Submitted:
16 May 2024
Posted:
16 May 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Methods
2.3. Statistical Analysis
3. Results
3.1. Genotype Analysis
3.2. Hematological Parameters and Hb levels of β-Thalassemia Carriers
3.3. β-Thalassemia Carriers in Clinical Practice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Origa, R. β-Thalassemia. Genet. Med. Off. J. Am. Coll. Med. Genet. 2017, 19(6), 609–619. [Google Scholar] [CrossRef] [PubMed]
- Mettananda, S. Genetic and Epigenetic Therapies for β-Thalassaemia by Altering the Expression of α-Globin Gene. Front. Genome Ed. 2021, 3, 752278. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Mumtaz, S.; Shakir, H. A.; Khan, M.; Tahir, H. M.; Mumtaz, S.; Mughal, T. A.; Hassan, A.; Kazmi, S. A. R.; Sadia; Irfan, M.; Khan, M. A. Current Status of Beta-thalassemia and Its Treatment Strategies. Mol. Genet. Genomic Med. 2021, 9 (12), e1788. [CrossRef]
- Grech, L.; Borg, K.; Borg, J. Novel Therapies in β- Thalassemia. Br. J. Clin. Pharmacol. 2022, 88(6), 2509–2524. [Google Scholar] [CrossRef]
- Kattamis, A.; Forni, G. L.; Aydinok, Y.; Viprakasit, V. Changing Patterns in the Epidemiology of β-Thalassemia. Eur. J. Haematol. 2020, 105(6), 692–703. [Google Scholar] [CrossRef]
- Geography of Croatia - Wikipedia. https://en.wikipedia.org/wiki/Geography_of_Croatia (accessed 2024-05-09).
- Vucak, J.; Turudic, D.; Milosevic, D.; Bilic, M.; Salek, Z.; Rincic, M.; Bilic, E. Genotype-Phenotype Correlation of β-Thalassemia in Croatian Patients: A Specific HBB Gene Mutations. J. Pediatr. Hematol. Oncol. 2018, 40(2), e77–e82. [Google Scholar] [CrossRef]
- Urosevic, J.; Djurinovic, T.; Poznanic, J.; Cvorkov-Drazic, M.; Bunjevacki, G.; Janic, D.; Krivokapic-Dokmanovic, L.; Popovic, Z.; Pavlovic, S. Homogeneity of the Hb Lepore gene in FR Yugoslavia. Balkan Journal of Medical Genetics. 2001, 4, 29–32. [Google Scholar]
- Lamptey, H.; Seidu, Z.; Lopez-Perez, M.; Kyei-Baafour, E.; Hviid, L.; Adjei, G. O.; Ofori, M. F. Impact of Haemoglobinopathies on Asymptomatic Plasmodium Falciparum Infection and Naturally Acquired Immunity among Children in Northern Ghana. Front. Hematol. 2023, 2. [Google Scholar] [CrossRef]
- Bardón Cancho, E. J.; García-Morín, M.; Beléndez, C.; Velasco, P.; Benéitez, D.; Ruiz-Llobet, A.; Berrueco, R.; Argilés, B.; Cervera, Á.; Salinas, J. A.; Vecilla, C.; Gondra, A.; Vallés, G.; Murciano, T.; Bermúdez, M.; Cela, E.; en representación del grupo de trabajo de Eritropatología de la Sociedad Española de Hematología y Oncología Pediátricas (SEHOP). Update of the Spanish Registry of Haemoglobinopathies in Children and Adults. Med. Clin. (Barc.) 2020, 155 (3), 95–103. [CrossRef]
- Al-Hakeim, H. K.; Abdulla, A. K.; Almulla, A. F.; Maes, M. Hereditary Haematologic Disorders in Najaf Province-Iraq. Transfus. Clin. Biol. J. Soc. Francaise Transfus. Sang. 2020, 27(4), 213–217. [Google Scholar] [CrossRef]
- Musallam, K. M.; Lombard, L.; Kistler, K. D.; Arregui, M.; Gilroy, K. S.; Chamberlain, C.; Zagadailov, E.; Ruiz, K.; Taher, A. T. Epidemiology of Clinically Significant Forms of Alpha- and Beta-Thalassemia: A Global Map of Evidence and Gaps. Am. J. Hematol. 2023, 98(9), 1436–1451. [Google Scholar] [CrossRef]
- Rao, E.; Kumar Chandraker, S.; Misha Singh, M.; Kumar, R. Global Distribution of β-Thalassemia Mutations: An Update. Gene 2024, 896, 148022. [Google Scholar] [CrossRef]
- Radmilovic, M.; Zukic, B.; Stankovic, B.; Karan-Djurasevic, T.; Stojiljkovic, M.; Spasovski, V.; Tosic, N.; Dokmanovic, L.; Janic, D.; Pavlovic, S. Thalassemia Syndromes in Serbia: An Update. Hemoglobin 2010, 34(5), 477–485. [Google Scholar] [CrossRef] [PubMed]
- Pasangna, J.; George, E.; Nagaratnam, M. Haemoglobin Lepore in a Malay Family: A Case Report. Malays. J. Pathol. 2005, 27(1), 33–37. [Google Scholar] [PubMed]
- avlović, S.; Savić, A.; Stojimirović, E. Talasemijski Sindromi - Molekularna Genetika u Savremenoj Dijagnostici: Molecular Genetics and Modern Diagnostics of Thalassemia Syndromes; Institut za molekularnu genetiku i genetičko inženjerstvo: Belgrade, Serbia, 2006; ISBN 86-82679-06-X.
- Efremov, G. D. Thalassemias and Other Hemoglobinopathies in the Republic of Macedonia. Hemoglobin 2007, 31(1), 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cherry, L.; Calo, C.; Talmaci, R.; Perrin, P.; Gavrila, L. β-Thalassemia Haplotypes in Romania in the Context of Genetic Mixing in the Mediterranean Area. Hemoglobin 2016, 40(2), 85–96. [Google Scholar] [CrossRef]
- Petkov, G. H.; Efremov, G. D. Molecular Basis of Beta-Thalassemia and Other Hemoglobinopathies in Bulgaria: An Update. Hemoglobin 2007, 31(2), 225–232. [Google Scholar] [CrossRef] [PubMed]
- Papachatzopoulou, A.; Kourakli, A.; Stavrou, E. F.; Fragou, E.; Vantarakis, A.; Patrinos, G. P.; Athanassiadou, A. Region-Specific Genetic Heterogeneity of HBB Mutation Distribution in South-Western Greece. Hemoglobin 2010, 34(4), 333–342. [Google Scholar] [CrossRef] [PubMed]
- Gorello, P.; Arcioni, F.; Palmieri, A.; Barbanera, Y.; Ceccuzzi, L.; Adami, C.; Marchesi, M.; Angius, A.; Minelli, O.; Onorato, M.; Piga, A.; Caniglia, M.; Mecucci, C.; Roetto, A. The Molecular Spectrum of β- and α-Thalassemia Mutations in Non-Endemic Umbria, Central Italy. Hemoglobin 2016, 40(6), 371–376. [Google Scholar] [CrossRef] [PubMed]
- Ringelhann, B.; Szelenyi, J. G.; Horanyi, M.; Svobodova, M.; Divoky, V.; Indrak, K.; Hollân, S.; Marosi, A.; Laub, M.; Huisman, T. H. Molecular Characterization of Beta-Thalassemia in Hungary. Hum. Genet. 1993, 92(4), 385–387. [Google Scholar] [CrossRef]
- Zahed, L. The Spectrum of Beta-Thalassemia Mutations in the Arab Populations. J. Biomed. Biotechnol. 2001, 1(3), 129–132. [Google Scholar] [CrossRef]
- Rivella, S.; Giardina, J. Thalassemia Syndromes. In Hematology: Basic Principles and Practice, 6th ed; Elsevier Health Sciences, 2012; pp 505–535.
- Verma, S.; Gupta, R.; Kudesia, M.; Mathur, A.; Krishan, G.; Singh, S. Coexisting Iron Deficiency Anemia and Beta Thalassemia Trait: Effect of Iron Therapy on Red Cell Parameters and Hemoglobin Subtypes. ISRN Hematol. 2014, 2014, 293216. [Google Scholar] [CrossRef]
- Needs, T.; Gonzalez-Mosquera, L. F.; Lynch, D. T. Beta Thalassemia. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2024.
- Herbert, L.; Muncie, J.; Campbell, J. S. Alpha and Beta Thalassemia. Am. Fam. Physician 2009, 80(4), 339–344. [Google Scholar]
- Yaish, H.M. Pediatric Thalassemia. Medscape, Updated: Jan 24, 2024. Available online: https://emedicine.medscape.com/article/958850-differential?form=fpf (accessed 2024-05-04).
- Thilakarathne, S.; Jayaweera, U.-P.; Premawardhena, A. Unresolved laboratory issues of the heterozygous state of β-thalassemia: a literature review | Haematologica. 2024, 109 (1), 23–32. https://haematologica.org/article/view/haematol.2022.282667 (accessed 2024-05-13).
- Colaco, S.; Colah, R.; Nadkarni, A. Significance of Borderline HbA2 Levels in β Thalassemia Carrier Screening. Sci. Rep. 2022, 12(1), 5414. [Google Scholar] [CrossRef]
- Kattamis, C. The Normal HbA2 Hematological Phenotype of β-Thalassemia Trait. Problems in Detection and Measures to Improve Sensitivity of Screening Tests. J. Hematol. Transfus. 2017, 5(3), 1068. [Google Scholar]
- Lin, C.-K.; Chen, L.-P.; Chang, H.-L.; Sung, Y.-C. Underestimation of the Coexistence of Iron Deficiencies and Thalassemia Minors: A Single Institution Experience in Taiwan. Kaohsiung J. Med. Sci. 2014, 30(8), 409–414. [Google Scholar] [CrossRef] [PubMed]
- Boonrusmee, S.; Thongkhao, A.; Wongchanchailert, M.; Mo-Suwan, L.; Sangsupawanich, P. Coexisting Iron Deficiency Anemia and Thalassemia Traits in Infants: Implication for an Anemia Screening Program. J. Trop. Pediatr. 2022, 68(4), fmac044. [Google Scholar] [CrossRef] [PubMed]
- Hamoodi, Q. R.; Al-Ani, M. H. Concomitant Iron Deficiency with B-Thalassaemia Minor in Preschool Children in Erbil City. Adv. Med. J. 2018, 4(2), 37–42. [Google Scholar] [CrossRef]
- Harteveld, C. L.; Achour, A.; Arkesteijn, S. J. G.; Ter Huurne, J.; Verschuren, M.; Bhagwandien-Bisoen, S.; Schaap, R.; Vijfhuizen, L.; El Idrissi, H.; Koopmann, T. T. The Hemoglobinopathies, Molecular Disease Mechanisms and Diagnostics. Int. J. Lab. Hematol. 2022, 44(S1), 28–36. [Google Scholar] [CrossRef]
- Thein, S. L. Molecular Basis of β Thalassemia and Potential Therapeutic Targets. Blood Cells. Mol. Dis. 2018, 70, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Rujito, L.; Sasongko, T. H. Genetic Background of β Thalassemia Modifier: Recent Update. J. Biomed. Transl. Res. 2018, 4(1), 12. [Google Scholar] [CrossRef]
- Nigam, N.; Singh, P. K.; Agrawal, M.; Nigam, S.; Gupta, H.; Saxena, S. MTHFR C677T, Prothrombin G20210A, and Factor V Leiden (G1691A) Polymorphism and Beta-Thalassemia Risk: A Meta-Analysis. Cureus 12 (9), e10743. [CrossRef]
- Galanello, R. Genetic Modifiers of β-Thalassemia. In Hematology Education: the education program for the annual congress of the European Hematology Association; 2012; Vol. 6, pp 339–344.
- Galanello, R.; Origa, R. Beta-Thalassemia. Orphanet J. Rare Dis. 2010, 5(1), 11. [Google Scholar] [CrossRef]
- Tesio, N.; Bauer, D. E. Molecular Basis and Genetic Modifiers of Thalassemia. Hematol. Oncol. Clin. North Am. 2023, 37(2), 273–299. [Google Scholar] [CrossRef] [PubMed]
- Ruangvutilert, P.; Phatihattakorn, C.; Yaiyiam, C.; Panchalee, T. Pregnancy Outcomes among Women Affected with Thalassemia Traits. Arch. Gynecol. Obstet. 2023, 307(2), 431–438. [Google Scholar] [CrossRef] [PubMed]
| Variant | HGVS* nomenclature |
Type of mutation |
Families | Chromosomes | ||
| n | % | n | % | |||
| Hb Lepore-BW | NG_000007.3:g.63632_71046del | Hb variant | 7 | 29,2 | 15 | 32,6 |
| IVSI-110 | HBB:c.93-21G>A | β+ | 5 | 20,8 | 9 | 19,6 |
| IVSII-1 | HBB:c.315+1G>A | β0 | 4 | 16,6 | 6 | 13,1 |
| IVSI-1 | HBB:c.92+1G>A | β0 | 2 | 8,3 | 5 | 10,9 |
| IVSI-6 | HBB:c.92+6T>C | β+ | 1 | 4,2 | 4 | 8,7 |
| IVSII-745 | HBB:c.316-106C>G | β+ | 1 | 4,2 | 2 | 4,3 |
| Codon 39 | HBB:c.118C>T | β0 | 2 | 8,3 | 2 | 4,3 |
| Hb Monroe | HBB:c.92G>C | β0 | 1 | 4,2 | 2 | 4,3 |
| Poly A (A>G) | HBB:c.*111A>G | β+ | 1 | 4,2 | 1 | 2,2 |
| TOTAL | 24 | 100 | 46 | 100 | ||
| Hemoglobin [g/L] (n=13), median (range) | 113 (91-131) |
| MCV [fl] (n=15), median (range) | 58.4 (51.6-68.5) |
| MCH [pg] (n=15), median (range) | 19.3 (16.5-22) |
| HbA2 [%] (n=31), median (range) | 4.1 (1.8-5.7) |
| HbF [%] (n=29), median (range) | 3.3 (0.4-30.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).