Submitted:
14 February 2025
Posted:
17 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Rotation Motion
-
Shape and Size: Rotation does not alter the shape or size of the object. More Specifically,
- . It means the length of the point will not be changed by rotation motion. Without loss of generality, the rotation motion in this paper is studied with unit norm vectors, i.e., on the unit sphere surface, which represents a unit direction vector in the 3D physical world.
- where are any two unit vectors. It means the angle (structure) of the object is unchanged.
- Axis of Rotation: Rotational motion occurs around a fixed axis. Given a vector , if , it means the after the rotation , the vector direction remains unchanged, and the vector must be parallel to the rotation axis , which is from Euler’s rotation theorem and screw theory [24,25,26,27]. In addition,where is the 3 × 3 identity matrix. Algebraically, Eq.(2) means the rotation axis direction lies in the null space of . Alternatively, let , then the rotation axis direction is an eigenvector of corresponding to the eigenvalue .

3. Linear Expressions for Rotation Motion

4. Special Case I: Great Circle in

4.1. Eigenvector of
- any row of is a linear combination of and .
- any row of is a linear combination of and .
5. Special Case II: Clifford Torus in
5.1. Intersections of Two Different Clifford Tori
5.2. Intersections of Three Different Clifford Tori
5.2.1. Linear Solution to Solve Intersections of Three Different Clifford Tori
Conflicts of Interest
References
- Waldron, K.J.; Schmiedeler, J. Kinematics. In Springer handbook of robotics; 2016; pp. 11–36. [Google Scholar]
- Ivanov, A. Theoretical matrix study of rigid body general motion. Greener Journal of Physics and Natural Sciences 2017, 3, 009–020. [Google Scholar] [CrossRef]
- Hartley, R.; Zisserman, A. Multiple view geometry in computer vision; Cambridge university press, 2003. [Google Scholar]
- Yehia, H.M. Rigid Body Dynamics. In Advances in Mechanics and Mathematics. Birkhäuser Cham; 2022.
- Teisseyre, R. Tutorial on new developments in the physics of rotational motions. Bulletin of the Seismological Society of America 2009, 99, 1028–1039. [Google Scholar] [CrossRef]
- Kisantal, M.; Sharma, S.; Park, T.H.; Izzo, D.; Märtens, M.; D’Amico, S. Satellite pose estimation challenge: Dataset, competition design, and results. IEEE Transactions on Aerospace and Electronic Systems 2020, 56, 4083–4098. [Google Scholar] [CrossRef]
- Gul, F.; Rahiman, W.; Nazli Alhady, S.S. A comprehensive study for robot navigation techniques. Cogent Engineering 2019, 6, 1632046. [Google Scholar] [CrossRef]
- Yefymenko, N.; Kudermetov, R. Quaternion models of a rigid body rotation motion and their application for spacecraft attitude control. Acta Astronautica 2022, 194, 76–82. [Google Scholar] [CrossRef]
- Rizzi, G.; Ruggiero, M.L. Relativity in rotating frames: relativistic physics in rotating reference frames, Springer, 2004.
- Bustos, A.P.; Chin, T.J. Guaranteed Outlier Removal for Point Cloud Registration with Correspondences. IEEE transactions on pattern analysis and machine intelligence 2018, 40, 2868–2882. [Google Scholar] [CrossRef]
- Eriksson, A.; Olsson, C.; Kahl, F.; Chin, T.J. Rotation Averaging with the Chordal Distance: Global Minimizers and Strong Duality. IEEE Transactions on Pattern Analysis & Machine Intelligence 2021, 43, 256–268. [Google Scholar]
- Crassidis, J.L.; Markley, F.L.; Cheng, Y. Survey of nonlinear attitude estimation methods. Journal of guidance, control, and dynamics 2007, 30, 12–28. [Google Scholar] [CrossRef]
- Carlone, L.; et al. Estimation Contracts for Outlier-Robust Geometric Perception. Foundations and Trends® in Robotics 2023, 11, 90–224. [Google Scholar] [CrossRef]
- Mathavaraj, S.; Butcher, E.A. SE (3)-constrained extended Kalman filtering for rigid body pose estimation. IEEE Transactions on Aerospace and Electronic Systems 2021, 58, 2482–2492. [Google Scholar] [CrossRef]
- Welch, G.F. Kalman filter. Computer Vision: A Reference Guide, 2020; 1–3. [Google Scholar]
- Trawny, N.; Roumeliotis, S.I. Indirect Kalman filter for 3D attitude estimation. University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep 2005, 2, 2005. [Google Scholar]
- Chin, T.J.; Suter, D. The maximum consensus problem: recent algorithmic advances; Springer Nature, 2022. [Google Scholar]
- Etingof, P. Lie groups and Lie algebras. arXiv, 2022; arXiv:2201.09397 2022. [Google Scholar]
- Dehmamy, N.; Walters, R.; Liu, Y.; Wang, D.; Yu, R. Automatic symmetry discovery with lie algebra convolutional network. Advances in Neural Information Processing Systems 2021, 34, 2503–2515. [Google Scholar]
- Gill, P.E.; Murray, W.; Wright, M.H. Numerical linear algebra and optimization, SIAM,, 2021.
- Farin, G.; Hansford, D. Practical linear algebra: a geometry toolbox; Chapman and Hall/CRC, 2021.
- Horn, R.A.; Johnson, C.R. Matrix analysis; Cambridge university press, 2012.
- Taubin, G. 3D Rotations. IEEE Computer Graphics and Applications 2011, 31, 84–89. [Google Scholar] [CrossRef]
- Ball, R.S. The theory of screws: A study in the dynamics of a rigid body. Mathematische Annalen 1876, 9, 541–553. [Google Scholar] [CrossRef]
- Palais, B.; Palais, R. Euler’s fixed point theorem: The axis of a rotation. Journal of fixed point theory and applications 2007, 2, 215–220. [Google Scholar] [CrossRef]
- Kumar, V. The Theorems of Euler and Chasles. University of Pennsylvania School of Engineering and Applied Science, I-Net, USA 2000.
- Joseph, T. An alternative proof of Euler’s rotation theorem. The Mathematical Intelligencer 2020, 42, 44–49. [Google Scholar] [CrossRef]
- Fraiture, L. A history of the description of the three-dimensional finite rotation. The Journal of the Astronautical Sciences 2009, 57, 207–232. [Google Scholar] [CrossRef]
- Hartley, R.I.; Kahl, F. Global optimization through rotation space search. International Journal of Computer Vision 2009, 82, 64–79. [Google Scholar] [CrossRef]
- Jia, Y.B. Quaternions and rotations. Com S 2008, 477, 15. [Google Scholar]
- Spring, K.W. Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: a review. Mechanism and machine theory 1986, 21, 365–373. [Google Scholar] [CrossRef]
- Bauchau, O.; Bauchau, O. Parameterization of rotation. Flexible Multibody Dynamics, 2011; 511–542. [Google Scholar]
- Hartley, R.; Trumpf, J.; Dai, Y.; Li, H. Rotation averaging. International journal of computer vision 2013, 103, 267–305. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M. Rotation representations and their conversions. IEEE Access 2023, 11, 6682–6699. [Google Scholar] [CrossRef]
- Shuster, M.D. A survey of attitude representation. Journal of The Astronautical Sciences 1993, 41, 439–517. [Google Scholar]
- Liu, Y. Globally Optimal Solutions for Unit-Norm Constrained Computer Vision Problems. Ph.D. Thesis, Technische Universität München, 2022. [Google Scholar]
- Liu, Y.; Dong, Y.; Song, Z.; Wang, M. 2D-3D Point Set Registration Based on Global Rotation Search. IEEE Transactions on Image Processing 2019, 28, 2599–2613. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE transactions on pattern analysis and machine intelligence 2015, 38, 2241–2254. [Google Scholar] [CrossRef]
- Altmann, S.L. Rotations, quaternions, and double groups, Courier Corporation, 2005.
- HORN, B.P. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America. A, Optics and image science 1987, 4, 629–642. [Google Scholar] [CrossRef]
- Peng, L.; Tsakiris, M.C.; Vidal, R. Arcs: Accurate rotation and correspondence search. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2022; pp. 11153–11163. [Google Scholar]
- McClintock, P. Relating plane transformations with stereographic projection. Ph.D. Thesis, 2022. [Google Scholar]
- Wilkins, D.R. Möbius transformations and stereographic projection, 2017.
- Gluck, H.; Warner, F.W. Great circle fibrations of the three-sphere. Duke Mathematical Journal 1983, 50, 107–132. [Google Scholar] [CrossRef]
- Bayro-Corrochano, E. A survey on quaternion algebra and geometric algebra applications in engineering and computer science 1995–2020. IEEE Access 2021, 9, 104326–104355. [Google Scholar] [CrossRef]
- Nastro, V.; Tancredi, U. Great circle navigation with vectorial methods. The Journal of navigation 2010, 63, 557–563. [Google Scholar] [CrossRef]
- Cheng, Q.M.; Ishikawa, S. A characterization of the Clifford torus. Proceedings of the American Mathematical Society 1999, 127, 819–828. [Google Scholar] [CrossRef]
- Yu, T.; Chen, J. Uniqueness of Clifford torus with prescribed isoperimetric ratio. Proceedings of the American Mathematical Society 2022, 150, 1749–1765. [Google Scholar] [CrossRef]
- Srivatsan, R.A.; Rosen, G.T.; Mohamed, D.F.N.; Choset, H. Estimating SE (3) elements using a dual quaternion based linear Kalman filter. In Proceedings of the Robotics: Science and systems; 2016. [Google Scholar]
- Arun Srivatsan, R.; Zevallos, N.; Vagdargi, P.; Choset, H. Registration with a small number of sparse measurements. The International Journal of Robotics Research 2019, 38, 1403–1419. [Google Scholar] [CrossRef]
- Andersson, O.; Bengtsson, I. Clifford tori and unbiased vectors. Reports on mathematical physics 2017, 79, 33–51. [Google Scholar] [CrossRef]
- Kukelova, Z.; Heller, J.; Fitzgibbon, A. Efficient intersection of three quadrics and applications in computer vision. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016; pp. 1799–1808. [Google Scholar]
- Xu, C.; Zhang, L.; Cheng, L.; Koch, R. Pose estimation from line correspondences: A complete analysis and a series of solutions. IEEE transactions on pattern analysis and machine intelligence 2016, 39, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Xu, G.; Cheng, Y. An efficient and globally optimal method for camera pose estimation using line features. Machine Vision and Applications 2020, 31, 1–11. [Google Scholar] [CrossRef]
- Wang, P.; Xu, G.; Cheng, Y.; Yu, Q. Camera pose estimation from lines: a fast, robust and general method. Machine Vision and Applications 2019, 30, 603–614. [Google Scholar] [CrossRef]
- Chan, K. A simple mathematical approach for determining intersection of quadratic surfaces. In Multiscale optimization methods and applications; Springer, 2006; pp. 271–298. [Google Scholar]
- Sarraga, R.F. Algebraic methods for intersections of quadric surfaces in GMSOLID. Computer Vision, Graphics, and Image Processing 1983, 22, 222–238. [Google Scholar] [CrossRef]
- Sturmfels, B. Introduction to resultants. In Proceedings of the Proceedings of Symposia in Applied Mathematics. American Mathematical Society, 1998, Vol. 53, pp. 25–40.
- Woody, H. Polynomial resultants. GNU operating system 2016. [Google Scholar]
- Hartley, R.; Li, H. An efficient hidden variable approach to minimal-case camera motion estimation. IEEE transactions on pattern analysis and machine intelligence 2012, 34, 2303–2314. [Google Scholar] [CrossRef]
- Kukelova, Z.; Bujnak, M.; Pajdla, T. Polynomial eigenvalue solutions to minimal problems in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 2011, 34, 1381–1393. [Google Scholar] [CrossRef]
- Pan, V.Y. Good News for Polynomial Root-finding. arXiv 2018, arXiv:1805.12042 2018. [Google Scholar]
- Kalantari, B. Polynomial root-finding and polynomiography. World Scientific, 2008. [Google Scholar]
- Tisseur, F.; Meerbergen, K. The quadratic eigenvalue problem. SIAM review 2001, 43, 235–286. [Google Scholar] [CrossRef]
- Ghojogh, B.; Karray, F.; Crowley, M. Eigenvalue and Generalized Eigenvalue Problems: Tutorial. arXiv 2023, arXiv:stat.ML/1903.11240. [Google Scholar]
- Williams, M.P. Solving polynomial equations using linear algebra. Johns Hopkins APL Technical Digest 2010, 28, 354–363. [Google Scholar]
- Lancaster, P.; Zaballa, I. Diagonalizable quadratic eigenvalue problems. Mechanical Systems and Signal Processing 2009, 23, 1134–1144. [Google Scholar] [CrossRef]
| 1 | |
| 2 | |
| 3 | |
| 4 |





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
