Submitted:
04 May 2024
Posted:
06 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
- Research Method
- Population and samples
- Instruments
3. Results
- Descriptive Statistics of Research Respondents
- Results of SEM Analysis with AMOS Approach
4. Discussion
5. Conclusions
Acknowledgment
References
- Jain, M.; Soni, G.; Verma, D.; Baraiya, R.; Ramtiyal, B. Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain. Sustainability 2023, 15, 4821. [Google Scholar] [CrossRef]
- Ben Youssef, A.; Zeqiri, A. Hospitality Industry 4.0 and Climate Change. Circ. Econ. Sustain. 2022, 2, 1043–1063. [Google Scholar] [CrossRef]
- Dzwigol, H.; Kwilinski, A.; Lyulyov, O.; Pimonenko, T. The Role of Environmental Regulations, Renewable Energy, and Energy Efficiency in Finding the Path to Green Economic Growth. Energies 2023, 16, 3090. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Shukla, V.; Islam, N.; Manghat, S. Construction Industry 4.0 and Sustainability: An Enabling Framework. IEEE Trans. Eng. Manag. 2021, 71, 1–19. [Google Scholar] [CrossRef]
- Chen, M.; Sinha, A.; Hu, K.; Shah, M.I. Impact of technological innovation on energy efficiency in industry 4.0 era: Moderation of shadow economy in sustainable development. Technol. Forecast. Soc. Chang. 2020, 164, 120521. [Google Scholar] [CrossRef]
- Arana-Landín, G.; Uriarte-Gallastegi, N.; Landeta-Manzano, B.; Laskurain-Iturbe, I. The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency. Energies 2023, 16, 2124. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Gonzalez, E.S. Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustain. Oper. Comput. 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Wolniak, R.; Saniuk, S.; Grabowska, S.; Gajdzik, B. Identification of Energy Efficiency Trends in the Context of the Development of Industry 4.0 Using the Polish Steel Sector as an Example. Energies 2020, 13, 2867. [Google Scholar] [CrossRef]
- Shi, Z.; Xie, Y.; Xue, W.; Chen, Y.; Fu, L.; Xu, X. Smart factory in Industry 4.0. Syst. Res. Behav. Sci. 2020, 37, 607–617. [Google Scholar] [CrossRef]
- Cordero, D.; Altamirano, K.L.; Parra, J.O.; Espinoza, W.S. Intention to Adopt Industry 4.0 by Organizations in Colombia, Ecuador, Mexico, Panama, and Peru. IEEE Access 2023, 11, 8362–8386. [Google Scholar] [CrossRef]
- Radtke, J.; Yildiz. ; Roth, L. Does Energy Community Membership Change Sustainable Attitudes and Behavioral Patterns? Empirical Evidence from Community Wind Energy in Germany. Energies 2022, 15, 822. [Google Scholar] [CrossRef]
- Walsh, P.R.; Dodds, R.; Priskin, J.; Day, J.; Belozerova, O. The Corporate Responsibility Paradox: A Multi-National Investigation of Business Traveller Attitudes and Their Sustainable Travel Behaviour. Sustainability 2021, 13, 4343. [Google Scholar] [CrossRef]
- Graczyk, A.M.; Kusterka-Jefmańska, M.; Jefmański, B.; Graczyk, A. Pro-Ecological Energy Attitudes towards Renewable Energy Investments before the Pandemic and European Energy Crisis: A Segmentation-Based Approach. Energies 2023, 16, 707. [Google Scholar] [CrossRef]
- Ho, K.T.H.; Kwok, P.W.H.; Chang, S.S.Y.; Chu, A.M.Y. Gaps between Attitudes and Behavior in the Use of Disposable Plastic Tableware (DPT) and Factors Influencing Sustainable DPT Consumption: A Study of Hong Kong Undergraduates. Sustainability 2023, 15, 8958. [Google Scholar] [CrossRef]
- Mubarak, M.F.; Petraite, M. Industry 4.0 technologies, digital trust and technological orientation: What matters in open innovation? Technol. Forecast. Soc. Chang. 2020, 161, 120332. [Google Scholar] [CrossRef]
- Huang, J. Digital engineering transformation with trustworthy AI towards industry 4.0: emerging paradigm shifts. J. Integr. Des. Process. Sci. 2023, 26, 267–290. [Google Scholar] [CrossRef]
- Guo, Y. Digital Trust and the Reconstruction of Trust in the Digital Society: An Integrated Model based on Trust Theory and Expectation Confirmation Theory. Digit. Gov. Res. Pr. 2022, 3, 1–19. [Google Scholar] [CrossRef]
- Elnadi, M.; Abdallah, Y.O. Industry 4.0: critical investigations and synthesis of key findings. Manag. Rev. Q. 2023, 74, 711–744. [Google Scholar] [CrossRef]
- Latvakoski, J.; Kyllönen, V.; Ronkainen, J. Decentralised IOTA-Based Concepts of Digital Trust for Securing Remote Driving in an Urban Environment. IoT 2023, 4, 582–609. [Google Scholar] [CrossRef]
- Migliore, G.; Wagner, R.; Cechella, F.S.; Liébana-Cabanillas, F. Antecedents to the Adoption of Mobile Payment in China and Italy: an Integration of UTAUT2 and Innovation Resistance Theory. Inf. Syst. Front. 2022, 24, 2099–2122. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Alfaisal, R.; Salloum, S.A.; Al-Otaibi, S.; Al Sawafi, O.S.; Al-Maroof, R.S.; Lutfi, A.; Alrawad, M.; Al Mulhem, A.; Awad, A.B. Determinants Influencing the Continuous Intention to Use Digital Technologies in Higher Education. Electronics 2022, 11, 2827. [Google Scholar] [CrossRef]
- Al-Adwan, A.S.; Alrousan, M.K.; Yaseen, H.; Alkufahy, A.M.; Alsoud, M. Boosting Online Purchase Intention in High-Uncertainty-Avoidance Societies: A Signaling Theory Approach. J. Open Innov. Technol. Mark. Complex. 2022, 8, 136. [Google Scholar] [CrossRef]
- Cai, C.; Hao, X.; Wang, K.; Dong, X. The Impact of Perceived Benefits on Blockchain Adoption in Supply Chain Management. Sustainability 2023, 15, 6634. [Google Scholar] [CrossRef]
- Merkin, R.S. Uncertainty avoidance and facework: A test of the Hofstede model. Int. J. Intercult. Relations 2006, 30, 213–228. [Google Scholar] [CrossRef]
- Al-Okaily, M.; Lutfi, A.; Alsaad, A.; Taamneh, A.; Alsyouf, A. The Determinants of Digital Payment Systems’ Acceptance under Cultural Orientation Differences: The Case of Uncertainty Avoidance. Technol. Soc. 2020, 63, 101367. [Google Scholar] [CrossRef]
- Virmani, N.; Sharma, S.; Kumar, A.; Luthra, S. Adoption of industry 4.0 evidence in emerging economy: Behavioral reasoning theory perspective. Technol. Forecast. Soc. Chang. 2023, 188. [Google Scholar] [CrossRef]
- Raj, A.; Dwivedi, G.; Sharma, A.; de Sousa Jabbour, A.B.L.; Rajak, S. Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. Int. J. Prod. Econ. 2020, 224, 107546. [Google Scholar] [CrossRef]
- Hajoary, P.K. Strategic response to Industry 4.0 – an empirical analysis from a developing country perspective. Technol. Anal. Strat. Manag. [CrossRef]
- Sacchettini, G.; Castellini, G.; Graffigna, G.; Hung, Y.; Lambri, M.; Marques, A.; Perrella, F.; Savarese, M.; Verbeke, W.; Capri, E. Assessing consumers' attitudes, expectations and intentions towards health and sustainability regarding seafood consumption in Italy. Sci. Total. Environ. 2021, 789, 148049. [Google Scholar] [CrossRef] [PubMed]
- Sony, M.; Mekoth, N. Employee adaptability skills for Industry 4.0 success: a road map. Prod. Manuf. Res. 2022, 10, 24–41. [Google Scholar] [CrossRef]
- Molino, M.; Cortese, C.G.; Ghislieri, C. The Promotion of Technology Acceptance and Work Engagement in Industry 4.0: From Personal Resources to Information and Training. Int. J. Environ. Res. Public Heal. 2020, 17, 2438. [Google Scholar] [CrossRef]
- T. Hamada, “Determinants of Decision-Makers ’ Attitudes toward,” Soc. Sci., 2019.
- Khin, S.; Kee, D.M.H. Factors influencing Industry 4.0 adoption. J. Manuf. Technol. Manag. 2022, 33, 448–467. [Google Scholar] [CrossRef]
- Robert, M.; Giuliani, P.; Gurau, C. Implementing industry 4.0 real-time performance management systems: the case of Schneider Electric. Prod. Plan. Control. 2020, 33, 244–260. [Google Scholar] [CrossRef]
- Obermayer, N.; Csizmadia, T.; Hargitai, D.M. Influence of Industry 4.0 technologies on corporate operation and performance management from human aspects. Meditari Account. Res. 2022, 30, 1027–1049. [Google Scholar] [CrossRef]
- Soomro, M.A.; Hizam-Hanafiah, M.; Abdullah, N.L.; Ali, M.H.; Jusoh, M.S. Industry 4.0 Readiness of Technology Companies: A Pilot Study from Malaysia. Adm. Sci. 2021, 11, 56. [Google Scholar] [CrossRef]
- Snow, C.C.; Fjeldstad. D.; Langer, A.M. Designing the digital organization. J. Organ. Des. 2017, 6, 7. [Google Scholar] [CrossRef]
- Mubarak, M.F.; Petraite, M. Industry 4.0 technologies, digital trust and technological orientation: What matters in open innovation? Technol. Forecast. Soc. Chang. 2020, 161, 120332. [Google Scholar] [CrossRef]
- Raj and, A. Jeyaraj, “Antecedents and consequents of industry 4. 0 adoption using technology, organization and environment ( TOE ) framework :,” pp. 101–124, 2023.
- Calabrese, A.; Dora, M.; Ghiron, N.L.; Tiburzi, L. Industry's 4.0 transformation process: how to start, where to aim, what to be aware of. Prod. Plan. Control. 2022, 33, 492–512. [Google Scholar] [CrossRef]
- Henriques, J.; Catarino, J. Sustainable value – An energy efficiency indicator in wastewater treatment plants. J. Clean. Prod. 2017, 142, 323–330. [Google Scholar] [CrossRef]
- Stentoft, J.; Wickstrøm, K.A.; Philipsen, K.; Haug, A. Drivers and barriers for Industry 4.0 readiness and practice: empirical evidence from small and medium-sized manufacturers. Prod. Plan. Control. 2020, 32, 811–828. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior: Frequently asked questions. Hum. Behav. Emerg. Technol. 2020, 2, 314–324. [Google Scholar] [CrossRef]
- Franco, D.; Macke, J.; Cotton, D.; Paco, A.; Segers, J.-P.; Franco, L. Student energy-saving in higher education tackling the challenge of decarbonisation. Int. J. Sustain. High. Educ. 2022, 23, 1648–1666. [Google Scholar] [CrossRef]
- Chaudhry, N.I.; Rehman, S.U.; Elrehail, H.; Al Masaeid, T.F.; Adaileh, R.; Alzoubi, H.M. Analyzing effect of fear and uncertainty avoidance on use behavior of learning management system: Post COVID-19 era. Int. J. Inf. Manag. Data Insights 2023, 3. [Google Scholar] [CrossRef]
- Rafiq, F.; Parthiban, E.S.; Rajkumari, Y.; Adil, M.; Nasir, M.; Dogra, N. From Thinking Green to Riding Green: A Study on Influencing Factors in Electric Vehicle Adoption. Sustainability 2023, 16, 194. [Google Scholar] [CrossRef]
- Zaman, U.; Zahid, H.; Habibullah, M.S.; Din, B.H. Adoption of Big Data Analytics (BDA) Technologies in Disaster Management: A Decomposed Theory of Planned Behavior (DTPB) Approach. Cogent Bus. Manag. 2021, 8. [Google Scholar] [CrossRef]
- Ho, Y.-H.; Alam, S.S.; Masukujjaman, M.; Lin, C.-Y.; Susmit, S.; Susmit, S. Intention to Adopt AI-Powered Online Service Among Tourism and Hospitality Companies. Int. J. Technol. Hum. Interact. 2022, 18, 1–19. [Google Scholar] [CrossRef]
- M. Ikram, “2022-Yeğin&Ikram-Analysis of consumers’ electric vehicle purchase intentions An expansion of theTPB.pdf,” Sustainability. 2022.
- Toni, M.; Renzi, M.F.; Pasca, M.G.; Mugion, R.G.; di Pietro, L.; Ungaro, V. Industry 4.0 an empirical analysis of users’ intention in the automotive sector. Int. J. Qual. Serv. Sci. 2021, 13, 563–584. [Google Scholar] [CrossRef]
- Shalender, K.; Sharma, N. Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India. Environ. Dev. Sustain. 2020, 23, 665–681. [Google Scholar] [CrossRef]
- Perri, C.; Giglio, C.; Corvello, V. Smart users for smart technologies: Investigating the intention to adopt smart energy consumption behaviors. Technol. Forecast. Soc. Chang. 2020, 155, 119991. [Google Scholar] [CrossRef]
- Saeedi, S.; Juwaidah, S.; Kelly, W. Intention to adopt Industry 4.0 technologies among small and medium enterprises in the Malaysian dairy manufacturing industry. Food Res. 2022, 6, 209–218. [Google Scholar] [CrossRef]
- Sujood, *!!! REPLACE !!!*; Bano, N.; Siddiqui, S. 54. Sujood; Bano, N.; Siddiqui, S. Consumers' intention towards the use of smart technologies in tourism and hospitality (T&H) industry: a deeper insight into the integration of TAM, TPB and trust. J. Hosp. Tour. Insights. [CrossRef]
- Wang, S.; Fan, J.; Zhao, D.; Yang, S.; Fu, Y. Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model. Transportation 2016, 43, 123–143. [Google Scholar] [CrossRef]
- Castillo-Vergara, M.; Álvarez-Marín, A.; Pinto, E.V.; Valdez-Juárez, L.E. Technological Acceptance of Industry 4.0 by Students from Rural Areas. Electronics 2022, 11, 2109. [Google Scholar] [CrossRef]
- S. A. W. Saeedi, J. S. A. W. Saeedi, J. Sharifuddin, and K. W. K. Seng, “Intention on adoption of industry 4.0 technology among small and medium enterprises,” Int. J. Sci. Technol. Res., vol. 9, no. 2, pp. 4472–4478, 2020.
- Sánchez-Franco, M.J.; Martínez-López, F.J.; Martín-Velicia, F.A. Exploring the impact of individualism and uncertainty avoidance in Web-based electronic learning: An empirical analysis in European higher education. Comput. Educ. 2009, 52, 588–598. [Google Scholar] [CrossRef]
- Astuti, E.S.; Al Musadieq, M.; Utami, H.N. Trust and Perception of Benefits as the Determinants of Behavior and Intention to Use Internet Banking in Indonesia. Macroecon. Finance Emerg. Mark. Econ. 2021, 1–18. [Google Scholar] [CrossRef]
- R. Apau et al., “Acceptance of free-floating car sharing: A decomposed self-efficacy-based value adoption model,” Transp. Lett., vol. 19, no. 2, pp. 524–534, 2019. [CrossRef]
- Khan, S.; Ab Rahim, N.Z.; Maarop, N. A systematic literature review and a proposed model on antecedents of trust to use social media for e-government services. Int. J. Adv. Appl. Sci. 2020, 7, 44–56. [Google Scholar] [CrossRef]
- Ben Arfi, W.; Ben Nasr, I.; Kondrateva, G.; Hikkerova, L. The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context. Technol. Forecast. Soc. Chang. 2021, 167, 120688. [Google Scholar] [CrossRef]
- Chai, L.; Pavlou, P.A. From “ancient” to “modern”: a cross-cultural investigation of electronic commerce adoption in Greece and the United States. J. Enterp. Inf. Manag. 2004, 17, 416–423. [Google Scholar] [CrossRef]
- Shiu, E.; Walsh, G.; Hassan, L.M.; Parry, S. The direct and moderating influences of individual-level cultural values within web engagement: A multi-country analysis of a public information website. J. Bus. Res. 2015, 68, 534–541. [Google Scholar] [CrossRef]
- Mosunmola, O. Adegbuyi, O. Kehinde, M. Agboola, and M. Olokundun, “Percieved value dimensions on online shopping intention: The role of trust and culture,” Acad. Strateg. Manag. J., vol. 18, no. 1, pp. 1–20, 2019.
- Faqih, K.M. Internet shopping in the Covid-19 era: Investigating the role of perceived risk, anxiety, gender, culture, and trust in the consumers’ purchasing behavior from a developing country context. Technol. Soc. 2022, 70. [Google Scholar] [CrossRef]
- Ganguly, B.; Dash, S.B.; Cyr, D.; Head, M. The effects of website design on purchase intention in online shopping: the mediating role of trust and the moderating role of culture. Int. J. Electron. Bus. 2010, 8, 302–330. [Google Scholar] [CrossRef]
- Turchina, S.; Turchina, K.; Dashutina, L.; Batsenko, L. A Review of Top Corporate Sustainability Initiatives and Their Resilience during the COVID–19 Pandemic. Comp. Econ. Res. Central East. Eur. 2023, 26, 111–126. [Google Scholar] [CrossRef]
- Imam, H.; Zaheer, M.K. Shared leadership and project success: The roles of knowledge sharing, cohesion and trust in the team. Int. J. Proj. Manag. 2021, 39, 463–473. [Google Scholar] [CrossRef]
- Chen, C.; An, Q.; Zheng, L.; Guan, C. Sustainability Literacy: Assessment of Knowingness, Attitude and Behavior Regarding Sustainable Development among Students in China. Sustainability 2022, 14, 4886. [Google Scholar] [CrossRef]
- Gericke, N.; Pauw, J.B.; Berglund, T.; Olsson, D. The Sustainability Consciousness Questionnaire: The theoretical development and empirical validation of an evaluation instrument for stakeholders working with sustainable development. Sustain. Dev. 2018, 27, 35–49. [Google Scholar] [CrossRef]
- Yu, C.P.; Chancellor, H.C.; Cole, S.T. Measuring Residents’ Attitudes toward Sustainable Tourism: A Reexamination of the Sustainable Tourism Attitude Scale. J. Travel Res. 2011, 50, 57–63. [Google Scholar] [CrossRef]
- Khoa, B.T. The role of self-efficacy and firm size in the online advertising services continuous adoption intention: Theory of planned behavior approach. J. Open Innov. Technol. Mark. Complex. 2023, 9. [Google Scholar] [CrossRef]
- Srite; Karahanna The Role of Espoused National Cultural Values in Technology Acceptance. MIS Q. 2006, 30, 679. [CrossRef]
- P. Braun and S. McEachern, “Climate Change and Regional Communities: Towards Sustainable Community Behaviour in Ballarat.,” Australas. J. Reg. Stud., vol. 16, no. 1, pp. 3–22, 2010, [Online]. Available: http://search.ebscohost.com/login.aspx? 6541.
- Reis, J.S.d.M.; Espuny, M.; Nunhes, T.V.; Sampaio, N.A.d.S.; Isaksson, R.; de Campos, F.C.; de Oliveira, O.J. Striding towards Sustainability: A Framework to Overcome Challenges and Explore Opportunities through Industry 4.0. Sustainability 2021, 13, 5232. [Google Scholar] [CrossRef]
- Gebauer, H.; Paiola, M.; Saccani, N.; Rapaccini, M. Digital servitization: Crossing the perspectives of digitization and servitization. Ind. Mark. Manag. 2021, 93, 382–388. [Google Scholar] [CrossRef]
- D. E. Marcial and M. A. Launer, “Towards the Measurement of Digital Trust in the Workplace: A Proposed Framework,” 2019. [Online]. Available: http://ijses.
- Hung, W.-H.; Wang, T.-H.; Wu, M.-F.; Tong, Y.; Su, S.-H. Analysis of key success factors for Industry 4. 0 development. ACM Int. Conf. Proceeding Ser. 2019, 51–56. [Google Scholar] [CrossRef]
- Papadopoulos, T.; Singh, S.P.; Spanaki, K.; Gunasekaran, A.; Dubey, R. Towards the next generation of manufacturing: implications of big data and digitalization in the context of industry 4.0. Prod. Plan. Control. 2021, 33, 101–104. [Google Scholar] [CrossRef]
- Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2019, 252, 119869. [Google Scholar] [CrossRef]
- Yunus, E.N. The mark of industry 4.0: how managers respond to key revolutionary changes. Int. J. Prod. Perform. Manag. 2020, 70, 1213–1231. [Google Scholar] [CrossRef]
- G. Trail and B. McCullough, “A Longitudinal Study of Sustainability Attitudes, Intentions, and Behaviors: An Abstract,” Dev. Mark. Sci. Proc. Acad. Mark. Sci., no. 0123456789, pp. 147–148, 2020. [CrossRef]





| Hypotesis | Estimate | P-Value | Decision |
|---|---|---|---|
| H1: | 0,791 | 0,179 | not significant |
| X1 à Y | |||
| H2: | 0,444 | ≤0,001 | significant |
| X2 à Y | |||
| H3: | 0,762 | ≤0,001 | significant |
| X1 à M à Y | |||
| H4: | 0,647 | ≤0,001 | significant |
| X2 à M à Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
