Differential effects on somatic and reflex development by chronic clomipramine treatment. Physiol. Behav. 2004, 82, 375–379. [Google Scholar]
- Deiró, T.C.; Manhães-de-Castro, R.; Cabral-Filho, J.E.; Souza, S.L.; Freitas-Silva, S.R.; Ferreira, L.M.; Guedes, R.C.; Câmara, C.R.; Barros, K.M. Neonatal administration of citalopram delays somatic maturation in rats. Braz. J. Med. Biol. Res. = Rev. Bras. De Pesqui. Medicas E Biol. 2004, 37, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Deiró, T.C.; Manhães-de-Castro, R.; Cabral-Filho, J.E.; Barreto-Medeiros, J.M.; Souza, S.L.; Marinho, S.M.; Castro, F.M.; Toscano, A.E.; Jesus-Deiró, R.A.; Barros, K.M. Sertraline delays the somatic growth and reflex ontogeny in neonate rats. Physiol. Behav. 2006, 87, 338–344. [Google Scholar] [CrossRef]
- Deiró, T.C.; Carvalho, J.; Nascimento, E.; Medeiros, J.M.; Cajuhi, F.; Ferraz-Pereira, K.N.; Manhães-de-Castro, R. Neonatal exposure to citalopram, a serotonin selective reuptake inhibitor, programs a delay in the reflex ontogeny in rats. Arq. De Neuro-Psiquiatr. 2008, 66, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, C.P.; de Lima, L.O.; da Silva, M.C.; Marinho, S.M.; do Nascimento, E.; da Silva, C.M.; de Souza, S.L.; Manhães-de-Castro, R. [Neonatal treatment effect with selective inhibitor of 5-HT recapture on [corrected] the cranium-encephalic anatomic development]. Arq. De Neuro-Psiquiatr. 2006, 64, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.M.; Gonçalves, L.; Manhaes-de-Castro, R.; Nogueira, M.I. Postnatal fluoxetine treatment affects the development of serotonergic neurons in rats. Neurosci. Lett. 2010, 483, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Galindo, L.C.; Barros Mda, L.; Pinheiro, I.L.; Santana, R.V.; de Matos, R.J.; Leandro, C.G.; de Souza, S.L.; de Castro, R.M. Neonatal serotonin reuptake inhibition reduces hypercaloric diet effects on fat mass and hypothalamic gene expression in adult rats. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 2015, 46, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Casper, R.C.; Fleisher, B.E.; Lee-Ancajas, J.C.; Gilles, A.; Gaylor, E.; DeBattista, A.; Hoyme, H.E. Follow-up of children of depressed mothers exposed or not exposed to antidepressant drugs during pregnancy. J. Pediatr. 2003, 142, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Oberlander, T.F.; Gingrich, J.A.; Ansorge, M.S. Sustained neurobehavioral effects of exposure to SSRI antidepressants during development: molecular to clinical evidence. Clin. Pharmacol. Ther. 2009, 86, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Moreau, A.L.; Voss, M.; Hansen, I.; Paul, S.E.; Barch, D.M.; Rogers, C.E.; Bogdan, R. Prenatal Selective Serotonin Reuptake Inhibitor Exposure, Depression, and Brain Morphology in Middle Childhood: Results From the ABCD Study. Biol. Psychiatry Glob. Open Sci. 2023, 3, 243–254. [Google Scholar] [CrossRef]
- Leshem, R.; Bar-Oz, B.; Diav-Citrin, O.; Gbaly, S.; Soliman, J.; Renoux, C.; Matok, I. Selective Serotonin Reuptake Inhibitors (SSRIs) and Serotonin Norepinephrine Reuptake Inhibitors (SNRIs) During Pregnancy and the Risk for Autism spectrum disorder (ASD) and Attention deficit hyperactivity disorder (ADHD) in the Offspring: A True Effect or a Bias? A Systematic Review & Meta-Analysis. Curr. Neuropharmacol. 2021, 19, 896–906. [Google Scholar]
- Halvorsen, A.; Hesel, B.; Østergaard, S.D.; Danielsen, A.A. In utero exposure to selective serotonin reuptake inhibitors and development of mental disorders: a systematic review and meta-analysis. Acta Psychiatr. Scand. 2019, 139, 493–507. [Google Scholar] [CrossRef]
- Andalib, S.; Emamhadi, M.R.; Yousefzadeh-Chabok, S.; Shakouri, S.K.; Høilund-Carlsen, P.F.; Vafaee, M.S.; Michel, T.M. Maternal SSRI exposure increases the risk of autistic offspring: A meta-analysis and systematic review. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2017, 45, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, Y.C.; Keskin-Arslan, E.; Acar, S.; Sozmen, K. Prenatal selective serotonin reuptake inhibitor use and the risk of autism spectrum disorder in children: A systematic review and meta-analysis. Reprod. Toxicol. (Elmsford N.Y.) 2016, 66, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Man, K.K.; Tong, H.H.; Wong, L.Y.; Chan, E.W.; Simonoff, E.; Wong, I.C. Exposure to selective serotonin reuptake inhibitors during pregnancy and risk of autism spectrum disorder in children: a systematic review and meta-analysis of observational studies. Neurosci. Biobehav. Rev. 2015, 49, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Wu, F.; Zhou, S.; Li, H.; Wang, R.; Ning, Y. Increased plasma level of kynurenic acid in drug-free patients with first-episode schizophrenia compared to patients with chronic schizophrenia and healthy controls: preliminary data. Nord. J. Psychiatry 2022, 76, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Antenucci, N.; D’Errico, G.; Fazio, F.; Nicoletti, F.; Bruno, V.; Battaglia, G. Changes in kynurenine metabolites in the gray and white matter of the dorsolateral prefrontal cortex of individuals affected by schizophrenia. Schizophr. (Heidelb. Ger.) 2024, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Erhardt, S.; Pocivavsek, A.; Repici, M.; Liu, X.C.; Imbeault, S.; Maddison, D.C.; Thomas, M.A.R.; Smalley, J.L.; Larsson, M.K.; Muchowski, P.J.; Giorgini, F.; Schwarcz, R. Adaptive and Behavioral Changes in Kynurenine 3-Monooxygenase Knockout Mice: Relevance to Psychotic Disorders. Biol. Psychiatry 2017, 82, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Forrest, C.M.; Khalil, O.S.; Pisar, M.; Darlington, L.G.; Stone, T.W. Prenatal inhibition of the tryptophan-kynurenine pathway alters synaptic plasticity and protein expression in the rat hippocampus. Brain Res. 2013, 1504, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; McGuinness, A.J.; Rocks, T.; Ruusunen, A.; Cleminson, J.; Walker, A.J.; Gomes-da-Costa, S.; Lane, M.; Sanches, M.; Diaz, A.P.; Tseng, P.T.; Lin, P.Y.; Berk, M.; Clarke, G.; O’Neil, A.; Jacka, F.; Stubbs, B.; Carvalho, A.F.; Quevedo, J.; Soares, J.C.; Fernandes, B.S. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Mol. Psychiatry 2021, 26, 4158–4178. [Google Scholar] [CrossRef]
- Murray, R.M.; Lewis, S.W. Is schizophrenia a neurodevelopmental disorder? Br. Med. J. (Clin. Res. Ed.) 1987, 295, 681–682. [Google Scholar] [CrossRef]
- Muller, N.; Schwarz, M. Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox. Res. 2006, 10, 131–148. [Google Scholar] [CrossRef]
- Boksa, P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav. Immun. 2010, 24, 881–897. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.S.; Derkits, E.J. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am. J. Psychiatry 2010, 167, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, K.; Hashimoto, K.; Kishimoto, T.; Shimizu, E.; Ishikura, H.; Iyo, M. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol. Psychiatry 2006, 59, 546–554. [Google Scholar] [CrossRef]
- Liu, X.C.; Holtze, M.; Powell, S.B.; Terrando, N.; Larsson, M.K.; Persson, A.; Olsson, S.K.; Orhan, F.; Kegel, M.; Asp, L.; Goiny, M.; Schwieler, L.; Engberg, G.; Karlsson, H.; Erhardt, S. Behavioral disturbances in adult mice following neonatal virus infection or kynurenine treatment--role of brain kynurenic acid. Brain Behav. Immun. 2014, 36, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Meyer, U.; Nyffeler, M.; Engler, A.; Urwyler, A.; Schedlowski, M.; Knuesel, I.; Yee, B.K.; Feldon, J. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 4752–4762. [Google Scholar] [CrossRef]
- Javitt, D.C.; Zukin, S.R.; Heresco-Levy, U.; Umbricht, D. Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr. Bull. 2012, 38, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Schwarcz, R. The kynurenine pathway of tryptophan degradation as a drug target. Curr. Opin. Pharmacol. 2004, 4, 12–17. [Google Scholar] [CrossRef]
- Iwasato, T.; Datwani, A.; Wolf, A.M.; Nishiyama, H.; Taguchi, Y.; Tonegawa, S.; Knöpfel, T.; Erzurumlu, R.S.; Itohara, S. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 2000, 406, 726–731. [Google Scholar] [CrossRef]
- Perkins, M.N.; Stone, T.W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 1982, 247, 184–187. [Google Scholar] [CrossRef]
- Pisar, M.; Forrest, C.M.; Khalil, O.S.; McNair, K.; Vincenten, M.C.; Qasem, S.; Darlington, L.G.; Stone, T.W. Modified neocortical and cerebellar protein expression and morphology in adult rats following prenatal inhibition of the kynurenine pathway. Brain Res. 2014, 1576, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.X.; Feig, L.A. Long-term potentiation in the CA1 hippocampus induced by NR2A subunit-containing NMDA glutamate receptors is mediated by Ras-GRF2/Erk map kinase signaling. PloS One 2010, 5, e11732. [Google Scholar] [CrossRef] [PubMed]
- Dalton, G.L.; Wu, D.C.; Wang, Y.T.; Floresco, S.B.; Phillips, A.G. NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology 2012, 62, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Gilmartin, M.R.; Kwapis, J.L.; Helmstetter, F.J. NR2A- and NR2B-containing NMDA receptors in the prelimbic medial prefrontal cortex differentially mediate trace, delay, and contextual fear conditioning. Learn. Mem. (Cold Spring Harb. N.Y.) 2013, 20, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Kuramoto, T.; Kuwamura, M.; Serikawa, T. Rat neurological mutations cerebellar vermis defect and hobble are caused by mutations in the netrin-1 receptor gene Unc5h3. Brain Res. Mol. Brain Res. 2004, 122, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Trecartin, K.V.; Bucci, D.J. Administration of kynurenine during adolescence, but not during adulthood, impairs social behavior in rats. Schizophr. Res. 2011, 133, 156–158. [Google Scholar] [CrossRef]
- Pocivavsek, A.; Thomas, M.A.; Elmer, G.I.; Bruno, J.P.; Schwarcz, R. Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology 2014, 231, 2799–2809. [Google Scholar] [CrossRef] [PubMed]
- Alexander, K.S.; Pocivavsek, A.; Wu, H.Q.; Pershing, M.L.; Schwarcz, R.; Bruno, J.P. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: reversal with galantamine. Neuroscience 2013, 238, 19–28. [Google Scholar] [CrossRef]
- Pocivavsek, A.; Wu, H.Q.; Elmer, G.I.; Bruno, J.P.; Schwarcz, R. Pre- and postnatal exposure to kynurenine causes cognitive deficits in adulthood. Eur. J. Neurosci. 2012, 35, 1605–1612. [Google Scholar] [CrossRef]
- Susser, E.; Neugebauer, R.; Hoek, H.W.; Brown, A.S.; Lin, S.; Labovitz, D.; Gorman, J.M. Schizophrenia after prenatal famine. Further evidence. Arch. Gen. Psychiatry 1996, 53, 25–31. [Google Scholar] [CrossRef]
- Resnick, O.; Morgane, P.J. Ontogeny of the levels of serotonin in various parts of the brain in severely protein malnourished rats. Brain Res. 1984, 303, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.; Manjarréz, G.G.; Chagoya, G. Newborn humans and rats malnourished in utero: free plasma L-tryptophan, neutral amino acids and brain serotonin synthesis. Brain Res. 1989, 488, 1–13. [Google Scholar] [CrossRef]
- Honório de Melo Martimiano, P.; de Sa Braga Oliveira, A.; Ferchaud-Roucher, V.; Croyal, M.; Aguesse, A.; Grit, I.; Ouguerram, K.; Lopes de Souza, S.; Kaeffer, B.; Bolaños-Jiménez, F. Maternal protein restriction during gestation and lactation in the rat results in increased brain levels of kynurenine and kynurenic acid in their adult offspring. J. Neurochem. 2017, 140, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Wirthgen, E.; Hoeflich, A. Endotoxin-Induced Tryptophan Degradation along the Kynurenine Pathway: The Role of Indolamine 2,3-Dioxygenase and Aryl Hydrocarbon Receptor-Mediated Immunosuppressive Effects in Endotoxin Tolerance and Cancer and Its Implications for Immunoparalysis. J. Amino Acids 2015, 2015, 973548. [Google Scholar] [CrossRef] [PubMed]
- Bilgiç, A.; Abuşoğlu, S.; Sadıç Çelikkol, Ç.; Oflaz, M.B.; Akça, Ö.F.; Sivrikaya, A.; Baysal, T.; Ünlü, A. Altered kynurenine pathway metabolite levels in toddlers and preschool children with autism spectrum disorder. Int. J. Neurosci. 2022, 132, 826–834. [Google Scholar] [CrossRef]
- Nabi, R.; Serajee, F.J.; Chugani, D.C.; Zhong, H.; Huq, A.H. Association of tryptophan 2,3 dioxygenase gene polymorphism with autism. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2004, 125, 63–68. [Google Scholar] [CrossRef]
- Carpita, B.; Nardi, B.; Palego, L.; Cremone, I.M.; Massimetti, G.; Carmassi, C.; Betti, L.; Giannaccini, G.; Dell’Osso, L. Kynurenine pathway and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr. 2023, 28, 374–385. [Google Scholar] [CrossRef]
- Yildirim, V.; Simsek, S.; Cetin, I.; Dokuyucu, R. Kynurenine, Kynurenic Acid, Quinolinic Acid and Interleukin-6 Levels in the Serum of Patients with Autism Spectrum Disorder. Med. (Kaunas Lith.) 2023, 59. [Google Scholar] [CrossRef]
- Gevi, F.; Zolla, L.; Gabriele, S.; Persico, A.M. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol. Autism 2016, 7, 47. [Google Scholar] [CrossRef]
- Almulla, A.F.; Thipakorn, Y.; Tunvirachaisakul, C.; Maes, M. The tryptophan catabolite or kynurenine pathway in autism spectrum disorder; a systematic review and meta-analysis. Autism Res. Off. J. Int. Soc. Autism Res. 2023, 16, 2302–2315. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).