Submitted:
10 May 2024
Posted:
13 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Bioinformatics Approaches for Medicinal Plant Identification

3. Omics Technologies in Medicinal Plant Research

4. Computational Tools for Phytochemical Analysis and Drug Discovery

5. Pharmacological Investigation and Therapeutic Applications

6. Conservation and Sustainable Utilization of Medicinal Plants

7. Challenges and Future Directions

8. Conclusion
References
- Srivastava, A.K. Significance of medicinal plants in human life. In Synthesis of Medicinal Agents from Plants, Elsevier: 2018; pp. 1–24.
- Ramawat, K.; Dass, S.; Mathur, M. The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. Herbal drugs: ethnomedicine to modern medicine 2009, 7–32. [Google Scholar]
- Rashid, S.; Majeed, L.R.; Nisar, B.; Nisar, H.; Bhat, A.A.; Ganai, B.A. Phytomedicines: Diversity, extraction, and conservation strategies. In Phytomedicine, Elsevier: 2021; pp. 1–33.
- Ogunjobi, T.T.; Ohaeri, P.N.; Akintola, O.T.; Atanda, D.O.; Orji, F.P.; Adebayo, J.O.; Abdul, S.O.; Eji, C.A.; Asebebe, A.B.; Shodipe, O.O. Bioinformatics Applications in Chronic Diseases: A Comprehensive Review of Genomic, Transcriptomics, Proteomic, Metabolomics, and Machine Learning Approaches. Medinformatics 2024. [Google Scholar] [CrossRef]
- Vodovotz, Y.; Xia, A.; Read, E.L.; Bassaganya-Riera, J.; Hafler, D.A.; Sontag, E.; Wang, J.; Tsang, J.S.; Day, J.D.; Kleinstein, S.H. Solving immunology? Trends in immunology 2017, 38, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Chassagne, F.; Samarakoon, T.; Porras, G.; Lyles, J.T.; Dettweiler, M.; Marquez, L.; Salam, A.M.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Frontiers in pharmacology 2021, 11, 586548. [Google Scholar] [CrossRef] [PubMed]
- Gayathiri, E.; Prakash, P.; Kumaravel, P.; Jayaprakash, J.; Ragunathan, M.G.; Sankar, S.; Pandiaraj, S.; Thirumalaivasan, N.; Thiruvengadam, M.; Govindasamy, R. Computational approaches for modeling and structural design of biological systems: A comprehensive review. Progress in Biophysics and Molecular Biology 2023. [Google Scholar] [CrossRef] [PubMed]
- Romano, J.D.; Tatonetti, N.P. Informatics and computational methods in natural product drug discovery: a review and perspectives. Frontiers in genetics 2019, 10, 442506. [Google Scholar] [CrossRef]
- Balick, M.J. Ethnobotany, drug development and biodiversity conservation—exploring the linkages. In Proceedings of Ciba Foundation Symposium 185-Ethnobotany and the Search for New Drugs: Ethnobotany and the Search for New Drugs: Ciba Foundation Symposium 185; pp. 4–24.
- Raza, K.; Dey, N. Translational bioinformatics in healthcare and medicine; Academic Press: 2021.
- Abraham, E.J.; Kellogg, J.J. Chemometric-guided approaches for profiling and authenticating botanical materials. Frontiers in Nutrition 2021, 8, 780228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y. Recent trends of machine learning applied to multi-source data of medicinal plants. Journal of Pharmaceutical Analysis 2023. [Google Scholar] [CrossRef]
- Ma, X.; Meng, Y.; Wang, P.; Tang, Z.; Wang, H.; Xie, T. Bioinformatics-assisted, integrated omics studies on medicinal plants. Briefings in bioinformatics 2020, 21, 1857–1874. [Google Scholar] [CrossRef]
- von Cräutlein, M.; Korpelainen, H.; Pietiläinen, M.; Rikkinen, J. DNA barcoding: a tool for improved taxon identification and detection of species diversity. Biodiversity and conservation 2011, 20, 373–389. [Google Scholar] [CrossRef]
- Khan, S.A.; Baeshen, M.N.; Ramadan, H.A.; Baeshen, N.A. ITS2: an ideal DNA barcode for the arid medicinal plant Rhazya stricta. Pharmaceutical Medicine 2019, 33, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Gyulai, G.; Hidvegi, N.; Kerti, B.; Al Hemaid, F.M.; Pandey, A.K.; Lee, J. The changing epitome of species identification–DNA barcoding. Saudi journal of biological sciences 2014, 21, 204–231. [Google Scholar]
- Uncu, A.O.; Uncu, A.T.; Celık, İ.; Doganlar, S.; Frary, A. A primer to molecular phylogenetic analysis in plants. Critical reviews in plant sciences 2015, 34, 454–468. [Google Scholar] [CrossRef]
- Day, P.D.; Berger, M.; Hill, L.; Fay, M.F.; Leitch, A.R.; Leitch, I.J.; Kelly, L.J. Evolutionary relationships in the medicinally important genus Fritillaria L.(Liliaceae). Molecular Phylogenetics and Evolution 2014, 80, 11–19. [Google Scholar] [CrossRef]
- Dev, S.A.; Unnikrishnan, R.; Jayaraj, R.; Sujanapal, P.; Anitha, V. Quantification of adulteration in traded ayurvedic raw drugs employing machine learning approaches with DNA barcode database. 3 Biotech 2021, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Moler, E.; Chow, M.; Mian, I. Analysis of molecular profile data using generative and discriminative methods. Physiological genomics 2000, 4, 109–126. [Google Scholar] [CrossRef] [PubMed]
- El-Hasnony, I.M.; Barakat, S.I.; Elhoseny, M.; Mostafa, R.R. Improved feature selection model for big data analytics. IEEE Access 2020, 8, 66989–67004. [Google Scholar] [CrossRef]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; De Vere, N. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular ecology 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
- Raclariu-Manolică, A.C.; de Boer, H.J. DNA barcoding and metabarcoding for quality control of botanicals and derived herbal products. In Evidence-Based Validation of Herbal Medicine, Elsevier: 2022; pp. 223–238.
- López-García, A.; Pineda-Quiroga, C.; Atxaerandio, R.; Pérez, A.; Hernández, I.; García-Rodríguez, A.; González-Recio, O. Comparison of Mothur and QIIME for the analysis of rumen microbiota composition based on 16S rRNA amplicon sequences. Frontiers in Microbiology 2018, 9, 417268. [Google Scholar] [CrossRef]
- Sorokina, M.; Steinbeck, C. Review on natural products databases: where to find data in 2020. Journal of cheminformatics 2020, 12, 20. [Google Scholar] [CrossRef]
- Zahoor, I.; Shafi, A.; Fazili, K.M.; Haq, E. Bioinformatics and medicinal plant research: current scenario. Essentials of Bioinformatics, Volume III: In Silico Life Sciences: Agriculture 2019, 141–157. [Google Scholar]
- Wong, L.L.; Peatman, E.; Lu, J.; Kucuktas, H.; He, S.; Zhou, C.; Na-Nakorn, U.; Liu, Z. DNA barcoding of catfish: species authentication and phylogenetic assessment. PloS one 2011, 6, e17812. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Shen, L. Advances and trends in omics technology development. Frontiers in Medicine 2022, 9, 911861. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, Y.; Jiao, M.; Ye, C.; Li, Y.; Liu, C.; Wang, J. Integration of high-throughput omics technologies in medicinal plant research: The new era of natural drug discovery. Frontiers in Plant Science 2023, 14, 1073848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, L.; Zheng, Y.; Zhou, C.; Huang, P.; Xiao, X.; Zhao, Y.; Hao, X.; Hu, Z.; Chen, Q. Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum. Frontiers in Plant Science 2019, 10, 1274. [Google Scholar] [CrossRef]
- Duan, Y.; Han, H.; Qi, J.; Gao, J.-m.; Xu, Z.; Wang, P.; Zhang, J.; Liu, C. Genome sequencing of Inonotus obliquus reveals insights into candidate genes involved in secondary metabolite biosynthesis. BMC genomics 2022, 23, 314. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.B. Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Molecular ecology resources 2013, 13, 559–572. [Google Scholar] [CrossRef]
- Wang, F.; Zhi, J.; Zhang, Z.; Wang, L.; Suo, Y.; Xie, C.; Li, M.; Zhang, B.; Du, J.; Gu, L. Transcriptome analysis of salicylic acid treatment in Rehmannia glutinosa hairy roots using RNA-seq technique for identification of genes involved in acteoside biosynthesis. Frontiers in Plant Science 2017, 8, 787. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Rohatgi, S.; Singh, D.; Mathur, S.; Ranjan, R. Proteomics Approaches in Medicinal Plant Research and Pharmacological Studies. In Plant Proteomics, CRC Press: pp. 197–225.
- Neagu, A.-N.; Jayathirtha, M.; Baxter, E.; Donnelly, M.; Petre, B.A.; Darie, C.C. Applications of tandem mass spectrometry (MS/MS) in protein analysis for biomedical research. Molecules 2022, 27, 2411. [Google Scholar] [CrossRef]
- Scossa, F.; Benina, M.; Alseekh, S.; Zhang, Y.; Fernie, A.R. The integration of metabolomics and next-generation sequencing data to elucidate the pathways of natural product metabolism in medicinal plants. Planta medica 2018, 84, 855–873. [Google Scholar] [CrossRef]
- Gathungu, R.M.; Bird, S.S.; Sheldon, D.P.; Kautz, R.; Vouros, P.; Matson, W.R.; Kristal, B.S. Identification of metabolites from liquid chromatography–coulometric array detection profiling: gas chromatography–mass spectrometry and refractionation provide essential information orthogonal to LC–MS/microNMR. Analytical biochemistry 2014, 454, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Thomford, N.E.; Dzobo, K.; Chopera, D.; Wonkam, A.; Skelton, M.; Blackhurst, D.; Chirikure, S.; Dandara, C. Pharmacogenomics implications of using herbal medicinal plants on African populations in health transition. Pharmaceuticals 2015, 8, 637–663. [Google Scholar] [CrossRef]
- v. Wintzingerode, F.; Göbel, U.B.; Stackebrandt, E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS microbiology reviews 1997, 21, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Babar, M.M.; us Sahar Sadaf Zaidi, N.; Kazi, A.G. Plant Pharmacogenomics: From Drug Discovery to Personalized Ethnomedicine. PlantOmics: The Omics of Plant Science 2015, 699–730. [Google Scholar]
- Mukherjee, P.K.; Banerjee, S.; Kar, A. Molecular combination networks in medicinal plants: understanding synergy by network pharmacology in Indian traditional medicine. Phytochemistry Reviews 2021, 20, 693–703. [Google Scholar] [CrossRef]
- Egbuna, C.; Rudrapal, M.; Tijjani, H. Phytochemistry, computational tools, and databases in drug discovery; Elsevier: 2022.
- Moshawih, S.; Goh, H.P.; Kifli, N.; Idris, A.C.; Yassin, H.; Kotra, V.; Goh, K.W.; Liew, K.B.; Ming, L.C. Synergy between machine learning and natural products cheminformatics: Application to the lead discovery of anthraquinone derivatives. Chemical Biology & Drug Design 2022, 100, 185–217. [Google Scholar]
- Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor–ligand molecular docking. Biophysical reviews 2014, 6, 75–87. [Google Scholar] [CrossRef]
- Naqvi, A.A.; Mohammad, T.; Hasan, G.M.; Hassan, M.I. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current topics in medicinal chemistry 2018, 18, 1755–1768. [Google Scholar] [CrossRef]
- Shukla, R.; Tripathi, T. Molecular dynamics simulation of protein and protein–ligand complexes. Computer-aided drug design 2020, 133–161. [Google Scholar]
- Willett, P. The calculation of molecular structural similarity: principles and practice. Molecular informatics 2014, 33, 403–413. [Google Scholar] [CrossRef]
- Horvath, D. Pharmacophore-based virtual screening. Chemoinformatics and computational chemical biology 2011, 261–298. [Google Scholar]
- Kobayashi, Y.; Yoshida, K. Development of QSAR models for prediction of fish bioconcentration factors using physicochemical properties and molecular descriptors with machine learning algorithms. Ecological Informatics 2021, 63, 101285. [Google Scholar] [CrossRef]
- Patel, H.M.; Noolvi, M.N.; Sharma, P.; Jaiswal, V.; Bansal, S.; Lohan, S.; Kumar, S.S.; Abbot, V.; Dhiman, S.; Bhardwaj, V. Quantitative structure–activity relationship (QSAR) studies as strategic approach in drug discovery. Medicinal chemistry research 2014, 23, 4991–5007. [Google Scholar] [CrossRef]
- Wang, X.; Song, K.; Li, L.; Chen, L. Structure-based drug design strategies and challenges. Current Topics in Medicinal Chemistry 2018, 18, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Lounnas, V.; Ritschel, T.; Kelder, J.; McGuire, R.; Bywater, R.P.; Foloppe, N. Current progress in structure-based rational drug design marks a new mindset in drug discovery. Computational and structural biotechnology journal 2013, 5, e201302011. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.B.; Gupta, R. Contemporary computational applications and tools in drug discovery. ACS Medicinal Chemistry Letters 2022, 13, 1016–1029. [Google Scholar] [CrossRef] [PubMed]
- Gozalbes, R.; Pineda-Lucena, A. Small molecule databases and chemical descriptors useful in chemoinformatics: an overview. Combinatorial chemistry & high throughput screening 2011, 14, 548–558. [Google Scholar]
- Mazanetz, M.P.; Goode, C.H.; Chudyk, E.I. Ligand-and structure-based drug design and optimization using KNIME. Current medicinal chemistry 2020, 27, 6458–6479. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Sehar, U.; Ahmad, N. Use of bioinformatics tools in different spheres of life sciences. Journal of Data Mining in Genomics & Proteomics 2014, 5, 1. [Google Scholar]
- Olğaç, A.; Orhan, I.E.; Banoglu, E. The potential role of in silico approaches to identify novel bioactive molecules from natural resources. Future Medicinal Chemistry 2017, 9, 1665–1686. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.R.; Joshi, H.V.; Shah, U.A.; Patel, J.K. A review on computational software tools for drug design and discovery. Indo Global Journal of Pharmaceutical Sciences 2022, 12, 53–81. [Google Scholar] [CrossRef]
- Durán-Iturbide, N.A.; Díaz-Eufracio, B.I.; Medina-Franco, J.L. In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM. ACS omega 2020, 5, 16076–16084. [Google Scholar] [CrossRef] [PubMed]
- Sucharitha, P.; Reddy, K.R.; Satyanarayana, S.; Garg, T. Absorption, distribution, metabolism, excretion, and toxicity assessment of drugs using computational tools. In Computational approaches for novel therapeutic and diagnostic designing to mitigate SARS-CoV-2 infection, Elsevier: 2022; pp. 335–355.
- Leung, E.L.; Cao, Z.-W.; Jiang, Z.-H.; Zhou, H.; Liu, L. Network-based drug discovery by integrating systems biology and computational technologies. Briefings in bioinformatics 2013, 14, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Natural product reports 2015, 32, 1249–1266. [Google Scholar] [CrossRef]
- Yikna, B.B.; Yehualashet, A.S. Medicinal plant extracts evaluated in vitro and in vivo for antidiabetic activities in Ethiopia: bases for future clinical trials and related investigations. Evidence-Based Complementary and Alternative Medicine 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
- Pratap, K.; Taki, A.C.; Johnston, E.B.; Lopata, A.L.; Kamath, S.D. A comprehensive review on natural bioactive compounds and probiotics as potential therapeutics in food allergy treatment. Frontiers in immunology 2020, 11, 518111. [Google Scholar] [CrossRef] [PubMed]
- Asiamah, I.; Obiri, S.A.; Tamekloe, W.; Armah, F.A.; Borquaye, L.S. Applications of molecular docking in natural products-based drug discovery. Scientific African 2023, 20, e01593. [Google Scholar] [CrossRef]
- Zhou, S.-F.; Ming Di, Y.; Chan, E.; Du, Y.-M.; Chow, V.D.-W.; Xue, C.C.; Lai, X.; Wang, J.-C.; Li, C.G.; Tian, M. Clinical pharmacogenetics and potential application in personalized medicine. Current drug metabolism 2008, 9, 738–784. [Google Scholar] [CrossRef]
- Shah, I.M.; Ali, A.; Wani, R.F.C.; Malla, B.A.; Dar, M.A.; Wali, A.; Ahmad, M. Computational and pharmacogenomic resources. In Pharmacogenomics, Elsevier: 2023; pp. 345–362.
- Mir, T.A.; Jan, M.; Khare, R.K.; Bhat, M.H. Medicinal plant resources: threat to its biodiversity and conservation strategies. Medicinal and Aromatic Plants: Healthcare and Industrial Applications 2021, 717–739. [Google Scholar]
- Karaca, M.; Ince, A.G. Conservation of biodiversity and genetic resources for sustainable agriculture. Innovations in sustainable agriculture 2019, 363–410. [Google Scholar]
- Sharma, V.; Sarkar, I.N. Bioinformatics opportunities for identification and study of medicinal plants. Briefings in bioinformatics 2013, 14, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Elbrecht, V.; Vamos, E.E.; Steinke, D.; Leese, F. Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ 2018, 6, e4644. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.; Zhang, T.; Li, Y.; Li, G.; Zhuang, L.; Pu, X. Population evolution, genetic diversity and structure of the medicinal legume, glycyrrhiza uralensis and the effects of geographical distribution on leaves nutrient elements and photosynthesis. Frontiers in plant science 2022, 12, 708709. [Google Scholar] [CrossRef] [PubMed]
- Porubsky, D.; Höps, W.; Ashraf, H.; Hsieh, P.; Rodriguez-Martin, B.; Yilmaz, F.; Ebler, J.; Hallast, P.; Maria Maggiolini, F.A.; Harvey, W.T. Haplotype-resolved inversion landscape reveals hotspots of mutational recurrence associated with genomic disorders. bioRxiv 2012. [Google Scholar]
- Hoffmann, A.; Griffin, P.; Dillon, S.; Catullo, R.; Rane, R.; Byrne, M.; Jordan, R.; Oakeshott, J.; Weeks, A.; Joseph, L. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Climate Change Responses 2015, 2, 1–24. [Google Scholar] [CrossRef]
- Hawkes, J.G.; Maxted, N.; Ford-Lloyd, B.V. The ex situ conservation of plant genetic resources; Springer Science & Business Media: 2012.
- Fulekar, M. Environmental biotechnology; CRC Press: 2010.
- Roy, S.; Suman, A.; Ray, S.; Saikia, S.K. Use of species distribution models to study habitat suitability for sustainable management and conservation in the Indian subcontinent: A decade's retrospective. Frontiers in Sustainable Resource Management 2022, 1, 1031646. [Google Scholar] [CrossRef]
- Kumar, R.; Saikia, P. Forest resources of Jharkhand, Eastern India: socio-economic and bio-ecological perspectives. Socio-economic and Eco-biological Dimensions in Resource use and Conservation: Strategies for Sustainability 2020, 61–101. [Google Scholar]
- Ramachandran, R.M.; Roy, P.S.; Chakravarthi, V.; Sanjay, J.; Joshi, P.K. Long-term land use and land cover changes (1920–2015) in Eastern Ghats, India: Pattern of dynamics and challenges in plant species conservation. Ecological Indicators 2018, 85, 21–36. [Google Scholar] [CrossRef]
- Clark, C.W. Mathematical bioeconomics: the mathematics of conservation; John Wiley & Sons: 2010; Vol. 91.
- O’Neill, A.R.; Badola, H.K.; Dhyani, P.P.; Rana, S.K. Integrating ethnobiological knowledge into biodiversity conservation in the Eastern Himalayas. Journal of ethnobiology and ethnomedicine 2017, 13, 1–14. [Google Scholar] [CrossRef]
- Shukla, S.; Gardner, J. Local knowledge in community-based approaches to medicinal plant conservation: lessons from India. Journal of Ethnobiology and Ethnomedicine 2006, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Misra, B.B.; Langefeld, C.; Olivier, M.; Cox, L.A. Integrated omics: tools, advances and future approaches. Journal of molecular endocrinology 2019, 62, R21–R45. [Google Scholar] [CrossRef] [PubMed]
- Pferschy-Wenzig, E.-M.; Bauer, R. The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy & behavior 2015, 52, 344–362. [Google Scholar]
- Robinson, D.F. Biodiversity, access and benefit-sharing: global case studies; Routledge: 2014.
- Govindaraghavan, S.; Sucher, N.J. Quality assessment of medicinal herbs and their extracts: Criteria and prerequisites for consistent safety and efficacy of herbal medicines. Epilepsy & Behavior 2015, 52, 363–371. [Google Scholar]
- Council, N.R.; Earth, D.o.; Studies, L.; Sciences, B.o.L.; Convergence, C.o.K.C.A.f. Convergence: Facilitating transdisciplinary integration of life sciences, physical sciences, engineering, and beyond; National Academies Press: 2014.
- Kueffer, C.; Underwood, E.; Hadorn, G.H.; Holderegger, R.; Lehning, M.; Pohl, C.; Schirmer, M.; Schwarzenbach, R.; Stauffacher, M.; Wuelser, G. Enabling effective problem-oriented research for sustainable development. Ecology and Society 2012, 17. [Google Scholar] [CrossRef]
- Hamilton, A.C. Medicinal plants, conservation and livelihoods. Biodiversity & Conservation 2004, 13, 1477–1517. [Google Scholar]
- Jacobson, S.K.; McDuff, M.D.; Monroe, M.C. Conservation education and outreach techniques; Oxford University Press: 2015.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
