Submitted:
08 May 2024
Posted:
09 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Differences between Provenances and Contribution to Variance
2.2. Provenance Clustering
2.3. Association between Geographic and Environmental Variables with Resin Components and Quality
3. Discussion
3.1. Differences between Provenances and Contribution to Variance
3.2. Provenance Clustering
3.3. Association between Geographic and Environmental Variables with Resin Components and Quality
4. Materials and Methods
4.1. Provenances and Tree Selection
| Provenance | Cummunity | Elevation (m snm) | MAT (° C) |
MAP (mm) | Number of Trees | Identification Key of Trees |
|---|---|---|---|---|---|---|
| Sesteadero | Putla Villa de Guerrero | 905.4 | 23.80 | 1688.64 | 11 | SES01, SES02, SES03, …, SES11 |
| San Pedro | San Domingo Coatlán | 1129.8 | 21.76 | 1419.83 | 18 | SDC01, SDC02, SDC03, …, SDC47 |
| El Tizne | San Domingo Coatlán | 1287.6 | 20.59 | 1348.13 | 8 | SDC11, SDC12, SDC13, …, SDC18 |
| Las Tejas | San Domingo Coatlán | 1301.8 | 20.53 | 1324.70 | 10 | SDC01, SDC02, SDC03 …, SDC10 |
| El Nanche | San Domingo Coatlán | 1327.2 | 20.36 | 1295.44 | 10 | SDC19, SDC21, SDC22, …, SDC29 |
4.2. Resin Collection and Analysis
4.3. Geographic and Climatic Variables
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SEMARNAT. Anuario Estadístico de la Producción Forestal 2018. Secretaría de Medio Ambiente y Recursos Naturales: Ciudad de México, México, 2021; pp: 139-136. https://dsiappsdev.semarnat.gob.mx/datos/portal/publicaciones/2021/2018.pdf.
- Pastor-Bustamante, J. F. Estudio de la calidad de la resina del Pinus caribaea var. caribaea y sus componentes. Rev. Chapingo Ser. Cienc. For. Ambiente 2001, 7(2), 159–162. Available online: https://revistas.chapingo.mx/forestale/last_issues/?section=articles&subsec=issues&numero=24.
- Gallo Corredor, J.A.; Sarria Villa, R.A. Obtención de colofonia y trementina a partir de resina de pino de la especie patula y posterior evaluación de los parámetros de calidad. Jou. Cie. Ing. 2013, 5(1), 88–91. Available online: https://jci.uniautonoma.edu.co/2013/2013-13.pdf.
- Gallo Corredor, J. G. y Sarria Villa, R.S. Obtención de colofonia y trementina a partir de la resina de Pinus oocarpa extraída de un bosque industrial en Cauca-Colombia. Jou. Cie. Ing. 2014, 6(1), 65–69. Available online: https://jci.uniautonoma.edu.co/2014/2014-12.pdf.
- CONAFOR (2013). La producción de resina de pino en México, 1ra. ed.; CONAFOR: Guadalajara, México, 2013; 20p, pp. 20–82, http://www.conafor.gob.mx:8080/documentos/docs/43/6046La%20pro5. [Google Scholar]
- Fabián-Plesníková, I. Estudio de caracteres que intervienen en la producción de resina y su posible control genético en Pinus oocarpa. Tesis Doctoral, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México, 2020. http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/3741.
- Quiroz Carranza, J. A.; Magaña Alejandro, M. A. Natural resins of Mexican plant species: current and potential end-uses. Madera Bosques 2015, 21, 171–183. [Google Scholar] [CrossRef]
- Nugrahanto, G.; Na’iem, M.; Indrioko, S.; Faridah, E.; Widiyatno; Abdillah, E. Genetic parameters for resin production of Pinus merkusii progeny test collected from three seed sources in Banyumas Barat Forest District, Indonesia. Biodiversitas 2022, 23, 2010–2026. [Google Scholar] [CrossRef]
- Tadesse, W.; Nanos, N.; Aunon, F.J.; Alia, R.; Gil, L. Evaluation of high resin yielders of Pinus pinaster Ait. For. Genet. 2001, 8, 271–278. https://kf.tuzvo.sk/sites/default/files/FG08-4_271-278.pdf.
- Fabián-Plesníková, I.; Sáenz-Romero, C.; Cruz-De-León, J.; Martínez-Trujillo, M.; Sánchez-Vargas, N. M.; Terrazas, T. Heritability and characteristics of resin ducts in Pinus oocarpa stems in Michoacán, Mexico. IAWA J. 2021, 42, 258–278. [Google Scholar] [CrossRef]
- Reyes-Ramos, A.; Cruz de León, J.; Martínez-Palacios, A.; Lobit, P.C.M; Ambríz-Parra, J.E.; Sánchez-Vargas, N.M. Caracteres ecológicos y dendrométricos que influyen en la producción de resina en Pinus oocarpa de Michoacán, México. Madera Bosques 2019, 25(1), e2511414. [Google Scholar] [CrossRef]
- Fabián-Plesníková, I.; Sáenz-Romero, C.; de León, J. C.; Martínez-Trujillo, M.; Sánchez-Vargas, N. M. Parámetros genéticos de caracteres de crecimiento en un ensayo de progenies de Pinus oocarpa. Madera Bosques 2020, 26, e2632014. [Google Scholar] [CrossRef]
- Muñoz Flores, H. J., Sáenz Reyes, J., Gómez Cárdenas, M., Hernández Ramos, J., & Barrera Ramírez, R. Variación morfológica en semillas de Pinus pseudostrobus Lindl. altamente productores de resina. Acta Univ. 2023, 33, e3549. https://www.scielo.org.mx/pdf/au/v33/2007-9621-au-33-e3549.pdf.
- Farjon, A.; Styles, B.T. Pinus (Pinaceae). Flora Neotrop. 1997, 75, 1–291. Available online: http://www.jstor.org/stable/4393881 (accessed on 31 October 2023).
- Gallo Corredor, J.A.; Sarria Villa, R.A.; Palta Angúlo, J.C. Comparación de la producción resinera de dos especies de pino cultivadas en el municipio de Cajibío, Departamento del Cauca, Colombia. Jou. Cie. Ing. 2012, 4(1), 37-42. https://jci.uniautonoma.edu.co/2012/2012-6.pdf.
- Romero-Sanchez, M.E.; Velasco-Garcia, M.V.; Perez-Miranda, R.; Velasco-Bautista, E.; Gonzalez-Hernandez, A. Different modelling approaches to determine suitable areas for conserving Egg-Cone Pine (Pinus oocarpa Schiede) plus trees in the central part of Mexico. Forests 2022, 13(12), 2112. [Google Scholar] [CrossRef]
- Velasco-García, M.V.; Hernández-Hernández, A. Altitudinal genetic variation of Pinus oocarpa seedling emergence in the southern mountains, Oaxaca, Mexico. Seeds 2024, 3, 1–15. [Google Scholar] [CrossRef]
- Zobel, B.; Talbert, J. Applied Forest Tree Improvement; John Wiley & Sons: New York, NY, USA, 1984; p. 505. [Google Scholar]
- Sukarno, A.; Hardiyanto, E.B.; Marsoem, S.N.; Na’iem, M. Oleoresin production, turpentine yield and components of "Pinus merkusii" from various Indonesian provenances. J. Trop. For. Sci. 2015, 27(1), 136–141. Available online: https://www.jstor.org/stable/43150981.
- Sukarno, A. Physical properties of turpentine and gum rosin Pinus merkusii Jungh et de Vriese tapped oleoresin by borehole method. J. Exp. Life Sci. 2018, 8(1), 43–46. [Google Scholar] [CrossRef]
- Brito, J.; Barrichelo, L.; Gutierrez, L. Qualidade do breu e terebintina de pinheiros tropicais. Piracicaba: IPEF 1980, 21, 55–63, https://www.ipef.br/publicacoes/scientia/nr21/cap04.pdf. [Google Scholar]
- Riveros Alcedo, J.C.; Cueva-Gálvez, G.E.; González Mora, H.E. Evaluación de la oleorresina de pino (Pinus oocarpa) en la zona de Oxapampa, Pasco, Perú. Rev. For. Perú 2017, 32(1), 45–55, https://revistas.lamolina.edu.pe/index.php/rfp/article/view/1036. [Google Scholar]
- Sarria-Villa, R.A.; Gallo-Corredor, J.A.; Benítez-Benítez, R. Characterization and determination of the quality of rosins and turpentines extracted from Pinus oocarpa and Pinus patula resin. Heliyon 2021, 7(8), e07834. [Google Scholar] [CrossRef] [PubMed]
- Djerrad, Z; Kadika, L.; Djouahri, A. Chemical variability and antioxidant activities among Pinus halepensis Mill. essential oils provenances, depending on geographic variation and environmental conditions. Ind. Crops and Products 2015, 74, 440–449. [Google Scholar] [CrossRef]
- Nerg, A.; Kainulainen, P.; Vuorinen, M.; Hanso, M.; Holopainen, J.K.; Kurkela, T. Seasonal and geographical variation of terpenes, resin acids and total phenolics in nursery grown seedlings of Scots pine (Pinus sylvestris L.). New Phytoi. 1994, 128, 703–713. [Google Scholar] [CrossRef]
- Rajčević, N; Nikolić, B.; Marin, P.D. Different responses to environmental factors in terpene composition of Pinus heldreichii and P. peuce: ecological and chemotaxonomic considerations. Arch. Biol. Sci. 2019, 71(4), 629–637. [Google Scholar] [CrossRef]
- Sáenz-Romero, C.; Viveros-Viveros, H.; Guzmán-Reyna, R.R. Altitudinal genetic variation among P. oocarpa populations on Michoacán, Western México. Preliminary Results from a Nursery Test. For. Genet. 2004, 11, 343–349. Available online: https://www.uv.mx/personal/heviveros/files/2014/11/SaenzRomero_et-al_2004_PoocarpaVivero_ForestGenetics.pdf (accessed on 27 March 2024).
- Sáenz-Romero, C.; Guzmán-Reyna, R.R.; Rehfeldt, G.E. Altitudinal genetic variation among Pinus oocarpa populations in Michoacán, Mexico: Implications for seed zoning, conservation, tree breeding and global warming. For. Ecol. Manag. 2006, 229, 340–350. [Google Scholar] [CrossRef]
- White, T.L.; Adams, W.T.; Neale, D.B. Forest Genetics; CABI Publishing: Cambrige, MA, USA, 2007; p. 682. [Google Scholar]
- Santos Silva, E.; de Souza Mathias, C.; Freitas de Lima, M. C.; da Veiga Junior, V. F.; Picanço Rodrigues, D.; Roland Clement, C. Análise fisico-quimica do oleo-resina e variabilidade genética de copaíba na Floresta Nacional do Tapajós. Pesqui. Agropecu. Bras. 2012, 47(11), 1621-1628. https://www.scielo.br/j/pab/a/wMpf8mbCmd7V5qSwstqhmtb/?lang=pt.
- Iñíguez Guillén, R.M.; Esqueda Reyes, H.C.; Escoto García, T.E.; Ochoa, H.G.; Rodríguez Rivas, A.; Contreras Quiñones, H.J. Caracterización química de aceites esenciales y extractos de madera de dos especies de pinos del bosque La Primavera. Rev. Mex. Cien. For. 2018, 6(28), 42-57. https://cienciasforestales.inifap.gob.mx/index.php/forestales/article/view/259.
- Casal Viqueira, A.M.; Barbosa Martín, E.; Gutiérrez, L.; Fonseca, M.; Navarro, A.E.; Valdés, M.T.; Spengler, B.; Guerra, S. Oleorresina de pinos. Una nueva fuente para la obtención de aditivos químicos. CIENCIA ergo-sum 2005, 12(1), 64–70. Available online: https://www.redalyc.org/pdf/104/10412107.pdf.
- Wiyono, B. Pengaruh konsentrasi bahan kimia maleat anhidrida terhadap gondorukem maleat dari getah Pinus merkusii. J. Pen. Hasil Hut. 2007, 25, 28–40. [Google Scholar] [CrossRef]
- Pastor Bustamante, J.F. Procesamiento de la resina de Pinus caribaea, var. caribaea, y sus componentes para la obtención de productos resinosos. Tesis doctoral, Universidad de Pinar del Rio, Pinar del Río, Cuba, 1999. https://rc.upr.edu.cu/jspui/handle/DICT/2186.
- Osorio Pérez, C.M.; Cueva-Gálvez, G.E.; Gonzáles Mora, H. E. Caracterización de oleorresina de Pinus caribaea obtenido por el sistema de pica de corteza con ácido sulfúrico. Rev. For. Perú 2016, 31, 58–68. [Google Scholar] [CrossRef]
- Betancourt Figueras, Y.; Pastor Bustamante, J.F.P.; Vilalba Fonte, M. J; Nuñez Gonzalez, S. Use of resin from Pinus caribaea Morelet var. caribaea Barrett and Golfari. In Forest Products, Livelihoods and Conservation: Case Studies of Non-Timber Forest Product Systems; Alexiades, M.N., Shanley, P., Eds.; Center for International Forestry Research: Jakarta, Indonesia, 2004; volume 1–3, pp. 233–246. Available online: http://www.jstor.org/stable/resrep02086.17.
- Viveros-Viveros, H.; Sáenz-Romero, C.; Guzmán-Reyna, R.R. Pattern and magnitude of the variation of the wood density in seed production stands of Pinus oocarpa. Rev. Fitotec. Mex. 2005, 28(4), 333–338. [Google Scholar] [CrossRef]
- Barbosa Sampaio, P.T.; Vilela de Resente, M.D., De Araujo, A.J. Estimativas de parâmetros genéticos e métodos de seleção para o melhoramento genético de Pinus oocarpa Schiede. Pesqui. Agropecu. Bras. 2002, 37(5), 625-636. [CrossRef]
- Liu, Q.; Zhou, Z.; Fan, H.; Liu, Y. Genetic variation and correlation among resin yield, growth, and morphologic traits of Pinus massoniana. Silvae Genet. 2013, 62(1-2), 38-43. [CrossRef]
- Dos Santos, W.; Souza, D.C.L; de Moraes, M.L.; de Aguiar, A.V. Genetic variation of wood and resin production in Pinus caribaea var. hondurensis Barret & Golfari. Silvae Genet. 2016, 65(1), 31-37. [CrossRef]
- Susilowati, A.; Siregar, I. Z; Supriyanto; Wahyudi, I.; Corryanti. Genetic variation, heritability and correlation between resin production character of Pinus merkusii high resin yielder (HRy) in cijambu seedling seed orchard (SSO). Biotropia 2013, 20, 122–133. [Google Scholar] [CrossRef]
- Roberds, J.H.; Strom, B.L.; Hain, F.P.; Gwaze, D.P.; McKeand, S.E.; Lott, L.H. Estimates of genetic parameters for oleoresin and growth traits in juvenile loblolly pine. Canadian J. For. Res. 2003, 33(12), 2469–2476. [Google Scholar] [CrossRef]
- Lai, M.; Dong, L.; Yi, M.; Sun, S.; Zhang, Y.; Fu, L.; Xu, Z.; Lei, L.; Leng, C.; Zhang, L. Genetic variation, heritability and genotype × environment interactions of resin yield, growth traits and morphologic traits for Pinus elliottii at three progeny trials. Forests 2017, 8, 409. [Google Scholar] [CrossRef]
- Núñez-Colín, C.A.; Escobedo-López, D. Uso correcto del análisis clúster en la caracterización de germoplasma vegetal. Agron. Mesoam. 2011, 22(2), 415-427. https://www.scielo.sa.cr/scielo.php?pid=S1659-13212011000200018&script=sci_arttext.
- Capilla-Dinorin, E; López-Upton, J.; Jiménez-Casas, M.; Rebolledo-Camacho, V. Reproductive characteristics and seed quality in fragmented populations of Pinus chiapensis (Martínez) Andresen. Rev. Fitotec. Mex. 2021, 44(2), 211–219. Available online: https://www.scielo.org.mx/pdf/rfm/v44n2/0187-7380-rfm-44-02-211.pdf.
- Armijo, C.J.; Vicuña, G.E; Romero, O.P.; Condorhuamán, C.C.; Hilario, R.B. Modelamiento y simulación del proceso de extracción de aceites esenciales mediante la destilación por arrastre con vapor. Rev. Per. Quím. Ing. Quím. 2012, 15(2), 19–27. Available online: https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/4967.
- ASTM. ASTM. ASTM D1980 – 87 (Reapproved 1998): Standard Test Method for Acid Value of Fatty Acids and Polymerized Fatty Acids. In Annual Book of ASTM Standards; American Society for Testing and Materials: West Conshohocken, PA, USA, 1998; pp. 1–2. [Google Scholar]
- ASTM. ASTM. ASTM D464-15(2020): Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products. In Annual Book of ASTM Standards; American Society for Testing and Materials: West Conshohocken, PA, USA, 2020; pp. 1–3. [Google Scholar]
- Tuhkanen, S. Climatic parameters and indices in plant geography. Acta Phytogeogr. Suec. 1980, 67, 1–110. https://www.diva-portal.org/smash/get/diva2:565410/FULLTEXT01.pdf.
- Crookston, N. Research on Forest Climate Change: Potential Effects of Global Warming on Forests and Plant Climate Relationships in Western North America and Mexico; VirginiaTech: Blacksburg, VA, USA, 2006; Available online: https://charcoal2.cnre.vt.edu/climate/ (accessed on 6 September 2023).
- Sáenz-Romero, C.; Rehfeldt, G.E.; Crookston, N.L.; Pierre, D.; StAmant, R.; Beaulieu, J.; Richardson, B. Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Clim. Chang. 2010, 102, 595–623. [Google Scholar] [CrossRef]
- Conover, W.J. The rank transformation-an easy and intuitive way to connect many nonparametric methods to their parametric counterparts for seamless teaching introductory statistics courses. Wiley Interdiscip. Rev. Comput. Stat. 2012, 4, 332–338. [Google Scholar] [CrossRef]
- SAS Institute Inc. Statistical Analysis System; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]




| Provenance | Resin components (%) | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Rosin | Turpentine | Water | Saponification index (mg KOH.g_1) | Acidity index (mg KOH.g_1) | |||||||||||
| El Nanche | 76.47 | d1 | 7.29 | d | 16.36 | d | 127.06 | c | 119.59 | b | |||||
| Las Tejas | 82.46 | b | 7.41 | c | 10.22 | b | 121.78 | b | 109.28 | d | |||||
| El Tizne | 83.71 | a | 6.37 | e | 10.00 | c | 127.79 | c | 118.03 | c | |||||
| San Pedro | 82.58 | b | 7.83 | b | 9.70 | a | 129.49 | d | 118.65 | b | |||||
| Sesteadero | 79.49 | c | 9.65 | a | 11.16 | c | 121.25 | a | 121.89 | a | |||||
| Average | 80.94 | 7.71 | 11.49 | 125.47 | 117.49 | ||||||||||
| Variable | Contribution to Total Variance (%) | Total variance | ||
|---|---|---|---|---|
| Provenance | Error | |||
| Rosin percentage | 9.56 | 90.44 | 90.73 | |
| Turpentine percentage | 8.68 | 91.32 | 16.76 | |
| Water percentage | 8.82 | 91.18 | 87.22 | |
| Saponification index | 11.71 | 88.29 | 118.17 | |
| Acidity index | 6.44 | 93.56 | 359.15 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).