Submitted:
15 May 2024
Posted:
16 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Location
2.2. Soil Characteristics and Weather Conditions
2.3. Sample Collection
2.4. Parameters Assessed
2.5. Nutritional Value
2.6. Statistical Analysis
3. Results
3.1. Productive Performance
3.2. Plant Morphology
3.3. Floristic Composition
3.4. Nutritional Composition
4. Discussion
4.1. Productive Performance
4.2. Plant Height
4.3. Crop Morphology
4.4. Floristic Composition
4.5. Nutritional Value
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soder, K.J.; Brito, A.F. Enteric methane emissions in grazing dairy systems. JDS Communications 2023, 4, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Loges, R.; Vogeler, I.; Kluß, C.; Hasler, M.; Taube, F. Renovation of grasslands with grass and white clover – Effects on yield and carbon sequestration. Soil and Tillage Research 2024, 240, 106076. [Google Scholar] [CrossRef]
- Cao, M.; Xiang, Y.; He, H.; Cheng, J.; Song, Y.; Jin, C.; Xin, G.; He, C. Italian ryegrass (Lolium multiflorum L.)-rice (Oryza sativa L.) rotation promotes the nitrogen cycle in the rice rhizosphere through dominant ammonia-oxidizing bacteria. Applied Soil Ecology 2024, 193, 105121. [Google Scholar] [CrossRef]
- Phillips, C.L.; Wang, R.; Mattox, C.; Trammell, T.L.; Young, J.; Kowalewski, A. High soil carbon sequestration rates persist several decades in turfgrass systems: A meta-analysis. Science of the Total Environment 2023, 858, 159974. [Google Scholar] [CrossRef] [PubMed]
- Guest, E.J.; Palfreeman, L.J.; Holden, J.; Chapman, P.J.; Firbank, L.G.; Lappage, M.G.; Helgason, T.; Leake, J.R. Soil macroaggregation drives sequestration of organic carbon and nitrogen with three-year grass-clover leys in arable rotations. Science of The Total Environment 2022, 852, 158358. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.; Galvin, N.; Hennessy, D. Incorporating white clover (Trifolium repens L.) into perennial ryegrass (Lolium perenne L.) swards receiving varying levels of nitrogen fertilizer: Effects on milk and herbage production. Journal of Dairy Science 2018, 101, 3412–3427. [Google Scholar] [CrossRef] [PubMed]
- Komainda, M.; Isselstein, J. Effects of functional traits of perennial ryegrass cultivars on forage quality in mixtures and pure stands. The Journal of Agricultural Science 2020, 158, 173–184. [Google Scholar] [CrossRef]
- Enriquez-Hidalgo, D.; Gilliland, T.J.; Egan, M.; Hennessy, D. Production and quality benefits of white clover inclusion into ryegrass swards at different nitrogen fertilizer rates. Journal of Agricultural Science 2018, 156, 378–386. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.; Manhire, J.; Ticllacuri, R.G.; Madrid, J.L.B.; Marroquin, V.M.V. Smallholder dairy farmers in the Peruvian Andes fulfilling the role of extension agents. 2021; p. 4. [Google Scholar]
- Giambalvo, D.; Ruisi, P.; Miceli, G.D.; Frenda, A.S.; Amato, G. Forage production, N uptake, N2 fixation, and N recovery of berseem clover grown in pure stand and in mixture with annual ryegrass under different managements. Plant and Soil 2011, 342, 379–391. [Google Scholar] [CrossRef]
- Tilus, G.; Zinn, R.; Joseph, M.; Canul, A.J.C.; Santillano-Cazares, J.; Galicia-Juarez, M.; Tilus, M.; Tilus, D.; Estrada-Delgado, E.; Montaño-Gomez, M. FORAGE YIELD, ELONGATION RATE AND BOTANICAL COMPOSITION OF Lolium multiflorum LAMB. IN RESPONSE TO DIFFERENT GRAZING INTERVALS AND INTEN. Tropical and Subtropical Agroecosystems 2022, 25, 0–2. [Google Scholar] [CrossRef]
- Phelan, P.; Casey, I.A.; Humphreys, J. The effects of simulated summer-to-winter grazing management on herbage production in a grass–clover sward. Grass and Forage Science 2014, 69, 251–265. [Google Scholar] [CrossRef]
- Parish, J. Comparison of Virginia wildrye, annual ryegrass, and wheat for weaned beef steers grazing and confinement feeding. The Professional Animal Scientist 2018, 34, 356–363. [Google Scholar] [CrossRef]
- Gierus, M.; Kleen, J.; Loges, R.; Taube, F. Forage legume species determine the nutritional quality of binary mixtures with perennial ryegrass in the first production year. Animal Feed Science and Technology 2012, 172, 150–161. [Google Scholar] [CrossRef]
- Costa, D.; Ferreira, L.; Silva, J.; Fluck, A.C.; Kröning, A.B.; Oliveira, L.; Coelho, T.; Brondani, W.C. Yield, structural composition and nutritive characteristics of ryegrass cultivars used to haymaking in lowland soils. Bioscience Journal 2018, 34, 1232–1238. [Google Scholar] [CrossRef]
- Bell, M.J.; Huggett, Z.J.; Slinger, K.R.; Roos, F. Effect of pasture cover and height on nutrient concentrations in diverse swards in the UK. Grassland Science 2021, 67, 267–272. [Google Scholar] [CrossRef]
- Wims, C.; Delaby, L.; Boland, T.; O’Donovan, M. Effect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures. Animal 2014, 8, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Claffey, A.; Delaby, L.; Lewis, E.; Boland, T.M.; Kennedy, E. Pasture allowance, duration, and stage of lactation—Effects on early and total lactation animal performance. Journal of Dairy Science 2019, 102, 8986–8998. [Google Scholar] [CrossRef] [PubMed]
- Tozer, K.; Chapman, D.; Bell, N.; Crush, J.; King, W.; Rennie, G.; Wilson, D.; Mapp, N.; Rossi, L.; Aalders, L.; Cameron, C. Botanical survey of perennial ryegrass-based dairy pastures in three regions of New Zealand: implications for ryegrass persistence. New Zealand Journal of Agricultural Research 2014, 57, 14–29. [Google Scholar] [CrossRef]
- Mendoza, I.; Garay, A.; Rafael, G.; Humberto, V.; Huerta, V.; Reynoso, O.R.; Rivera, R.C. Productive behavior of perennial ryegrass alone and associated with ovillo grass and white clover. Revista Mexicana de Ciencias Agrícolas 2018, 9, 343–353. [Google Scholar] [CrossRef]
- Hofer, D.; Suter, M.; Haughey, E.; Finn, J.A.; Hoekstra, N.J.; Buchmann, N.; Lüscher, A. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. Journal of Applied Ecology 2016, 53, 1023–1034. [Google Scholar] [CrossRef]
- Lluga-Rizani, K.; Šoljan, D.; Berisha, N.; Kurteshi, K.; Letaj, K. Morphological variability of Trifolium repens L. (Fabaceae). Hacquetia 2021, 20, 281–290. [Google Scholar] [CrossRef]
- Zegler, C.H.; Brink, G.E.; Renz, M.J.; Ruark, M.D.; Casler, M.D. Management Effects on Forage Productivity, Nutritive Value, and Legume Persistence in Rotationally Grazed Pastures. Crop Science 2018, 58, 2657–2664. [Google Scholar] [CrossRef]
- Ventura, J.; Hernández, E.; Santiago, M.; Wilson, C.; Maldonado, M.; Rojas, A. Rendimiento de trébol blanco asociado con pasto ovillo a diferentes frecuencias de pastoreo. Revista Mexicana de Ciencias Agrícolas 2020, 24, 1–12. [Google Scholar] [CrossRef]
- Chapman, D.F.; Parsons, A.J.; Schwinning, S. Management of clover in grazed pastures: expectations, limitations and opportunities. 1996; Vol. Special P. N° 11, pp. 55–64. [Google Scholar] [CrossRef]
- Inga, E.L.; Cruz, M.O.; Fernández, P.H.; Guerra, R.U.; Arce, V.V.; Acosta, M.H. Comportamiento agronómico y composición nutricional de diez variedades de pastos mejorados. Idesia (Arica) 2021, 39, 131–138. [Google Scholar] [CrossRef]
- García, A.R.R.; Garay, A.H.; Jacobo, M.A.R.; Pedroza, S.I.M.; de los Ángeles Maldonado Peralta, M.; Cancino, S.J. Population dynamics of orchard grass stalks (Dactylis glomerata L.) and perennial ryegrass (Lolium perenne L.) associated with white clover (Trifolium repens L.). Revista de la Facultad de Ciencias Agrarias 2017, 49, 35–49. [Google Scholar]
- Fernández, L.A.V.; García, W.Y.A.; Arana, M.P.; Odriozola, S.S.; Guillén-Sanchez, R.; Patiño, C.P.; Valdivia, J.B.; Ticllacuri, R.G. Comportamiento productivo y valor nutricional de siete genotipos de trébol en tres pisos altitudinales de la sierra norte del Perú. Revista de Investigaciones Veterinarias del Perú 2021, 32, e17690. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Tomasoni, C. Optimizing legume content and forage yield of mown white clover–Italian ryegrass mixtures through nitrogen fertilization and grass row spacing. Grass and Forage Science 2010, 65, 220–226. [Google Scholar] [CrossRef]
- Vallejos-Fernández, L.A.; Alvarez, W.Y.; Paredes-Arana, M.E.; Pinares-Patiño, C.; Bustíos-Valdivia, J.C.; Vásquez, H.; García-Ticllacuri, R. Productive behavior and nutritional value of 22 genotypes of ryegrass (Lolium spp.) on three high Andean floors of northern Peru. Scientia Agropecuaria 2020, 11, 537–545. [Google Scholar] [CrossRef]
- Oliva, M.; Valqui, L.; Meléndez, J.; Milla, M.; Leiva, S.; Collazos, R.; Maicelo, J. Influence of arboreal native species on silvopastoral systems on the yield and nutritional value of Lolium multiflorum and Trifolium repens. Scientia Agropecuaria 2018, 9, 579–583. [Google Scholar] [CrossRef]
- LÓPEZ, D.F.; MASMELA, I.A.B.; MOLANO, C.E.R.; VIVAS-QUILA, N.J. Effect of the recovery period on the production and nutritional quality of some forage species. Biotecnología en el Sector Agropecuario y Agroindustrial 2020, 18, 135. [Google Scholar] [CrossRef]
- Ganderats, S.; Hepp, C. Growth patterns of Lolium perenne, Festuca arundinacea and Dactylis glomerata in the Intermediate Zone of Aysén. Agricultura técnica (Chile) 2003, 63, 259–265. [Google Scholar]
- Balocchi, O.; Kusanovic, K.; Loaiza, P.; López, I. Dinámica de crecimiento y calidad nutritiva de una pradera de Lolium perenne L. sometida a diferentes frecuencias de defoliación: periodo primavera-verano. Agro Sur 2013, 41, 11–21. [Google Scholar] [CrossRef]
- Han, D.R.; Yao, T.; Li, H.Y.; Huang, S.C.; Yang, Y.S.; Gao, Y.M.; Li, C.N.; Zhang, Y.C. Effects of combined application of microbial fertilizer and chemical fertilizer on the growth of Lolium perenne. Acta Prataculturae Sinica 2022, 31, 136–143. [Google Scholar] [CrossRef]
- Doussoulin, M.; Guajardo, C.; Campos, J.; Salazar, S. evaluación agronómica de cultivares de trébol blanco (Trifolium repens) asociado a Ballica perenne (Lolium perenne), bajo condiciones de corte en condicones de riego, Ñuble, Chile. Archivos Latinoamericanos de Producción Animal. 2018; Vol. 26, p. 36. [Google Scholar]
- Ergon; Kirwan, L.; Bleken, M.A.; Skjelvåg, A.O.; Collins, R.P.; Rognli, O.A. Species interactions in a grassland mixture under low nitrogen fertilization and two cutting frequencies: 1. dry-matter yield and dynamics of species composition. Grass and Forage Science 2016, 71, 667–682. [Google Scholar] [CrossRef]
- Fernández, L.A.V. Efecto de la fertilización fosforada y frecuencia de pastoreo sobre el valor nutritivo de la dieta y comportamiento ingestivo de las vacas Holstein en pasturas de ryegrass-trébol en Cajamarca [Universidad Nacional Agraria la Molina]. 2009. [Google Scholar]
- Fernández, L.A.V.; Guevara, I.B.R.; Gaitán, J.A.P.; Mendoza, J.A. Vacas pastoreadas a estaca y su efecto sobre el consumo y condición de la pastura. UCV-Scientia. 2020, 11, 28–31. [Google Scholar] [CrossRef]
- Senamhi. Datos Hidrometeorológicos a nivel nacional, 2024.
- AOAC. Método, AOAC. 928.08—“Kjeldahl method”. In Official Methods of Analysis of AOAC Internationa, 19th ed.; Latimer, G.W., Ed.; p. 5.
- Horwitz, W.; Latimer, G. Official methods of analysis; Association of Official Analytical Chemists: Washington, DC, 2010; Vol. 222. [Google Scholar]
- Thiex, N.; Novotny, L.; Crawford, A. Determination of ash in animal feed: AOAC official method 942.05 revisited. Journal of AOAC International 2012, 95, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.v.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy science 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Mabjeesh, S.; Cohen, M.; Arieli, A. In Vitro Methods for Measuring the Dry Matter Digestibility of Ruminant Feedstuffs: Comparison of Methods and Inoculum Source. Journal of Dairy Science 2000, 83, 2289–2294. [Google Scholar] [CrossRef]
- Posit team. RStudio: Integrated Development Environment for R; Posit Software, PBC: Boston, MA, 2024. [Google Scholar]
- Vera-Villalobos, H.; Lunario-Delgado, L.; Pérez-Retamal, D.; Román, D.; Leiva, J.C.; Zamorano, P.; Mercado-Seguel, A.; Gálvez, A.S.; Benito, C.; Wulff-Zottele, C. Sulfate nutrition improves short-term Al3+-stress tolerance in roots of Lolium perenne L. Plant Physiology and Biochemistry 2020, 148, 103–113. [Google Scholar] [CrossRef]

| Factors | Biomass (Kg x ha-1) | Plant height (cm) | |||
|---|---|---|---|---|---|
| Day | Cut | Year | Ryegrass | Clover | |
| Grazing frequency (days) | |||||
| 30 | 84.37 | 2531.20 c | 30796.7 | 20.35 c | 10.23 c |
| 45 | 88.69 | 3991.00 b | 32371.7 | 32.54 b | 14.54 b |
| 60 | 91.85 | 5511.26 a | 33527 | 47.12 a | 18.25 a |
| SE | 3.83 | 138.91 | 1398.76 | 3.13 | 0.91 |
| p value | 0.4562 | 0.0003 | 0.4565 | 0.0002 | 0.0001 |
| Time of year | |||||
| Rainy | 96.11 a | 4360.33 | 35140.27 a | 32.49 | 14.96 |
| Dry | 79.89 b | 3648.22 | 29592.55 b | 34.18 | 13.7 |
| SE | 3.71 | 496.77 | 1036.54 | 4.8 | 1.41 |
| p value | 0.008 | 0.328 | 0.0002 | 0.8071 | 0.542 |
| Factors | Lolium multiflorum L. | Trifolium repens | |||||
|---|---|---|---|---|---|---|---|
| Number of tillers | Number of ears | Basal diameter | Elongation rate (cm x day-1) | Growing points (m2) | Internode length (cm) | Number of flower heads (m2) | |
| Grazing frequency (days) | |||||||
| 30 | 101 | 3.54 b | 34.00 a | 0.44 c | 15.33 | 0.91 b | 22.02 |
| 45 | 174.89 | 11.30 b | 44.11 b | 0.59 b | 20.0 | 1.32 b | 42.11 |
| 60 | 128.44 | 30.61 a | 43.44 b | 0.89 a | 24.0 | 2.28 a | 44.44 |
| SE | 24.48 | 2.51 | 1.41 | 0.01 | 1.99 | 0.136 | 8.38 |
| p value | 0.2136 | 0.0037 | 0.0122 | 0.0000 | 0.0871 | 0.0048 | 0.2310 |
| Factors | Ryegrass | Clover | Malezas | Rate R:C |
|---|---|---|---|---|
| Grazing frequency (days) | ||||
| 30 | 62.93 ab | 20.21 | 16.81 a | 3.34 |
| 45 | 60.49 a | 21.66 | 17.61 a | 3 |
| 60 | 74.94 b | 16.67 | 8.61 b | 5.47 |
| SE | 3.26 | 2.52 | 1.84 | 0.77 |
| p value | 0.0174 | 0.3822 | 0.0074 | 0.0816 |
| Time of year | ||||
| Rainy | 69.46 | 15.20 a | 15.31 | 5.13 b |
| Dry | 62.78 | 23.82 b | 13.37 | 2.73 a |
| SE | 3.27 | 1.38 | 2.08 | 0.57 |
| p value | 0.1702 | 0.0006 | 0.5187 | 0.0102 |
| Species/Grazing frequency (days) | CP (%) | Ash (%) | NDF (%) | DIVMS (%) | ME (Mcal/kg MS) | Kg CP x ha x year |
|---|---|---|---|---|---|---|
| Ryegrass | ||||||
| 30 | 13.99 a | 12.42 a | 36.90 a | 72.74 a | 2.75 a | 2710.57 ab |
| 45 | 12.34 ab | 9.79 b | 40.84 a | 69.92 a | 2.61 a | 2416.27 a |
| 60 | 11.36 b | 8.60 b | 45.87 b | 61.91 b | 2.26 b | 2855.20 b |
| SE | 0.38 | 0.52 | 1.05 | 0.86 | 0.04 | 83.75 |
| p value | 0.008 | 0.0052 | 0.0028 | 0.0003 | 0.0002 | 0.026 |
| Clover | ||||||
| 30 | 27.32 a | 11.03 | 22.34 a | 75.96 a | 2.91 a | 1700.57 a |
| 45 | 26.43 a | 12.58 | 28.33 b | 72.71 b | 2.77 b | 1853.40 a |
| 60 | 21.43 b | 11.41 | 35.34 c | 69.59 c | 2.61 c | 1199.57 b |
| SE | 0.88 | 0.71 | 1.07 | 0.66 | 0.03 | 51.97 |
| p value | 0.0066 | 0.343 | 0.0004 | 0.0015 | 0.001 | 0.0003 |
| Weeds | ||||||
| 30 | 17.35 a | 10.94 | 38.02 a | 69.80 a | 2.65 a | 898.17 a |
| 45 | 16.65 ab | 13.58 | 43.16 b | 68.35 ab | 2.56 ab | 949.53 a |
| 60 | 12.64 b | 12.08 | 54.08 c | 64.08 b | 2.37 b | 365.07 b |
| SE | 0.93 | 0.65 | 0.91 | 1.07 | 0.05 | 45.66 |
| p value | 0.0237 | 0.062 | 0.0000 | 0.0221 | 0.0167 | 0.0002 |
| Association | ||||||
| 30 | 17.24 a | 11.89 a | 34.13 a | 72.86 a | 2.77 a | 5309.29 a |
| 45 | 16.12 a | 11.04 a | 38.44 b | 70.08 a | 2.63 a | 5219.19 a |
| 60 | 13.18 b | 9.47 b | 44.93 c | 63.52 b | 2.34 b | 4419.87 b |
| SE | 0.45 | 0.31 | 0.8 | 0.77 | 0.04 | 145.18 |
| p value | 0.0017 | 0.0044 | 0.0002 | 0.0004 | 0.0004 | 0.0091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
