Submitted:
10 May 2024
Posted:
13 May 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Detection Methods
2.1. Flow Cytometry
2.1.1. Principles of Flow Cytometry
2.1.2. Applications in Blood Cancer Detection
2.1.2.1. Immunophenotyping
2.1.2.2. Minimal Residual Disease (MRD) Monitoring
2.1.2.3. DNA Content Analysis
2.1.3. Specific Markers Used in Blood Cancer Detection
- -
- Leukemia: Different leukemias have distinct immunophenotypic profiles. For example, acute lymphoblastic leukemia (ALL) typically expresses CD19, CD10, and TdT, whereas chronic lymphocytic leukemia (CLL) is characterized by CD5, CD23, and dim surface immunoglobulin[17].
- -
- Lymphoma: Flow cytometry aids in differentiating between various lymphoma subtypes based on antigen expression. For instance, follicular lymphoma is positive for CD10 and CD20, while mantle cell lymphoma expresses CD5, CD19, and CD20[18].
2.1.4. Limitations and Considerations
- -
- Requirement for fresh, viable cells, which may not always be obtainable from all sample types[19].
- -
- Limited ability to detect certain molecular abnormalities or genetic mutations[20].
- -
- Need for expertise in data interpretation and analysis, particularly in distinguishing abnormal from normal cell populations[21].
2.1.5. Future Directions
2.2. Next-Generation Sequencing (NGS)
2.2.1. Principles of NGS
- -
- Library Preparation: DNA or RNA is extracted from patient samples and fragmented into smaller pieces. Adapters are ligated to the fragments to enable amplification and sequencing[24].
- -
- Sequencing: The library is sequenced using NGS platforms, generating vast amounts of sequence data[25].
- -
- Bioinformatics Analysis: Sequencing data is processed and analyzed to identify genetic variants, mutations, gene fusions, and other molecular alterations[26].
2.2.2. Applications in Blood Cancer Detection
2.2.2.1. Mutation Profiling
2.2.2.2. Gene Fusions and Rearrangements
2.2.2.3. Clonal Heterogeneity
2.2.2.4. Minimal Residual Disease (MRD) Monitoring
2.2.3. NGS Technologies and Platforms
- -
- Targeted Gene Panels: Focus on specific genes associated with hematological malignancies, providing cost-effective and clinically relevant information[32].
- -
- Whole-Exome Sequencing (WES): Sequences all protein-coding regions of the genome, enabling comprehensive mutation profiling[33].
- -
- Whole-Genome Sequencing (WGS): Provides complete genomic information, allowing for the detection of structural variants and non-coding mutations[34].
2.2.4. Challenges and Considerations
- -
- Data Analysis: NGS generates large datasets requiring sophisticated bioinformatics pipelines for accurate interpretation[35].
- -
- Tumor Heterogeneity: Sampling bias and intra-tumor heterogeneity can affect mutation detection and interpretation[36].
- -
- Standardization: Variability in sequencing protocols and data analysis workflows necessitates standardization for clinical adoption[37].
2.2.5. Future Directions
2.3. Polymerase Chain Reaction (PCR)
2.3.1. Principles of PCR
- -
- Denaturation: Heat is used to separate the double-stranded DNA template into single strands[39].
- -
- Annealing: Primers (short DNA sequences complementary to the target region) bind to the template DNA[40].
- -
- Extension: DNA polymerase synthesizes a new strand of DNA by extending from the primers[41].
2.3.2. Applications in Blood Cancer Detection
2.3.2.1. Detection of Fusion Genes and Mutations
2.3.2.2. Minimal Residual Disease (MRD) Monitoring
2.3.2.3. Clonal Diversity Assessment
2.3.3. Types of PCR Assays
- -
- Conventional PCR: Standard PCR for amplifying specific DNA sequences[47].
- -
- Reverse Transcription PCR (RT-PCR): Converts RNA into complementary DNA (cDNA) for subsequent PCR amplification, used for detecting gene expression and fusion transcripts[48].
- -
- Nested PCR: Increases specificity by using two sets of primers to amplify the target region successively[49].
- -
- Digital PCR (dPCR): Provides absolute quantification of target DNA molecules, enhancing sensitivity for rare mutation detection[50].
2.3.4. Challenges and Considerations
- -
- Detection Sensitivity: PCR sensitivity can be affected by the quality and quantity of input DNA/RNA[51].
- -
- Target Selection: PCR assays require prior knowledge of target sequences, limiting their utility for detecting novel genetic alterations[52].
- -
- Contamination Risks: PCR is prone to contamination, necessitating stringent laboratory practices[53].
2.3.5. Future Directions
2.4. Imaging Techniques
2.4.1. Imaging Modalities
2.4.1.1. Computed Tomography (CT)
2.4.1.2. Magnetic Resonance Imaging (MRI)
2.4.1.3. Positron Emission Tomography (PET)
2.4.1.4. Bone Scintigraphy
2.4.2. Applications in Blood Cancer Detection
2.4.2.1. Disease Staging and Localization
2.4.2.2. Treatment Response Assessment
2.4.2.3. Assessment of Complications
2.4.3. Emerging Imaging Technologies
- -
- Functional MRI Techniques: Techniques like diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI) provide insights into tumor biology and microenvironment[62].
- -
- Molecular Imaging: Novel imaging probes target specific molecular markers associated with blood cancers, enabling personalized diagnostics and therapy monitoring[63].
- -
- Artificial Intelligence (AI) Applications: AI-driven image analysis algorithms improve diagnostic accuracy, automate disease quantification, and facilitate radiomics-based prognostication[64].
2.4.4. Limitations and Considerations
- -
- Limited Tissue Sampling: Imaging provides anatomical and functional information but may not capture molecular or genetic heterogeneity within tumors.
- -
- Radiation Exposure: Modalities like CT and PET involve ionizing radiation, necessitating judicious use and consideration of cumulative dose[65].
- -
- Interpretation Challenges: Imaging findings must be interpreted in conjunction with clinical and laboratory data to avoid misdiagnosis or overinterpretation.
2.4.5. Future Directions
2.5. Liquid Biopsy
2.5.1. Principles of Liquid Biopsy
- -
- Cell-Free DNA (cfDNA): DNA fragments released by tumor cells into the bloodstream. cfDNA harbors tumor-specific mutations and can be detected and analyzed using molecular techniques like PCR or NGS[67].
- -
- Circulating Tumor DNA (ctDNA): ctDNA represents the fraction of cfDNA originating from tumor cells[68]. It carries genetic alterations specific to the tumor, allowing for mutation profiling and monitoring of treatment response.
- -
- Circulating Tumor Cells (CTCs): Rare cancer cells shed from primary tumors or metastatic sites into the bloodstream[69]. CTC enumeration and characterization provide insights into disease dissemination and potential therapeutic targets.
- -
- Extracellular Vesicles (Exosomes): Small vesicles released by tumor cells containing proteins, nucleic acids, and other biomolecules reflective of tumor biology. Exosome analysis can reveal tumor-specific markers and facilitate disease monitoring[70].
2.5.2. Applications in Blood Cancer Detection
2.5.2.1. Early Detection and Diagnosis
2.5.2.2. Disease Monitoring and Prognostication
2.5.2.3. Treatment Response Assessment
2.5.3. Technologies and Techniques
- -
- Digital PCR (dPCR): Provides absolute quantification of mutant alleles in cfDNA, enhancing sensitivity for detecting low-frequency mutations[74].
- -
- Next-Generation Sequencing (NGS): Enables comprehensive mutation profiling of ctDNA, revealing actionable genetic alterations and therapeutic targets[75].
- -
- Single-Cell Analysis: Facilitates the characterization of CTCs at the single-cell level, uncovering intra-tumor heterogeneity and metastatic potential[76].
2.5.4. Clinical Implications and Challenges
- -
- Sensitivity and Specificity: Detection of circulating tumor components can be challenging due to their low abundance and heterogeneity[77].
- -
- Standardization and Validation: Standardized protocols and robust analytical validation are essential for clinical implementation of liquid biopsy assays[78].
- -
- Cost and Accessibility: Adoption of liquid biopsy technologies in routine clinical practice may be limited by cost and accessibility considerations[78].
2.5.5. Future Directions
3. Challenges and Future Directions
3.1. Challenges in Blood Cancer Detection
3.1.1. Disease Heterogeneity
3.1.2. Sensitivity and Specificity
3.1.3. Invasive Procedures
3.1.4. Access to Advanced Technologies
3.1.5. Cost and Affordability
3.2. Future Directions and Innovations
3.2.1. Integration of Multi-Omics Approaches
3.2.2. Development of Non-Invasive Biomarkers
3.2.3. Advancements in Imaging Technologies
3.2.4. Implementation of Artificial Intelligence (AI)
3.2.5. Point-of-Care Diagnostics
3.2.6. Collaborative Research and Standardization
4. Clinical Implications
4.1. Early and Accurate Diagnosis
4.2. Disease Classification and Subtyping
4.3. Personalized Treatment Selection
4.4. Monitoring Treatment Response
4.5. Prognostic Stratification
4.6. Minimal Residual Disease (MRD) Monitoring
4.7. Facilitating Clinical Trials and Research
4.8. Enhancing Patient Care and Quality of Life
4.9. Challenges and Future Directions
5. Conclusion
References
- Sankar, V. and A. Villa, Hematologic diseases. Burket's Oral Medicine, 2021: p. 627-664.
- Taylor, J.; Xiao, W.; Abdel-Wahab, O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017, 130, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Lennon, A.M.; Buchanan, A.H.; Kinde, I.; Warren, A.; Honushefsky, A.; Cohain, A.T.; Ledbetter, D.H.; Sanfilippo, F.; Sheridan, K.; Rosica, D.; et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 2020, 369, eabb9601. [Google Scholar] [CrossRef] [PubMed]
- Fend, F.; Tzankov, A.; Bink, K.; Seidl, S.; Quintanilla-Martinez, L.; Kremer, M.; Dirnhofer, S. Modern techniques for the diagnostic evaluation of the trephine bone marrow biopsy: Methodological aspects and applications. Prog. Histochem. Cytochem. 2008, 42, 203–252. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A. and R. Mueller, Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clinical Science, 2005. 109(4): p. 365-379.
- Haber, D.A.; Velculescu, V.E. Blood-Based Analyses of Cancer: Circulating Tumor Cells and Circulating Tumor DNA. Cancer Discov. 2014, 4, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Armakolas, A.; Kotsari, M.; Koskinas, J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers 2023, 15, 1579. [Google Scholar] [CrossRef] [PubMed]
- Jennings, C.D.; Foon, K.A. Recent Advances in Flow Cytometry: Application to the Diagnosis of Hematologic Malignancy. Blood 1997, 90, 2863–2892. [Google Scholar] [CrossRef]
- Walling, M.A.; Shepard, J.R.E. Cellular heterogeneity and live cell arrays. Chem. Soc. Rev. 2011, 40, 4049–4076. [Google Scholar] [CrossRef] [PubMed]
- Givan, A.L. , Principles of flow cytometry: an overview. Methods in cell biology, 2001. 63: p. 19-50.
- Monici, M. , Cell and tissue autofluorescence research and diagnostic applications. Biotechnology annual review, 2005. 11: p. 227-256.
- Carpenter, A.E.; Jones, T.R.; Lamprecht, M.R.; Clarke, C.; Kang, I.H.; Friman, O.; Guertin, D.A.; Chang, J.H.; Lindquist, R.A.; Moffat, J.; et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, R100. [Google Scholar] [CrossRef] [PubMed]
- Maher, K.J.; Fletcher, M.A. Quantitative flow cytometry in the clinical laboratory. Clin. Appl. Immunol. Rev. 2005, 5, 353–372. [Google Scholar] [CrossRef]
- Dunphy, C.H. Applications of Flow Cytometry and Immunohistochemistry to Diagnostic Hematopathology. Arch. Pathol. Lab. Med. 2004, 128, 1004–1022. [Google Scholar] [CrossRef]
- Riva, G.; Nasillo, V.; Ottomano, A.M.; Bergonzini, G.; Paolini, A.; Forghieri, F.; Lusenti, B.; Barozzi, P.; Lagreca, I.; Fiorcari, S.; et al. Multiparametric Flow Cytometry for MRD Monitoring in Hematologic Malignancies: Clinical Applications and New Challenges. Cancers 2021, 13, 4582. [Google Scholar] [CrossRef] [PubMed]
- Jayat, C.; Ratinaud, M. Cell cycle analysis by flow cytometry: Principles and applications. Biol. Cell 1993, 78, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Garand, R.; Robillard, N. Immunophenotypic characterization of acute leukemias and chronic lymphoproliferative disorders: practical recommendations and classifications. Hematol. Cell Ther. 1996, 38, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.D. , et al., Selective immunophenotyping for diagnosis of B-cell neoplasms: immunohistochemistry and flow cytometry strategies and results. Applied immunohistochemistry & molecular morphology, 2013. 21(2): p. 116-131.
- Postgate, J. , Chapter XVIII viable counts and viability, in Methods in microbiology. 1969, Elsevier. p. 611-628.
- Korf, B.R.; Rehm, H.L. New Approaches to Molecular Diagnosis. JAMA 2013, 309, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, G.A. , et al., Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013. 143(5): p. e211S-e250S.
- Fuda, F.; Chen, M.; Chen, W.; Cox, A. Artificial intelligence in clinical multiparameter flow cytometry and mass cytometry–key tools and progress. Semin. Diagn. Pathol. 2023, 40, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Serratì, S.; De Summa, S.; Pilato, B.; Petriella, D.; Lacalamita, R.; Tommasi, S.; Pinto, R. Next-generation sequencing: advances and applications in cancer diagnosis. OncoTargets Ther. 2016, ume 9, 7355–7365. [Google Scholar] [CrossRef]
- Hedegaard, J.; Thorsen, K.; Lund, M.K.; Hein, A.-M.K.; Hamilton-Dutoit, S.J.; Vang, S.; Nordentoft, I.; Birkenkamp-Demtröder, K.; Kruhøffer, M.; Hager, H.; et al. Next-Generation Sequencing of RNA and DNA Isolated from Paired Fresh-Frozen and Formalin-Fixed Paraffin-Embedded Samples of Human Cancer and Normal Tissue. PLOS ONE 2014, 9, e98187. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Ono, N.; Furusawa, C.; Ying, B.-W.; Yomo, T. Comparison of Sequence Reads Obtained from Three Next-Generation Sequencing Platforms. PLOS ONE 2011, 6, e19534. [Google Scholar] [CrossRef] [PubMed]
- Bueno, R.; Stawiski, E.W.; Goldstein, L.D.; Durinck, S.; De Rienzo, A.; Modrusan, Z.; Gnad, F.; Nguyen, T.T.; Jaiswal, B.S.; Chirieac, L.R.; et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat. Genet. 2016, 48, 407–416. [Google Scholar] [CrossRef]
- Bacher, U.; Shumilov, E.; Flach, J.; Porret, N.; Joncourt, R.; Wiedemann, G.; Fiedler, M.; Novak, U.; Amstutz, U.; Pabst, T. Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood Cancer J. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Yang, F.; Anekpuritanang, T.; Press, R.D. Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia. Mol. Diagn. Ther. 2020, 24, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y. , Genetics in Hematologic Disorders: Implications of Recurring Chromosome Abnormalities and Gene Mutations. Concise Guide to Hematology, 2019: p. 277-297.
- Chu, M.P.; Kriangkum, J.; Venner, C.P.; Sandhu, I.; Hewitt, J.; Belch, A.R.; Pilarski, L.M. Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol. Toxicol. 2016, 33, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Cuzzo, B.; Lipsky, A.; Cherng, H.-J.J. Measurable Residual Disease Monitoring in Lymphoma. Curr. Hematol. Malign- Rep. 2023, 18, 292–304. [Google Scholar] [CrossRef]
- Vu, M.; Degeling, K.; Thompson, E.R.; Blombery, P.; Westerman, D.; Ijzerman, M.J. Health economic evidence for the use of molecular biomarker tests in hematological malignancies: A systematic review. Eur. J. Haematol. 2022, 108, 469–485. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Zhao, J.; Zhao, Z. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes. Brief. Bioinform. 2016, 17, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Khurana, E.; Fu, Y.; Chakravarty, D.; Demichelis, F.; Rubin, M.A.; Gerstein, M. Role of non-coding sequence variants in cancer. Nat. Rev. Genet. 2016, 17, 93–108. [Google Scholar] [CrossRef]
- Daber, R.; Sukhadia, S.; Morrissette, J.J. Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets. Cancer Genet. 2013, 206, 441–448. [Google Scholar] [CrossRef]
- Swift, S.L.; Duffy, S.; Lang, S.H. Impact of tumor heterogeneity and tissue sampling for genetic mutation testing: a systematic review and post hoc analysis. J. Clin. Epidemiology 2020, 126, 45–55. [Google Scholar] [CrossRef]
- Conway, J.R.; Warner, J.L.; Rubinstein, W.S.; Miller, R.S. Next-Generation Sequencing and the Clinical Oncology Workflow: Data Challenges, Proposed Solutions, and a Call to Action. JCO Precis. Oncol. 2019, 3, 1–10. [Google Scholar] [CrossRef]
- Valones, M.A.A.; Guimarães, R.L.; Brandão, L.A.C.; de Souza, P.R.E.; Carvalho, A.D.A.T.; Crovela, S. Principles and applications of polymerase chain reaction in medical diagnostic fields: a review. Braz. J. Microbiol. 2009, 40, 1–11. [Google Scholar] [CrossRef]
- Stenerlöw, B.; Karlsson, K.H.; Cooper, B.; Rydberg, B. Measurement of Prompt DNA Double-Strand Breaks in Mammalian Cells without Including Heat-Labile Sites: Results for Cells Deficient in Nonhomologous End Joining. Radiat. Res. 2003, 159, 502–510. [Google Scholar] [CrossRef] [PubMed]
- van Pelt-Verkuil, E., A. van Belkum, and J.P. Hays, PCR primers. Principles and Technical Aspects of PCR Amplification, 2008: p. 63-90.
- Sanger, F.; Coulson, A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 1975, 94, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Dalfeor, R.; Tavares, D.d.O.; Bendit, I.; Nardinelli, L.; Tabak, D.G.; Gale, R.P. Rare BCR::ABL1 Fusion Gene in Chronic Myeloid Leukaemia: A Case Report. Oncol. Adv. 2024, 000, 000–000. [Google Scholar] [CrossRef]
- Kido, S.; Miyazaki, K.; Tokunaga, O. The Relationship Between Primary Gastric B-cell Lymphoma and Immunoglobulin Heavy Chain (IgH) Gene Rearrangement – A Histopathological Study of Primary Gastric Lymphomas. Pathol. - Res. Pr. 2003, 199, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Monazma A, F. , et al., JAK2 V617F mutation in myeloproliferative neoplasms. 2013.
- Ommen, H.B. Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther. Adv. Hematol. 2015, 7, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Gazzola, A.; Mannu, C.; Rossi, M.; Laginestra, M.A.; Sapienza, M.R.; Fuligni, F.; Etebari, M.; Melle, F.; Sabattini, E.; Agostinelli, C.; et al. The evolution of clonality testing in the diagnosis and monitoring of hematological malignancies. Ther. Adv. Hematol. 2014, 5, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, R.; Dollinger, G.; Walsh, P.S.; Griffith, R. Simultaneous Amplification and Detection of Specific DNA Sequences. Bio/Technology 1992, 10, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Mohr, S.; Ghanem, E.; Smith, W.; Sheeter, D.; Qin, Y.; King, O.; Polioudakis, D.; Iyer, V.R.; Hunicke-Smith, S.; Swamy, S.; et al. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA 2013, 19, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.L.; Shackel, N.A.; Zekry, A.; McGuinness, P.H.; Richards, C.; Van Der Putten, K.; Mccaughan, G.; Eris, J.M.; Bishop, G.A. Real-time reverse transcriptase–polymerase chain reaction (RT–PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol. Cell Biol. 2001, 79, 213–221. [Google Scholar] [CrossRef]
- Salk, J.J.; Schmitt, M.W.; Loeb, L.A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 2018, 19, 269–285. [Google Scholar] [CrossRef]
- Dang, J.; Mendez, P.; Lee, S.; Kim, J.W.; Yoon, J.-H.; Kim, T.W.; Sailey, C.J.; Jablons, D.M.; Kim, I.-J. Development of a robust DNA quality and quantity assessment qPCR assay for targeted next-generation sequencing library preparation. Int. J. Oncol. 2016, 49, 1755–1765. [Google Scholar] [CrossRef] [PubMed]
- Morlan, J.; Baker, J.; Sinicropi, D. Mutation Detection by Real-Time PCR: A Simple, Robust and Highly Selective Method. PLOS ONE 2009, 4, e4584. [Google Scholar] [CrossRef]
- Mackay, I. Real-time PCR in the microbiology laboratory. Clin. Microbiol. Infect. 2004, 10, 190–212. [Google Scholar] [CrossRef] [PubMed]
- Rhee, H.; Park, M.-S. The Role of Imaging in Current Treatment Strategies for Pancreatic Adenocarcinoma. Korean J. Radiol. 2021, 22, 23–40. [Google Scholar] [CrossRef]
- nbsp; Kekelidze, M. ; D'Errico, L.; Pansini, M.; Tyndall, A.; Hohmann, J. Colorectal cancer: Current imaging methods and future perspectives for the diagnosis, staging and therapeutic response evaluation. World J. Gastroenterol. 2013, 19, 8502–8514. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.E. , Magnetic fields and cancer: epidemiology, cellular biology, and theranostics. International Journal of Molecular Sciences, 2022. 23(3): p. 1339.
- Farwell, M.D.; Pryma, D.A.; Mankoff, D.A. PET/CT imaging in cancer: Current applications and future directions. Cancer 2014, 120, 3433–3445. [Google Scholar] [CrossRef] [PubMed]
- Brenner, A.I. , et al. The bone scan. in Seminars in nuclear medicine. 2012. Elsevier.
- Johnson, S.A.; Kumar, A.; Matasar, M.J.; Schöder, H.; Rademaker, J. Imaging for Staging and Response Assessment in Lymphoma. Radiology 2015, 276, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Marcus, C.; Ladam-Marcus, V.; Cucu, C.; Bouché, O.; Lucas, L.; Hoeffel, C. Imaging techniques to evaluate the response to treatment in oncology: Current standards and perspectives. Crit. Rev. Oncol. 2009, 72, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Geraldes, C.; Roque, A.; Sarmento-Ribeiro, A.B.; Neves, M.; Ionita, A.; Gerivaz, R.; Tomé, A.; Afonso, S.; Silveira, M.P.; Sousa, P.; et al. Practical management of disease-related manifestations and drug toxicities in patients with multiple myeloma. Front. Oncol. 2024, 14, 1282300. [Google Scholar] [CrossRef] [PubMed]
- Padhani, A.R. and A.A. Khan, Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy. Targeted oncology, 2010. 5: p. 39-52.
- Hanash, S.M.; Baik, C.S.; Kallioniemi, O. Emerging molecular biomarkers—blood-based strategies to detect and monitor cancer. Nat. Rev. Clin. Oncol. 2011, 8, 142–150. [Google Scholar] [CrossRef]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 2021, 19, 132–146. [Google Scholar] [CrossRef]
- Hirshfeld, J.W. , et al., 2018 ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging: best practices for safety and effectiveness: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. Journal of the American College of Cardiology, 2018. 71(24): p. e283-e351.
- Martins, I.; Ribeiro, I.P.; Jorge, J.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Melo, J.B.; Carreira, I.M. Liquid Biopsies: Applications for Cancer Diagnosis and Monitoring. Genes 2021, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Volckmar, A.-L.; Sueltmann, H.; Riediger, A.; Fioretos, T.; Schirmacher, P.; Endris, V.; Stenzinger, A.; Dietz, S. A field guide for cancer diagnostics using cell-free DNA: From principles to practice and clinical applications. Genes, Chromosom. Cancer 2018, 57, 123–139. [Google Scholar] [CrossRef]
- Bredno, J.; Lipson, J.; Venn, O.; Aravanis, A.M.; Jamshidi, A. Clinical correlates of circulating cell-free DNA tumor fraction. PLOS ONE 2021, 16, e0256436. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, G.L. , Cancer metastasis. Scientific American, 1979. 240(3): p. 66-77.
- Principe, S.; Hui, A.B.; Bruce, J.; Sinha, A.; Liu, F.; Kislinger, T. Tumor-derived exosomes and microvesicles in head and neck cancer: Implications for tumor biology and biomarker discovery. Proteomics 2013, 13, 1608–1623. [Google Scholar] [CrossRef] [PubMed]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 1–14. [Google Scholar] [CrossRef]
- Chin, R.-I.; Chen, K.; Usmani, A.; Chua, C.; Harris, P.K.; Binkley, M.S.; Azad, T.D.; Dudley, J.C.; Chaudhuri, A.A. Detection of Solid Tumor Molecular Residual Disease(MRD) Using Circulating Tumor DNA (ctDNA). Mol. Diagn. Ther. 2019, 23, 311–331. [Google Scholar] [CrossRef]
- Sanz-Garcia, E.; Zhao, E.; Bratman, S.V.; Siu, L.L. Monitoring and adapting cancer treatment using circulating tumor DNA kinetics: Current research, opportunities, and challenges. Sci. Adv. 2022, 8, eabi8618. [Google Scholar] [CrossRef]
- Chen, W.; Xu, H.; Dai, S.; Wang, J.; Yang, Z.; Jin, Y.; Zou, M.; Xiao, X.; Wu, T.; Yan, W.; et al. Detection of low-frequency mutations in clinical samples by increasing mutation abundance via the excision of wild-type sequences. Nat. Biomed. Eng. 2023, 7, 1602–1613. [Google Scholar] [CrossRef]
- Devarakonda, S.; Sankararaman, S.; Herzog, B.H.; Gold, K.A.; Waqar, S.N.; Ward, J.P.; Raymond, V.M.; Lanman, R.B.; Chaudhuri, A.A.; Owonikoko, T.K.; et al. Circulating Tumor DNA Profiling in Small-Cell Lung Cancer Identifies Potentially Targetable Alterations. Clin. Cancer Res. 2019, 25, 6119–6126. [Google Scholar] [CrossRef]
- Kan, T.; Wang, W.; Ip, P.P.; Zhou, S.; Wong, A.S.; Wang, X.; Yang, M. Single-cell EMT-related transcriptional analysis revealed intra-cluster heterogeneity of tumor cell clusters in epithelial ovarian cancer ascites. Oncogene 2020, 39, 4227–4240. [Google Scholar] [CrossRef]
- Hong, B.; Zu, Y. Detecting Circulating Tumor Cells: Current Challenges and New Trends. Theranostics 2013, 3, 377–394. [Google Scholar] [CrossRef]
- Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid biopsy enters the clinic — implementation issues and future challenges. Nat. Rev. Clin. Oncol. 2021, 18, 297–312. [Google Scholar] [CrossRef]
- Menyhárt, O.; Győrffy, B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct. Biotechnol. J. 2021, 19, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Blachly, J.S.; Walter, R.B.; Hourigan, C.S. The present and future of measurable residual disease testing in acute myeloid leukemia. Haematologica 2022, 107, 2810–2822. [Google Scholar] [CrossRef]
- Trewhitt, K.G. Bone marrow aspiration and biopsy: collection and interpretation. . 2001, 28, 1409. [Google Scholar] [PubMed]
- Walter, W.; Pfarr, N.; Meggendorfer, M.; Jost, P.; Haferlach, T.; Weichert, W. Next-generation diagnostics for precision oncology: Preanalytical considerations, technical challenges, and available technologies. Semin. Cancer Biol. 2020, 84, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.W.; Schrijver, I. Next Generation DNA Sequencing and the Future of Genomic Medicine. Genes 2010, 1, 38–69. [Google Scholar] [CrossRef]
- Pineda, S.; Gomez-Rubio, P.; Picornell, A.; Bessonov, K.; Márquez, M.; Kogevinas, M.; Real, F.X.; Van Steen, K.; Malats, N. Framework for the Integration of Genomics, Epigenomics and Transcriptomics in Complex Diseases. Hum. Hered. 2015, 79, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Heidt, B.; Siqueira, W.F.; Eersels, K.; Diliën, H.; van Grinsven, B.; Fujiwara, R.T.; Cleij, T.J. Point of Care Diagnostics in Resource-Limited Settings: A Review of the Present and Future of PoC in Its Most Needed Environment. Biosensors 2020, 10, 133. [Google Scholar] [CrossRef]
- Wood, W.A.; Marks, P.W.; Plovnick, R.M.; Hewitt, K.; Neuberg, D.S.; Walters, S.; Dolan, B.K.; Tucker, E.A.; Abrams, C.S.; Thompson, A.A.; et al. ASH Research Collaborative: a real-world data infrastructure to support real-world evidence development and learning healthcare systems in hematology. Blood Adv. 2021, 5, 5429–5438. [Google Scholar] [CrossRef] [PubMed]
- Daya, S.A.; Mahfouz, R. Circulating tumor DNA, liquid biopsy, and next generation sequencing: A comprehensive technical and clinical applications review. Meta Gene 2018, 17, 192–201. [Google Scholar] [CrossRef]
- Malone, E.R.; Oliva, M.; Sabatini, P.J.B.; Stockley, T.L.; Siu, L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.A.; Liu, M.C.; Aleshin, A. Practical recommendations for using ctDNA in clinical decision making. Nature 2023, 619, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Johansson. ; Andreassen, O.A.; Brunak, S.; Franks, P.W.; Hedman, H.; Loos, R.J.F.; Meder, B.; Melén, E.; Wheelock, C.E.; Jacobsson, B. Precision medicine in complex diseases—Molecular subgrouping for improved prediction and treatment stratification. J. Intern. Med. 2023, 294, 378–396. [Google Scholar] [CrossRef]
- Levin, R.F. , et al., Fostering evidence-based practice to improve nurse and cost outcomes in a community health setting: a pilot test of the advancing research and clinical practice through close collaboration model. Nursing Administration Quarterly, 2011. 35(1): p. 21-33.
- Castaneda, C.; Nalley, K.; Mannion, C.; Bhattacharyya, P.; Blake, P.; Pecora, A.; Goy, A.; Suh, K.S. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J. Clin. Bioinform. 2015, 5, 4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).