Submitted:
19 May 2024
Posted:
21 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Background: Carbon in Urban Soil
3. Methods
3.1. Literature Search
3.2. Searching Stage
- For “Urban Soil”, the synonyms included were: “Urban agriculture soil”, “Urban green space soil”, “Urban garden soil” and “Urban park soil”.
- For “Carbon”, we incorporated the terms: “Carbon capture”, “Carbon sequestration”, “Carbon storage” and “Carbon stock”.
3.3. Secreening and Selection Stage
3.4. Included to Encode Stage
4. Results
4.1. Literature Analysis
4.2. Methodologies Used in the Reviewed Articles on Soil Carbon in Urban Green Spaces
5. Limitations, Discussions and Recommendations
5.1. Of the Review Process
5.2. Of the Topic and Research Question
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schittko, C.; Onandia, G.; Bernard-Verdier, M.; Heger, T.; Jeschke, J.M.; Kowarik, I.; Maaß, S.; Joshi, J. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. 2022, 110, 916–934. [Google Scholar] [CrossRef]
- Pradhan, R.; Sarkar, B.C.; Manohar, K.A.; Shukla, G.; Tamang, M.; Vineeta; Bhat, J. A.; Kumar, M.; Chakravarty, S. Biomass carbon and soil nutrient status in urban green sites at foothills of eastern Himalayas: Implication for carbon management. Curr. Res. Environ. Sustain. 2022, 4. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision 2019, ST/ESA/SER.A/420. New York.
- Fan, Y.; Wei, F. Contributions of Natural Carbon Sink Capacity and Carbon Neutrality in the Context of Net-Zero Carbon Cities: A Case Study of Hangzhou. Sustainability 2022, 14, 2680. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; Herrera, M. .; Vaca, A.; Salazar, L.; Zalakeviciute, R.; Mejía, D.; López-Ulloa, M. Urban soil management in the strategies for adaptation to climate change of cities in the Tropical Andes. Geoderma 2022, 417, 115840. [Google Scholar] [CrossRef]
- United Nations. The Paris Agreement 2015. Available: https://unfccc.int/sites/default/files/spanish_paris_agreement.pdf.
- IPCC. Resumen para responsables de políticas. En: Calentamiento global de 1,5 °C, Informe especial del IPCC sobre los impactos del calentamiento global de 1,5 ºC con respecto a los niveles preindustriales y las trayectorias correspondientes que deberían seguir las emisiones mundiales de gases de efecto invernadero, en el contexto del reforzamiento de la respuesta mundial a la amenaza del cambio climático, el desarrollo sostenible y los esfuerzos por erradicar la pobreza 2018 [Masson-Delmotte V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor y T. Waterfield (eds.).
- Park, H.-M.; Jo, H.-K. Ecological Design and Construction Strategies through Life Cycle Assessment of Carbon Budget for Urban Parks in Korea. Forests 2021, 12, 1399. [Google Scholar] [CrossRef]
- Page, J.; Kåresdotter, E.; Destouni, G.; Pan, H.; Kalantari, Z. A more complete accounting of greenhouse gas emissions and sequestration in urban landscapes. Anthropocene 2021, 34, 100296. [Google Scholar] [CrossRef]
- Rosenzweig, C. , Solecki, W., Hammer, S. A., & Mehrotra, S. Cities lead the way in climate–change action. Nature 2010, 467(7318), 909-911.
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef]
- Singh, V. S. , Pandey, D. N., & Chaudhry, P. Urban forests and open green spaces: lessons for Jaipur, Rajasthan India. Jaipur: Rajasthan State Pollution Control Board 2010.
- Jo, H. K. Carbon uptake and emissions in urban landscape, and the role of urban greenspace for several cities in Kangwon Province. Journal of the Korean Institute of Landscape Architecture 1999, 27(1), 39–53. [Google Scholar]
- Jo, H.-K.; Park, H.-M. Effects and Improvement of Carbon Reduction by Greenspace Establishment in Riparian Zones. J. Korean Inst. Landsc. Arch. 2015, 43, 16–24. [Google Scholar] [CrossRef]
- Jo, H.-K.; Kim, J.-Y.; Park, H.-M. Carbon reduction and planning strategies for urban parks in Seoul. Urban For. Urban Green. 2019, 41, 48–54. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, Y.; Yu, R.; Chang, X.; Yao, Y.; Qiu, Q.; Li, H.; Wei, X. Biological conservation measures are better than engineering conservation measures in improving soil quality of eroded orchards in southern China. Soil Sci. Soc. Am. J. 2022, 86, 932–945. [Google Scholar] [CrossRef]
- Qubaja, R.; Yang, F.; Amer, M.; Tatarinov, F.; Yakir, D. Ecophysiology of an urban citrus orchard. Urban For. Urban Green. 2021, 65, 127361. [Google Scholar] [CrossRef]
- Xu, X.; Sun, Z.; Hao, Z.; Bian, Q.; Wei, K.; Wang, C. Effects of Urban Forest Types and Traits on Soil Organic Carbon Stock in Beijing. Forests 2021, 12, 394. [Google Scholar] [CrossRef]
- Guillen-Cruz, G.; Rodríguez-Sánchez, A.; Fernández-Luqueño, F.; Flores-Rentería, D. Influence of vegetation type on the ecosystem services provided by urban green areas in an arid zone of northern Mexico. Urban For. Urban Green. 2021, 62, 127135. [Google Scholar] [CrossRef]
- Cao, S.-Y.; Yin, W.-D.; Su, J.-Y.; Feng, C.-W.; Du, Y.-C.; Zhu, J.-Y.; Ye, N.; Ding, J.-Y.; Li, Y.-Z. Spatial and Temporal Evolution of Multi-scale Green Space Environments and Urban Heat Islands: A Case Study of Beijing Sub-center. Sensors Mater. 2023, 35, 589–606. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; García-Palacios, P.; Bradford, M.A.; Eldridge, D.J.; Berdugo, M.; Sáez-Sandino, T.; Liu, Y.-R.; Alfaro, F.; Abades, S.; Bamigboye, A.R.; et al. Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide. Nat. Clim. Chang. 2023, 13, 450–455. [Google Scholar] [CrossRef]
- Huang, R.; Lan, T.; Song, X.; Li, J.; Ling, J.; Deng, O.; Wang, C.; Gao, X.; Li, Q.; Tang, X.; et al. Soil labile organic carbon impacts C:N:P stoichiometry in urban park green spaces depending on vegetation types and time after planting. Appl. Soil Ecol. 2021, 163, 103926. [Google Scholar] [CrossRef]
- Lindén, L.; Riikonen, A.; Setälä, H.; Yli-Pelkonen, V. Quantifying carbon stocks in urban parks under cold climate conditions. Urban For. Urban Green. 2020, 49, 126633. [Google Scholar] [CrossRef]
- Jorge, N.F.; Clark, J.; Cárdenas, M.L.; Geoghegan, H.; Shannon, V. Measuring Soil Colour to Estimate Soil Organic Carbon Using a Large-Scale Citizen Science-Based Approach. Sustainability 2021, 13, 11029. [Google Scholar] [CrossRef]
- Downey, A.E.; Groffman, P.M.; Mejía, G.A.; Cook, E.M.; Sritrairat, S.; Karty, R.; Palmer, M.I.; McPhearson, T. Soil carbon sequestration in urban afforestation sites in New York City. Urban For. Urban Green. 2021, 65, 127342. [Google Scholar] [CrossRef]
- Du, J.; Yu, M.; Yan, J. The Impact of Impervious Surface Expansion on Soil Organic Carbon: A Case Study of 0–300 cm Soil Layer in Guangzhou City. Sustainability 2021, 13, 7901. [Google Scholar] [CrossRef]
- Dobson, M.C.; Crispo, M.; Blevins, R.S.; Warren, P.H.; Edmondson, J.L. An assessment of urban horticultural soil quality in the United Kingdom and its contribution to carbon storage. Sci. Total. Environ. 2021, 777, 146199. [Google Scholar] [CrossRef]
- Cambou, A.; Saby, N.P.; Hunault, G.; Nold, F.; Cannavo, P.; Schwartz, C.; Vidal-Beaudet, L. Impact of city historical management on soil organic carbon stocks in Paris (France). J. Soils Sediments 2021, 21, 1038–1052. [Google Scholar] [CrossRef]
- Foti, L.; Barot, S.; Gignoux, J.; Grimaldi, M.; Lata, J.; Lerch, T.Z.; Nold, F.; Nunan, N.; Raynaud, X.; Abbadie, L.; et al. Topsoil characteristics of forests and lawns along an urban–rural gradient in the Paris region (France). Soil Use Manag. 2020, 37, 749–761. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M. , Eldridge, D. J., Liu, Y. R., Sokoya, B., Wang, J. T., Hu, H. W.,... & Fierer, N. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances 2021, 7(28). [CrossRef]
- Hanna, E.; Bruno, D.; Comín, F.A. The ecosystem services supplied by urban green infrastructure depend on their naturalness, functionality and imperviousness. Urban Ecosyst. 2023, 27, 187–202. [Google Scholar] [CrossRef]
- Rahman, M.M.; Naidu, R.; Dhal, B.; Swain, C.; Nayak, A.; Tripathi, R.; Shahid, M.; Islam, M.R.; Pathak, H. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Sci. Total. Environ. 2019, 665, 890–912. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Soussana, J.-F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef]
- Seto, K.C.; Churkina, G.; Hsu, A.; Keller, M.; Newman, P.W.; Qin, B.; Ramaswami, A. From Low- to Net-Zero Carbon Cities: The Next Global Agenda. Annu. Rev. Environ. Resour. 2021, 46, 377–415. [Google Scholar] [CrossRef]
- Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., ... & Reichstein, M. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514(7521), 213-217. [CrossRef]
- Ma, L.; Bicking, S.; Müller, F. Mapping and comparing ecosystem service indicators of global climate regulation in Schleswig-Holstein, Northern Germany. Sci. Total. Environ. 2018, 648, 1582–1597. [Google Scholar] [CrossRef]
- Xie, G. D. , Li, S. M., Xiao, Y., & Qi, Y. Value of carbon sink: Concept and evaluation. J. Nat. Resour 2011, 26, 1–10. [Google Scholar]
- Pereira, M.C.; O’riordan, R.; Stevens, C. Urban soil microbial community and microbial-related carbon storage are severely limited by sealing. J. Soils Sediments 2021, 21, 1455–1465. [Google Scholar] [CrossRef]
- Kapp, G. , Agus, F., Hairiah, K., Verlarde, S., & Van Noordwijk, M. Medición del carbono de los usos del suelo. Estimación de costos de oportunidad de REDD+. Manual de capacitación. Medición del carbono de los usos de la tierra 2021, Vol.1.4, 5. Available: https://www.forestcarbonpartnership.org/system/files/documents/05_capitulo%2005%20Medicion%20del%20carbono%20de%20los%20usos%20del%20suelo.
- Franzluebbers, A. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- FAO. Carbono Orgánico del Suelo: el potencial oculto. Organización de las Naciones Unidas para la Alimentación y Agricultura Roma, Italia. 2017.
- Zhou, P.; Hou, H.; Zhang, H.; Liu, X.; Tan, W. The development prospects and implementation suggestions of increasing soil carbon storage in the context of carbon neutrality. Environ. Prot. 2021, 49, 63–67. [Google Scholar]
- Yang, J.-L.; Yuan, D.-G.; Zhao, Y.-G.; He, Y.; Zhang, G.-L. Stoichiometric relations of C, N, and P in urban top soils in Nanjing, China, and their biogeochemical implications. J. Soils Sediments 2020, 21, 2154–2164. [Google Scholar] [CrossRef]
- Cambou, A.; Shaw, R.K.; Huot, H.; Vidal-Beaudet, L.; Hunault, G.; Cannavo, P.; Nold, F.; Schwartz, C. Estimation of soil organic carbon stocks of two cities, New York City and Paris. Sci. Total. Environ. 2018, 644, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gao, X.; Zhang, S.; Gao, H.; Huang, J.; Sun, S.; Song, X.; Fry, E.; Tian, H.; Xia, X. Urban development enhances soil organic carbon storage through increasing urban vegetation. J. Environ. Manag. 2022, 312, 114922. [Google Scholar] [CrossRef] [PubMed]
- Dorst, H.; van der Jagt, A.; Raven, R.; Runhaar, H. Urban greening through nature-based solutions – Key characteristics of an emerging concept. Sustain. Cities Soc. 2019, 49, 101620. [Google Scholar] [CrossRef]
- Urrutia, G. , & Bonfill, X. PRISMA declaration: a proposal to improve the publication of systematic reviews and meta-analyses. Medicina Clínica 2010, 135(11), 507-511.
- Guo, X.; Liu, Z.; Gao, D.; Xu, C.; Zhang, K.; Liu, X. Application of land use modes in the spatial prediction of soil organic carbon in urban green spaces. Int. Agrophysics 2022, 37, 1–14. [Google Scholar] [CrossRef]
- Dou, X.; Lu, M.; Chen, L. Comparison of soil organic carbon and nitrogen dynamics between urban impervious surfaces and vegetation. Land Degrad. Dev. 2021, 32, 5455–5467. [Google Scholar] [CrossRef]
- Hanpattanakit, P. , Kongsaenkaew, P. , Pocksorn, A., Thanajaruwittayakorn, W., Detchairit, W., & Limsakul, A. Estimating carbon stock in biomass and soil of young eco-forest in urban city, Thailand. Chemical Engineering Transactions 2022, 97, 427–432. [Google Scholar] [CrossRef]
- Pregitzer, C.C.; Hanna, C.; Charlop-Powers, S.; Bradford, M.A. Estimating carbon storage in urban forests of New York City. Urban Ecosyst. 2021, 25, 617–631. [Google Scholar] [CrossRef]
- Dayathilake, D.; Lokupitiya, E.; Wijeratne, V. Estimation of Soil Carbon Stocks of Urban Freshwater Wetlands in the Colombo Ramsar Wetland City and their Potential Role in Climate Change Mitigation. Wetlands 2021, 41, 1–10. [Google Scholar] [CrossRef]
- Lu, C.; Kotze, D.J.; Setälä, H.M. Evergreen trees stimulate carbon accumulation in urban soils via high root production and slow litter decomposition. Sci. Total. Environ. 2021, 774, 145129. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, C.; Sun, Z.; Hao, Z.; Day, S. How do urban forests with different land use histories influence soil organic carbon? Urban For. Urban Green. 2023, 83. [Google Scholar] [CrossRef]
- Mandal, S.; Chatterjee, P.; Das, N.; Banerjee, R.; Batabyal, S.; Gangopadhyay, S.; Mondal, A. Modelling the role of urban forest in the regulation of carbon balance in an industrial area of India. Acta Ecol. Sin. 2022, 42, 553–564. [Google Scholar] [CrossRef]
- Mondragón, V.; Hurtado, F.M.; Jaramillo, D.F.J. Soil organic carbon stocks and properties are affected by plant cover types in an urban ecosystem in Colombia. South Afr. J. Plant Soil 2022, 39, 322–330. [Google Scholar] [CrossRef]
- Kortleve, A.J.; Mogollón, J.M.; Heimovaara, T.J.; Gebert, J. Topsoil Carbon Stocks in Urban Greenspaces of The Hague, the Netherlands. Urban Ecosyst. 2022, 26, 725–742. [Google Scholar] [CrossRef]
- Oberle, B.; Bressan, S.; McWilliams, J.; Díaz-Almeyda, E. Urban food forestry transforms fine-scale soil function for rapid and uniform carbon sequestration. Urban Ecosyst. 2023, 26, 1239–1250. [Google Scholar] [CrossRef]
- Podwika, M.; Ciarkowska, K.; Solek-Podwika, K. Urban Grassland Afforestation as a Public Land Management Tool for Environmental Improvement: The Example of Krakow (Poland). Land 2023, 12, 1042. [Google Scholar] [CrossRef]
- Feyisa, A.; Negash, M.; Melka, Y. Urban green infrastructure affects woody plant diversity and carbon stock in Hawassa city in Ethiopia. Arboric. J. 2022, 44, 84–98. [Google Scholar] [CrossRef]
- Devi, N.B.; Lepcha, N.T.; Mahalik, S.S.; Dutta, D.; Tsanglao, B.L. Urban sacred grove forests are potential carbon stores: A case study from Sikkim Himalaya. Environ. Challenges 2021, 4, 100072. [Google Scholar] [CrossRef]
- Wang, M.; Cui, J.; Liu, H.; Xu, X. Characterization of Soil Microbial Biomass Carbon and Nitrogen in Four Forest Types of Shushan Urban Forest Park. Forests 2023, 14, 1498. [Google Scholar] [CrossRef]
- Wang, Z.; Tao, T.; Wang, Y.; Small, G.E.; Chen, J.; Sun, X. Soil quality in urban forests under different understory management practices. Land Degrad. Dev. 2022, 34, 899–910. [Google Scholar] [CrossRef]
- Wavrek, M.T.; Jean-Philippe, S.; McKinney, M.L. Ecological and Soil Data Applied to Conservation Management of an Urban Forest. Forests 2023, 14, 487. [Google Scholar] [CrossRef]
- Sun, X.; Ye, Y.; Guan, Q.; Jones, D.L. Organic mulching masks rhizosphere effects on carbon and nitrogen fractions and enzyme activities in urban greening space. J. Soils Sediments 2021, 21, 1621–1632. [Google Scholar] [CrossRef]
- Ward, E.B.; Doroski, D.A.; Felson, A.J.; Hallett, R.A.; Oldfield, E.E.; Kuebbing, S.E.; Bradford, M.A. Positive long-term impacts of restoration on soils in an experimental urban forest. Ecol. Appl. 2021, 31, e2336. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Fan, S.; Dong, L.; Li, K.; Li, X. Response of Understory Plant Diversity to Soil Physical and Chemical Properties in Urban Forests in Beijing, China. Forests 2023, 14, 571. [Google Scholar] [CrossRef]
- Ananyeva, N.D.; Khatit, R.Y.; Ivashchenko, K.V.; Sushko, S.V.; Gorbacheva, A.Y.; Dolgikh, A.V.; Kadulin, M.S.; Sotnikova, Y.L.; Vasenev, V.I.; Komarova, A.E.; et al. Soil Biophilic Elements (C, N, P) and Microbial Activity in Forest Parks of Moscow and Suburban Forests. Eurasian Soil Sci. 2023, 56, 87–100. [Google Scholar] [CrossRef]
- Du, J.; Yu, M.; Cong, Y.; Lv, H.; Yuan, Z. Soil Organic Carbon Storage in Urban Green Space and Its Influencing Factors: A Case Study of the 0–20 cm Soil Layer in Guangzhou City. Land 2022, 11, 1484. [CrossRef]
- Francos, M.; Bogunovic, I.; Úbeda, X.; Pereira, P. Soil physico-chemical properties and Organic Carbon stocks across different land use in an urban park of Vilnius, Lithuania. J. Central Eur. Agric. 2023, 24, 519–530. [Google Scholar] [CrossRef]
- Bosiacki, M.; Bednorz, L.; Fedeńczak, K.; Górecki, T.; Mizgajski, A.; Poniży, L.; Spiżewski, T. Soil Quality as a Key Factor in Producing Vegetables for Home Consumption—A Case Study of Urban Allotments in Gorzów Wielkopolski (Poland). Agronomy 2021, 11, 1836. [Google Scholar] [CrossRef]
- Gordienko, O.A.; Balkushkin, R.N. Spatial heterogeneity of soil properties of recreational areas of Volgograd. Dokuchaev Soil Bull. 2023, 109–134. [Google Scholar] [CrossRef]
- Todorova, E.; Zhiyanski, M. Study on soil quality in different functional zones of Sofia region. One Ecosyst. 2023, 8, e101381. [Google Scholar] [CrossRef]
- Delbecque, N.; Dondeyne, S.; Gelaude, F.; Mouazen, A.M.; Vermeir, P.; Verdoodt, A. Urban soil properties distinguished by parent material, land use, time since urbanization, and pre-urban geomorphology. Geoderma 2022, 413, 115719. [Google Scholar] [CrossRef]
- Ungaro, F.; Maienza, A.; Ugolini, F.; Lanini, G.; Baronti, S.; Calzolari, C. Assessment of joint soil ecosystem services supply in urban green spaces: A case study in Northern Italy. Urban For. Urban Green. 2021, 67, 127455. [Google Scholar] [CrossRef]
- Molina, J.A.; Martin-Sanz, J.P.; Casermeiro, M.A.; Quintana, J.R. Spontaneous urban vegetation as an indicator of soil functionality and ecosystem services. Appl. Veg. Sci. 2023, 26. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, X.; Zhang, K.; Liao, Z.; Xu, S. Trade-Offs and Synergies of Ecosystem Services in the Pearl River Delta Urban Agglomeration. Sustainability 2021, 13, 9155. [Google Scholar] [CrossRef]
- Francini, G.; Hui, N.; Jumpponen, A.; Kotze, D.J.; Setälä, H. Vegetation type and age matter: How to optimize the provision of ecosystem services in urban parks. Urban For. Urban Green. 2021, 66, 127392. [Google Scholar] [CrossRef]
- Rosa, L.N.; Costa, M.D.d.P.; de Freitas, D.M. Modelling spatial-temporal changes in carbon sequestration by mangroves in an urban coastal landscape. Estuarine, Coast. Shelf Sci. 2022, 276. [Google Scholar] [CrossRef]
- Cambou, A.; Chevallier, T.; Barthès, B.G.; Derrien, D.; Cannavo, P.; Bouchard, A.; Allory, V.; Schwartz, C.; Vidal-Beaudet, L. The impact of urbanization on soil organic carbon stocks and particle size and density fractions. J. Soils Sediments 2022, 23, 792–803. [Google Scholar] [CrossRef]
- de Melo Carvalho, N. , Quartucci, F. y de Maria, I. Stock de carbono y diagnóstico físico y químico del suelo en plazas urbanas del municipio de Tatuí (São Paulo). Revista Brasileña de Medio Ambiente 2022, 10(3).
- Rojas, J. M. , Schahovskoy, N., & Toledo, M. Relation between soil quality perception and quantification in Chaco orchards (Argentina). Ciencia Del Suelo 2021, 39(2), 331–346.
- Tang, J.; Wang, W.; Feng, J.; Yang, L.; Ruan, T.; Xu, Y. Urban green infrastructure features influence the type and chemical composition of soil dissolved organic matter. Sci. Total. Environ. 2020, 764, 144240. [Google Scholar] [CrossRef] [PubMed]
- Cortinovis, C.; Olsson, P.; Boke-Olén, N.; Hedlund, K. Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities. Urban For. Urban Green. 2022, 67. [Google Scholar] [CrossRef]
- O'Riordan, R.; Davies, J.; Stevens, C.; Quinton, J.N. The effects of sealing on urban soil carbon and nutrients. SOIL 2021, 7, 661–675. [Google Scholar] [CrossRef]
- Liu, L.; Yang, S. Characteristics and Sources of Black Carbon and Organic Carbon in Topsoil from Different Functional Zones of Beijing, China. Eurasian Soil Sci. 2021, 54, 927–942. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007. Cambridge (U.K.), New York (U.S.A): Cambridge University Press.
- Tomatis, F.; Egerer, M.; Correa-Guimaraes, A.; Navas-Gracia, L.M. Urban Gardening in a Changing Climate: A Review of Effects, Responses and Adaptation Capacities for Cities. Agriculture 2023, 13, 502. [Google Scholar] [CrossRef]
- IPCC. General guidance and reporting. In: 2006 IPCC Guidelines for National Greenhouse Gas Inventories 2006. s.l.
- Bradley, R.; Milne, R.; Bell, J.; Lilly, A.; Jordan, C.; Higgins, A. A soil carbon and land use database for the United Kingdom. Soil Use Manag. 2005, 21, 363–369. [Google Scholar] [CrossRef]
- de Brogniez, D.; Ballabio, C.; Stevens, A.; Jones, R.J.A.; Montanarella, L.; van Wesemael, B. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur. J. Soil Sci. 2014, 66, 121–134. [Google Scholar] [CrossRef]
- Epelde, L.; Mendizabal, M.; Gutiérrez, L.; Artetxe, A.; Garbisu, C.; Feliu, E. Quantification of the environmental effectiveness of nature-based solutions for increasing the resilience of cities under climate change. Urban For. Urban Green. 2021, 67, 127433. [Google Scholar] [CrossRef]
- Lorenz, K., & Lal, R. Soil organic carbon: an appropriate indicator to monitor trends of land and soil degradation within the SDG framework. 2016. Dessau-Roßlau, Germany. Available: http://www.umweltbundesamt.de/sites/default/files/medien/1968/publikationen/2016-11-0_soil_organic_carbon_as_indicator_final. Pdf.
- Chotte, J.L. , Aynekulu E., Cowie A., Campbell E., Vlek P., Lal R., Kapović-Solomun M., von Maltitz G., Kust G., Barger N., Vargas R.and Gastrow S. Aprovechar los beneficios del carbono de las prácticas de gestión sostenible de las tierras: directrices para estimar el carbono orgánico del suelo en el contexto de la planificación y supervisión de la neutralidad en la degradación de las tierras. Interfaz Ciencia-Política. United Nations Convention to Combat Desertification (UNCCD) 2019. Bonn, Alemania.
- Tammeorg, P.; Soronen, P.; Riikonen, A.; Salo, E.; Tikka, S.; Koivunen, M.; Salonen, A.-R.; Kopakkala, T.; Jalas, M. Co-Designing Urban Carbon Sink Parks: Case Carbon Lane in Helsinki. Front. Environ. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Vågen, T.-G.; Winowiecki, L.A.; Tondoh, J.E.; Desta, L.T.; Gumbricht, T. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 2016, 263, 216–225. [Google Scholar] [CrossRef]
- IPCC. Libro de Trabajo para el Inventario de Gases de Efecto Invernadero. Directrices del IPCC para los inventarios nacionales de gases de efecto invernadero 1996, 2. Available: https://www.ipcc-nggip.iges.or.jp/public/gl/spanish.html.
- IPCC. Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero. Asentamientos 2006, 8. Available: https://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/pdf/4_Volume4/V4_08_Ch8_Settlements.pdf.
- Olson, K.R. Soil organic carbon sequestration, storage, retention and loss in U.S. croplands: Issues paper for protocol development. Geoderma 2013, 195-196, 201–206. [Google Scholar] [CrossRef]
- FAO. Learning tool on Nationally Appropriate Mitigation Actions (NAMAs) in the Agriculture, Forestry and Other Land Use (AFOLU) Sector 2015. Roma. Available: https://www.fao.org/3/i4642s/i4642s.pdf.
- Batjes, N. H. , & Wesemael, B. V. Measuring and monitoring soil carbon. Soil carbon: Science, Management and Policy for Multiple Benefits 2015, 188-201. Wallingford UK: CABI.
- Blanchart, A.; Consalès, J.N.; Séré, G.; Schwartz, C. Consideration of soil in urban planning documents—a French case study. J. Soils Sediments 2018, 19, 3235–3244. [Google Scholar] [CrossRef]




| Criteria | Considerations |
|---|---|
| General |
|
| Particular |
|
| Methods and Approaches | References | |
|---|---|---|
| Research Focus | Direct: Focus on soil carbon | [4,17,18,21,25,28,48,49,50,51,52,53,54,55,56,57,58,59,60,61] |
| Indirect: Focus on soil properties | [22,29,62,63,64,65,66,67,68,69,70,71,72,73,74] | |
| Indirect: Focus on ecosystem services | [2,19,31,43,75,76,77,78] | |
| Indirect: Focus on urban sprawl or land use change | [26,77,79,80] | |
| Form of Carbon Studied | Soil Organic Carbon$$$(SOC) | [1,2,4,16,17,18,19,21,22,26,27,28,29,43,45,48,49,50,51,52,54,55,56,57,58,59,60,61,62,65,67,69,70,71,72,74,76,80,81,82,83] |
| Total Carbon | [25,50,51,63,65,66,68,73,75,77,78,79,84] | |
| Inorganic Carbon | [43,85] | |
| Soil Oxidizable Organic Carbon$$$(OSOC) | [2] | |
| Black Carbon | [43,74,86] | |
| Soil Organic Carbon Density$$$(SOCD) | [4,18,48] | |
| Labile Organic Carbon$$$(LOC) | [22] | |
| Dissolved Organic Carbon$$$(DOC) | [22,63] | |
| Microbial Biomass Carbon$$$(MBC) | [22,62] | |
| Readily Oxidizable Carbon$$$(ROC) | [22,63] | |
| Water Soluble Organic Carbon$$$(WSOC) | [83] | |
| Organic Matter | [19,53,57,59,64,67,80,81,83,85] | |
| Methodology | In situ samplings: 0-5 cm soil depth | [21,76] |
| In situ samplings: 0-10 cm soil depth | [22,29,43,53,64,68,70,85] | |
| In situ samplings: 0-20 or 0-30 cm soil depth | [1,4,18,27,28,31,49,54,56,57,58,59,62,63,65,69,71,72,75,82,83] | |
| In situ samplings: Soil depths exceeding 50 cm | [2,16,17,25,26,45,48,50,52,60,67,74,78,79,80,84] | |
| Remote sensing images | [4,26,27,57] | |
| Open data | [26,28,45,79,84] | |
| Logarithmic modeling | [17,31,48,50,51,79,84] | |
| Personal interviews | [82] | |
| Frequency | At specific moment in time | [1,2,4,16,18,19,21,22,26,27,29,31,43,48,49,50,51,52,53,54,56,57,59,60,61,62,63,64,67,68,69,70,71,72,73,74,75,76,78,80,81,82,83,85] |
| Longitudinal monitoring | [17,25,28,45,55,58,65,66,77,79,84] | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
