Submitted:
10 May 2024
Posted:
10 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study
2.2. Data Collection
2.3. Cardiovascular Risk Calculations and Estimations
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic Characteristics of the Population and Metabolic Syndrome Diagnosis
3.2. Calculation of the ADVANCE Risk Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberti KGMM, Zimmet P, Shaw J, George : K, Alberti MM, Aschner P; et al. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabetic Medicine 2006;23:469–80. https://doi.org/10.1111/j.1464-5491.2006.01858.x.
- Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World J Diabetes 2015;6:850–67. https://doi.org/0.4239/wjd.v6.i6.85.
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024;47:S20–42. [CrossRef]
- Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular Complications of Type 2 Diabetes Mellitus. Current Vascular Pharmacology 2020;18:117–24. https://doi.org/10.2174/1570161117666190502103733 Abstract.
- Damaskos C, Garmpis N, Kollia P, Mitsiopoulos G, Barlampa D, Drosos A; et al. Assessing Cardiovascular Risk in Patients with Diabetes: An Update. Curr Cardiol Rev 2020;16:266–74. [CrossRef]
- Neppala S, Rajan J, Yang E, DeFronzo RA. Unexplained Residual Risk In Type 2 Diabetes: How Big Is The Problem? Curr Cardiol Rep 2024. [CrossRef]
- PORDATA. Índice de envelhecimento . Https://WwwPordataPt/Europa/%C3%8Dndice+de+envelhecimento-1609 2024.
- 8. Sociedade Portuguesa de Diabetologia. Diabetes: Factos e Números - O Ano de 2019, 2020 e 2021 - Relatório Anual do Observatório Nacional da Diabetes 03/2023. Lisboa: 2023.
- 9. Badawy MAEMD, Naing L, Johar S, Ong S, Rahman HA, Tengah DSNAP; et al. Evaluation of cardiovascular diseases risk calculators for CVDs prevention and management: Scoping review. BMC Public Health 2022;22:1742. [CrossRef]
- 10. Quaglini S, Stefanelli M, Boiocchi L, Campari F, Cavallini A, Micieli G. Cardiovascular risk calculators: Understanding differences and realising economic implications. Int J Med Inform 2005;74:191–9. [CrossRef]
- Rocha E. Cardiovascular risk scores: Usefulness and limitations. Revista Portuguesa de Cardiologia (English Edition) 2016;35:15–8. [CrossRef]
- U Prevent. ADVANCE risk score. Https://U-PreventCom/Calculators/AdvanceScore 2024.
- WHO Consultation on Obesity (1999: Geneva S, World Health Organization. Obesity : Preventing and managing the global epidemic : Report of a WHO consultation 2000. https://iris.who.int/handle/10665/42330 (accessed May 7, 2024).
- Committee ADAPP. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022;45:S144–74. [CrossRef]
- Group TSR. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med 2015;373:2103. [CrossRef]
- Group TAS. Effects of Intensive Blood-Pressure Control in Type 2 Diabetes Mellitus. N Engl J Med 2010;362:1575. [CrossRef]
- Gourdy P, Schiele F, Halimi JM, Kownator S, Hadjadj S, Valensi P. Atherosclerotic cardiovascular disease risk stratification and management in type 2 diabetes: Review of recent evidence-based guidelines. Front Cardiovasc Med 2023;10:1227769. https://doi.org/10.3389/FCVM.2023.1227769/BIBTEX.
- Observatório Nacional da Diabetes. DIABETES Factos e Números. 2023.
- PORDATA. Instituto Nacional de Estatística I.P. Resident population aged 15 and over by level of education completed 2020. https://www.pordata.pt/.
- Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 2023;44:4043–140. [CrossRef]
- Kim MK, Lee KN, Han K, Lee S-H. Diabetes Duration, Cholesterol Levels, and Risk of Cardiovascular Diseases in Individuals With Type 2 Diabetes. J Clin Endocrinol Metab 2024. [CrossRef]
- de Jong M, Woodward M, Peters SAE. Duration of diabetes and the risk of major cardiovascular events in women and men: A prospective cohort study of UK Biobank participants. Diabetes Res Clin Pract 2022;188. [CrossRef]
- Yao X, Zhang J, Zhang X, Jiang T, Zhang Y, Dai F; et al. Age at diagnosis, diabetes duration and the risk of cardiovascular disease in patients with diabetes mellitus: A cross-sectional study. Front Endocrinol (Lausanne) 2023;14. [CrossRef]
- Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 2023;44:4043–140. [CrossRef]
- Martínez-González M a, García-Arellano A, Toledo E, Bes-Rastrollo M, Bulló M, Corella D; et al. Obesity indexes and total mortality among elderly subjects at high cardiovascular risk: The PREDIMED study. PLoS ONE 2014;9:e103246. [CrossRef]
- Chiazor EI, Evans M, van Woerden H, Oparah AC. A Systematic Review of Community Pharmacists’ Interventions in Reducing Major Risk Factors for Cardiovascular Disease. Value Health Reg Issues 2015;7:9–21. http://dx.doi.org/10.1016/j.vhri.2015.03.002.
- Hu C, Lin L, Zhu Y, Zhang Y, Wang S, Zhang J; et al. Association Between Age at Diagnosis of Type 2 Diabetes and Cardiovascular Diseases: A Nationwide, Population-Based, Cohort Study. Front Endocrinol (Lausanne) 2021;12. https://doi.org/10.3389/FENDO.2021.717069/FULL.
- Instituto Nacional Estatística. Inquérito Nacional de Saúde 2019. n.d.
- collaboration S working group and EC risk, Hageman S, Pennells L, Ojeda F, Kaptoge S, Kuulasmaa K; et al. SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J 2021;42:2439–54. [CrossRef]
- Gencer B, Marston NA, Im KA, Cannon CP, Sever P, Keech A; et al. Efficacy and safety of lowering LDL cholesterol in older patients: A systematic review and meta-analysis of randomised controlled trials. Lancet 2020;396:1637. [CrossRef]
- collaboration S-O working group and EC risk, de Vries TI, Cooney MT, Selmer RM, Hageman SHJ, Pennells LA; et al. SCORE2-OP risk prediction algorithms: Estimating incident cardiovascular event risk in older persons in four geographical risk regions. Eur Heart J 2021;42:2455–67. [CrossRef]
- Kengne AP. The ADVA NCE cardiovascular risk model and current strategies for cardiovascular disease risk evaluation in people with diabetes. Cardiovasc J Afr 2013;24:376. [CrossRef]
- Kengne AP, Patel A, Marre M, Travert F, Lievre M, Zoungas S; et al. Contemporary model for cardiovascular risk prediction in people with type 2 diabetes. Eur J Cardiovasc Prev Rehabil 2011;18:393–8. [CrossRef]
- Kweon YN, Ko HJ, Kim AS, Choi HI, Song JE, Park JY; et al. Prediction of cardiovascular risk using nonalcoholic fatty liver disease scoring systems. Healthcare (Switzerland) 2021;9:899. https://doi.org/10.3390/HEALTHCARE9070899/S1.
- Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A; et al. The fatty liver index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 2006;6:1–7. https://doi.org/10.1186/1471-230X-6-33/TABLES/3.
- U-prevent n.d. https://u-prevent.com/calculators/dialModel (accessed May 6, 2024).
- Østergaard HB, Hageman SHJ, Read SH, Taylor O, Pennells L, Kaptoge S; et al. Estimating individual lifetime risk of incident cardiovascular events in adults with Type 2 diabetes: An update and geographical calibration of the DIAbetes Lifetime perspective model (DIAL2). Eur J Prev Cardiol 2023;30:61–9. [CrossRef]
- Tan JK, Thumboo J, Lim GH, Salim NNM, Chia SY, Bee YM. Associations Between Mean HbA1c, HbA1c Variability, and Both Mortality and Macrovascular Complications in Patients with Diabetes Mellitus: A Registry-Based Cohort Study. Clin Epidemiol 2023;15:137–49. [CrossRef]
- Boye KS, Thieu VT, Lage MJ, Miller H, Paczkowski R. The Association Between Sustained HbA1c Control and Long-Term Complications Among Individuals with Type 2 Diabetes: A Retrospective Study. Adv Ther 2022;39:2208. https://doi.org/10.1007/S12325-022-02106-4.
- Wu TE, Su YW, Chen HS. Mean HbA1c and HbA1c variability are associated with differing diabetes-related complications in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2022;192:110069. https://doi.org/10.1016/J.DIABRES.2022.110069.
- Maiorino MI, Longo M, Scappaticcio L, Bellastella G, Chiodini P, Esposito K; et al. Improvement of glycemic control and reduction of major cardiovascular events in 18 cardiovascular outcome trials: An updated meta-regression. Cardiovasc Diabetol 2021;20:1–10. https://doi.org/10.1186/S12933-021-01401-8/FIGURES/6.
- Committee ADAPP, ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS; et al. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes—2024. Diabetes Care 2024;47:S111–25. https://doi.org/10.2337/DC24-S006.
- Albus C. Health literacy: Is it important for cardiovascular disease prevention? Eur J Prev Cardiol 2018;25:934–5. https://doi.org/10.1177/2047487318770519.
- Wang H, Liu J, Feng Y, Ma A, Wang T. The burden of cardiovascular diseases attributable to metabolic risk factors and its change from 1990 to 2019: A systematic analysis and prediction. Frontiers in Epidemiology 2023;3:1048515. https://doi.org/10.3389/FEPID.2023.1048515.
| Characteristics | Total sample | Males | Females | p-value | |||
| (n=87) | (n=54) | (n=33) | |||||
| Age (years) M±SD | 71.6 | ±5.2 | 70.8 | ±4.8 | 72.8 | ±5.6 | 0.113a |
| Academic level: Cannot read or write; n (%) | 5 | (5.7) | 3 | (5.6) | 2 | (6.1) | 0.697b |
| Primary school (4 years); n (%) | 59 | (67.8) | 33 | (61.1) | 26 | (78.8) | |
| Middle school (5-9 years); n (%) | 13 | (14.9) | 10 | (18.5) | 3 | (9.1) | |
| High school (10-12 years); n (%) | 6 | (6.9) | 5 | (9.3) | 1 | (3.0) | |
| College level degree; n (%) | 4 | (4.6) | 3 | (5.6) | 1 | (3.0) | |
| Years after T2DM diagnosis M±SD | 12.9 | ±8.0 | 12.5 | ±8.2 | 13.5 | ±7.7 | 0.371a |
| Number of medications M±SD | 6 | .0±2.9 | 5.7 | ±2.8 | 6 | .5±3.0 | 0.240a |
| Weight (Kg) M±SD | 80.6 | ±11.8 | 83.8 | ±10.0 | 75.4 | ±12.9 | 0.001c |
| Waist circumference (cm) M±SD | 96.8 | ±8.3 | 99.7 | ±5.1 | 92.0 | ±10.2 | <0.001a |
| BMI (kg/m2) M±SD | 29.8 | ±3.9 | 29.1 | ±2.7 | 31 | .0±5.2 | 0.07c |
| BMI (category): Normal weight; n (%) | 5 | (5.7) | 1 | (1.9) | 4 | (12.1) | 0.008b |
| Overweight; n (%) | 45 | (51.7) | 33 | (61.1) | 12 | (36.4) | |
| Moderate obesity; n (%) | 28 | (32.2) | 18 | (33.3) | 10 | (30.3) | |
| Severe obesity; n (%) | 7 | (8.0) | 2 | (3.7) | 5 | (15.2) | |
| Very severe obesity; n (%) | 2 | (2.3) | 0 | 2 | (6.1) | ||
| Systolic BP (mmHg) M±SD | 153.6 | ±22.4 | 153 | ±22.6 | 154.5 | ±22.7 | 0.776c |
| Diastolic BP (mmHg) M±SD | 80.4 | ±11.0 | 79.5 | ±10.3 | 81.8 | ±12.0 | 0.349c |
| Total cholesterol (mg/dL) M±SD | 184.3 | ±37.8 | 180.2 | ±36.8 | 191 | ±39.1 | 0.195a |
| HDL cholesterol (mg/dL) M±SD | 46.5 | ±12.0 | 45.4 | ±12.5 | 48.4 | ±11.2 | 0.261a |
| LDL cholesterol (mg/dL) M±SD | 106.9 | ±27.6 | 105.1 | ±26.6 | 109.9 | ±29.5 | 0.441a |
| Triglycerides (mg/dL) M±SD | 143.5 | ±57.2 | 146.1 | ±56.7 | 139.4 | ±58.6 | 0.47a |
| HbA1c (%) M±SD | 8.3 | ±1.1 | 8.1 | ±1.0 | 8.6 | ±1.2 | 0.072a |
| Fasting glycaemia (mg/dL) M±SD | 164.7 | ±45.4 | 165.6 | ±51.4 | 163.2 | ±33.9 | 0.726a |
| Smokes tobacco n (%) | 2 | (2.3) | 2 | (3.7) | 0 | <0.001d | |
| Drinks alcohol n (%) | 59 | (67.8) | 47 | (87.0) | 12 | (36.4) | <0.001d |
| Exercises regularly n (%) | 53 | (60.9) | 34 | (63.0) | 19 | (57.6) | 0.656b |
| Hypertension n (%) | 79 | (90.8) | 50 | (92.6) | 29 | (87.9) | 0.471f |
| Dyslipidaemia n (%) | 49 | (56.3) | 31 | (57.4) | 18 | (54.5) | 0.827b |
| Retinopathy n (%) | 27 | (31.0) | 16 | (29.6) | 11 | (33.3) | 0.812b |
| Neuropathy n (%) | 2 | (2.3) | 2 | (3.7) | 0 | 0.524f | |
| Nephropathy n (%) | 3 | (3.4) | 2 | (3.7) | 1 | (3.0) | 0.680d |
| Metabolic syndrome characteristics | Total sample | Males | Females | p-value |
| (n=87) | (n=54) | (n=33) | ||
| BMI showing obesity; n (%) | 37 (42.5) | 20 (37.0) | 17 (51.5) | 0.264a |
| Triglycerides ≥ 150 mg/dL; n (%) | 35 (40.2) | 23 (42.6) | 12 (36.4) | 0.655a |
| HDL cholesterol <40 mg/dL in men or <50 mg/dL in women; n (%) | 38 (43.7) | 19 (35.2) | 19 (57.6) | 0.040a |
| Blood pressure ≥ 130/85 mmHg | 78 (89.7) | 48 (88.9) | 30 (90.9) | 1a |
| Fasting glucose ≥ 100 mg/dL | 85 (97.7) | 52 (96.3) | 33 (100) | 0.524b |
| No. of clinical features for MS diagnosis in addition to increased waist circumference: | ||||
| M±SD | 3.1±0.8 | 3.0±0.7 | 3.4±1.0 | |
| Md (IQR) | 3.0 (1.0) | 3.0 (0.0) | 3.0 (1.0) | 0.109c |
| Risk for myocardial infarction, stroke or vascular death in the next 10 years (%) |
ADVANCE risk score Mean (95% confidence interval) |
Sex differences p-value |
||
| Total sample | Males | Females | ||
| (n=87) | (n=54) | (n=33) | ||
| Current risk | 22.5 (20.3-24.7) | 24.2 (21.3-27) | 19.7 (16.2-23.3) | 0.028 |
| Risk if SBP <130 mm Hg * | 13.4 (11.8-15.1) | 14.6 (12.4-16.8) | 11.7 (9.1-14.4) | 0.061 |
| Risk if SBP <120 mm Hg *, ** | 11.8 (10.3-13.3) | 13.0 (11.1-14.9) | 9.8 (7.6-11.9) | 0.024 |
| Risk if LDL cholesterol <70 mg/dL * | 18.8 (16.6-20.9) | 20.3 (17.6-23.1) | 16.3 (12.9-19.8) | 0.026 |
| Risk if SBP <120 mmHg & LDLC <70 mg/dL * | 9.7 (8.4-11.0) | 10.8 (9.1-12.6) | 7.9 (6.1-9.7) | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
