Submitted:
01 May 2024
Posted:
03 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Method of Literature Review
3. Antibiotics
3.1. Antimicrobial Agents
3.2. Antifungal Agents
3.2.1. Polyenes and Triazoles
3.2.2. Echinocandins
4. Analgesics and Sedatives
4.1. Analgesic Medications
4.1.1. Opioids
4.1.1.1. Morphine
4.1.1.2. Fentanyl
4.1.1.3. Remifentanil
4.1.2. Non-Opioid Analgesics
4.2. Sedatives
4.2.1. Benzodiazepines
4.2.2. Ketamine
4.2.3. Propofol
4.2.4. Alpha-2 Agonists
5. Antiseizure Medications
5.1. Phenobarbital
5.2. Phenytoin/Fosphenytoin
5.3. Levetiracetam
5.4. Midazolam
5.5. Topiramate
6. Future Perspective and Conclusions
Supplementary Materials
Author Contributions
Funding
Ethical issues
Informed Consent Statement
Data Availability Statement
Conflicts of Interest statement
References
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal Sepsis. Lancet Lond. Engl. 2017, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Bethou, A.; Bhat, B.V. Neonatal Sepsis-Newer Insights. Indian J. Pediatr. 2022, 89, 267–273. [Google Scholar] [CrossRef] [PubMed]
- McPherson, C.; Grunau, R.E. Neonatal Pain Control and Neurologic Effects of Anesthetics and Sedatives in Preterm Infants. Clin. Perinatol. 2014, 41, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Agakidou, E.; Tsoni, K.; Stathopoulou, T.; Thomaidou, A.; Farini, M.; Kontou, A.; Karagianni, P.; Sarafidis, K. Changes in Physicians’ Perceptions and Practices on Neonatal Pain Management Over the Past 20 Years. A Survey Conducted at Two Time-Points. Front. Pediatr. 2021, 9, 667806. [Google Scholar] [CrossRef] [PubMed]
- Borenstein-Levin, L.; Hochwald, O.; Ben-Ari, J.; Dinur, G.; Littner, Y.; Eytan, D.; Kugelman, A.; Halberthal, M. Same Baby, Different Care: Variations in Practice between Neonatologists and Pediatric Intensivists. Eur. J. Pediatr. 2022, 181, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Garrido, F.; Allegaert, K.; Arribas, C.; Villamor, E.; Raffaeli, G.; Paniagua, M.; Cavallaro, G. Variations in Antibiotic Use and Sepsis Management in Neonatal Intensive Care Units: A European Survey. Antibiotics 2021, 10, 1046. [Google Scholar] [CrossRef] [PubMed]
- Al-Aweel, I.; Pursley, D.M.; Rubin, L.P.; Shah, B.; Weisberger, S.; Richardson, D.K. Variations in Prevalence of Hypotension, Hypertension, and Vasopressor Use in NICUs. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2001, 21, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.; Smith, P.B.; Hornik, C.P.; Zimmerman, K.O.; Hornik, C.D.; Pradeep, S.; Clark, R.H.; Benjamin, D.K.; Laughon, M.; Greenberg, R.G. Medication Use in the Neonatal Intensive Care Unit and Changes from 2010 to 2018. J. Pediatr. 2022, 240, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, E.M.; Hornik, C.P.; Clark, R.H.; Laughon, M.M.; Benjamin, D.K.; Smith, P.B. Medication Use in the Neonatal Intensive Care Unit. Am. J. Perinatol. 2014, 31, 811–822. [Google Scholar] [CrossRef]
- Kontou, A.; Sarafidis, K.; Roilides, E. Antimicrobial Dosing in Neonates. Expert Rev. Clin. Pharmacol. 2017, 10, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Prusakov, P.; Goff, D.A.; Wozniak, P.S.; Cassim, A.; Scipion, C.E.A.; Urzúa, S.; Ronchi, A.; Zeng, L.; Ladipo-Ajayi, O.; Aviles-Otero, N.; et al. A Global Point Prevalence Survey of Antimicrobial Use in Neonatal Intensive Care Units: The No-More-Antibiotics and Resistance (NO-MAS-R) Study. EClinicalMedicine 2021, 32, 100727. [Google Scholar] [CrossRef] [PubMed]
- Spyridis, N.; Syridou, G.; Goossens, H.; Versporten, A.; Kopsidas, J.; Kourlaba, G.; Bielicki, J.; Drapier, N.; Zaoutis, T.; Tsolia, M.; et al. Variation in Paediatric Hospital Antibiotic Guidelines in Europe. Arch. Dis. Child. 2016, 101, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Esposito, S.; Menson, E.; Spyridis, N.; Tsolia, M.; Sharland, M.; Principi, N. Off-Label Antibiotic Use in Children in Three European Countries. Eur. J. Clin. Pharmacol. 2010, 66, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Schulman, J.; Dimand, R.J.; Lee, H.C.; Duenas, G.V.; Bennett, M.V.; Gould, J.B. Neonatal Intensive Care Unit Antibiotic Use. Pediatrics 2015, 135, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Cuzzolin, L.; Agostino, R. Off-Label and Unlicensed Drug Treatments in Neonatal Intensive Care Units: An Italian Multicentre Study. Eur. J. Clin. Pharmacol. 2016, 72, 117–123. [Google Scholar] [CrossRef]
- Silva, J.; Flor-de-Lima, F.; Soares, H.; Guimarães, H. Off-Label and Unlicensed Drug Use in Neonatology: Reality in a Portuguese University Hospital. Acta Med. Port. 2015, 28, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Gade, C.; Trolle, S.; Mørk, M.-L.; Lewis, A.; Andersen, P.F.; Jacobsen, T.; Andersen, J.; Lausten-Thomsen, U. Massive Presence of Off-Label Medicines in Danish Neonatal Departments: A Nationwide Survey Using National Hospital Purchase Data. Pharmacol. Res. Perspect. 2023, 11, e01037. [Google Scholar] [CrossRef] [PubMed]
- Puopolo, K.M.; Lynfield, R.; Cummings, J.J.; COMMITTEE ON FETUS AND NEWBORN; COMMITTEE ON INFECTIOUS DISEASES. Management of Infants at Risk for Group B Streptococcal Disease. Pediatrics 2019, 144, e20191881. [Google Scholar] [CrossRef] [PubMed]
- Metsvaht, T.; Nellis, G.; Varendi, H.; Nunn, A.J.; Graham, S.; Rieutord, A.; Storme, T.; McElnay, J.; Mulla, H.; Turner, M.A.; et al. High Variability in the Dosing of Commonly Used Antibiotics Revealed by a Europe-Wide Point Prevalence Study: Implications for Research and Dissemination. BMC Pediatr. 2015, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Leroux, S.; Zhao, W.; Bétrémieux, P.; Pladys, P.; Saliba, E.; Jacqz-Aigrain, E. French Society of Neonatology Therapeutic Guidelines for Prescribing Antibiotics in Neonates Should Be Evidence-Based: A French National Survey. Arch. Dis. Child. 2015, 100, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.; Barker, C.I.; Folgori, L.; Bielicki, J.A.; Bradley, J.S.; Lutsar, I.; Sharland, M. Global Shortage of Neonatal and Paediatric Antibiotic Trials: Rapid Review. BMJ Open 2017, 7, e016293. [Google Scholar] [CrossRef] [PubMed]
- Commissioner, O. of the Pediatric Labeling Changes. FDA 2024. [Google Scholar]
- Korang, S.K.; Safi, S.; Nava, C.; Gordon, A.; Gupta, M.; Greisen, G.; Lausten-Thomsen, U.; Jakobsen, J.C. Antibiotic Regimens for Early-Onset Neonatal Sepsis. Cochrane Database Syst. Rev. 2021, 5, CD013837. [Google Scholar] [CrossRef] [PubMed]
- Korang, S.K.; Safi, S.; Nava, C.; Greisen, G.; Gupta, M.; Lausten-Thomsen, U.; Jakobsen, J.C. Antibiotic Regimens for Late-Onset Neonatal Sepsis. Cochrane Database Syst. Rev. 2021, 5, CD013836. [Google Scholar] [CrossRef] [PubMed]
- Jarugula, P.; Akcan-Arikan, A.; Munoz-Rivas, F.; Moffett, B.S.; Ivaturi, V.; Rios, D. Optimizing Vancomycin Dosing and Monitoring in Neonates and Infants Using Population Pharmacokinetic Modeling. Antimicrob. Agents Chemother. 2022, 66, e0189921. [Google Scholar] [CrossRef] [PubMed]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; Andrews, R.; Ferreira, A.; Gillespie, D.; Hender, T.; et al. Characterization of Antimicrobial-Resistant Gram-Negative Bacteria That Cause Neonatal Sepsis in Seven Low- and Middle-Income Countries. Nat. Microbiol. 2021, 6, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; COMMITTEE ON FETUS AND NEWBORN.; COMMITTEE ON INFECTIOUS DISEASES. Management of Neonates Born at ≤34 6/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182896. [Google Scholar] [CrossRef] [PubMed]
- Hollander, E.M.; van Tuinen, E.L.; Schölvinck, E.H.; Bergman, K.A.; Bourgonje, A.R.; Gracchi, V.; Kneyber, M.C.J.; Touw, D.J.; Mian, P. Evaluation of Dosing Guidelines for Gentamicin in Neonates and Children. Antibiot. Basel Switz. 2023, 12, 810. [Google Scholar] [CrossRef] [PubMed]
- Attia Hussein Mahmoud, H.; Parekh, R.; Dhandibhotla, S.; Sai, T.; Pradhan, A.; Alugula, S.; Cevallos-Cueva, M.; Hayes, B.K.; Athanti, S.; Abdin, Z.; et al. Insight Into Neonatal Sepsis: An Overview. Cureus 2023, 15, e45530. [Google Scholar] [CrossRef] [PubMed]
- Overview | Neonatal Infection: Antibiotics for Prevention and Treatment | Guidance | NICE. Available online: https://www.nice.org.uk/guidance/ng195 (accessed on 3 December 2023).
- Baldwin, C.M.; Lyseng-Williamson, K.A.; Keam, S.J. Meropenem: A Review of Its Use in the Treatment of Serious Bacterial Infections. Drugs 2008, 68, 803–838. [Google Scholar] [CrossRef] [PubMed]
- Sullins, A.K.; Abdel-Rahman, S.M. Pharmacokinetics of Antibacterial Agents in the CSF of Children and Adolescents. Paediatr. Drugs 2013, 15, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Sengupta, S.; Puopolo, K.M. Challenges and Opportunities for Antibiotic Stewardship Among Preterm Infants. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F327–F332. [Google Scholar] [CrossRef] [PubMed]
- Gerber, J.S.; Jackson, M.A.; Tamma, P.D.; Zaoutis, T.E.; COMMITTEE ON INFECTIOUS DISEASES, PEDIATRIC INFECTIOUS DISEASES SOCIETY. Antibiotic Stewardship in Pediatrics. Pediatrics 2021, 147, e2020040295. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.; Banerjee, R.; Schwenk, H. Antibiotic Stewardship for the Neonatologist and Perinatologist. Clin. Perinatol. 2021, 48, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Darlow, C.A.; da Costa, R.M.A.; Ellis, S.; Franceschi, F.; Sharland, M.; Piddock, L.; Das, S.; Hope, W. Potential Antibiotics for the Treatment of Neonatal Sepsis Caused by Multidrug-Resistant Bacteria. Paediatr. Drugs 2021, 23, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Bielicki, J.A.; Ahmed, A.S.M.N.U.; Islam, M.S.; Berezin, E.N.; Gallacci, C.B.; Guinsburg, R.; da Silva Figueiredo, C.E.; Santarone Vieira, R.; Silva, A.R.; et al. Towards Understanding Global Patterns of Antimicrobial Use and Resistance in Neonatal Sepsis: Insights from the NeoAMR Network. Arch. Dis. Child. 2020, 105, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Donà, D.; Sharland, M.; Heath, P.T.; Folgori, L. Strategic Trials to Define the Best Available Treatment for Neonatal and Pediatric Sepsis Caused by Carbapenem-Resistant Organisms. Pediatr. Infect. Dis. J. 2019, 38, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Wattal, C.; Kler, N.; Oberoi, J.K.; Fursule, A.; Kumar, A.; Thakur, A. Neonatal Sepsis: Mortality and Morbidity in Neonatal Sepsis Due to Multidrug-Resistant (MDR) Organisms: Part 1. Indian J. Pediatr. 2020, 87, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Chiotos, K.; Hayes, M.; Gerber, J.S.; Tamma, P.D. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J. Pediatr. Infect. Dis. Soc. 2019, 9, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Lutsar, I.; Chazallon, C.; Trafojer, U.; de Cabre, V.M.; Auriti, C.; Bertaina, C.; Calo Carducci, F.I.; Canpolat, F.E.; Esposito, S.; Fournier, I.; et al. Meropenem vs Standard of Care for Treatment of Neonatal Late Onset Sepsis (NeoMero1): A Randomised Controlled Trial. PloS One 2020, 15, e0229380. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas Aeruginosa with Difficult-to-Treat Resistance (DTR-P. Aeruginosa). Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2022, 75, 187–212. [Google Scholar] [CrossRef] [PubMed]
- Chiusaroli, L.; Liberati, C.; Caseti, M.; Rulli, L.; Barbieri, E.; Giaquinto, C.; Donà, D. Therapeutic Options and Outcomes for the Treatment of Neonates and Preterms with Gram-Negative Multidrug-Resistant Bacteria: A Systematic Review. Antibiot. Basel Switz. 2022, 11, 1088. [Google Scholar] [CrossRef] [PubMed]
- Smits, A.; Kulo, A.; van den Anker, J.; Allegaert, K. The Amikacin Research Program: A Stepwise Approach to Validate Dosing Regimens in Neonates. Expert Opin. Drug Metab. Toxicol. 2017, 13, 157–166. [Google Scholar] [CrossRef] [PubMed]
- ANMF - Australasian Neonatal Medicines Formulary. Available online: https://www.anmfonline.org/ (accessed on 22 April 2024).
- Germovsek, E.; Lutsar, I.; Kipper, K.; Karlsson, M.O.; Planche, T.; Chazallon, C.; Meyer, L.; Trafojer, U.M.T.; Metsvaht, T.; Fournier, I.; et al. Plasma and CSF Pharmacokinetics of Meropenem in Neonates and Young Infants: Results from the NeoMero Studies. J. Antimicrob. Chemother. 2018, 73, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Smits, A.; De Cock, R.F.W.; Allegaert, K.; Vanhaesebrouck, S.; Danhof, M.; Knibbe, C. a. J. Prospective Evaluation of a Model-Based Dosing Regimen for Amikacin in Preterm and Term Neonates in Clinical Practice. Antimicrob. Agents Chemother. 2015, 59, 6344–6351. [Google Scholar] [CrossRef] [PubMed]
- Research, C. for D.E. and NIH Funded Pediatric Labeling Changes for Drugs Studied under the 409i Process. FDA 2024. [Google Scholar]
- Hughes, K.M.; Johnson, P.N.; Anderson, M.P.; Sekar, K.C.; Welliver, R.C.; Miller, J.L. Comparison of Amikacin Pharmacokinetics in Neonates Following Implementation of a New Dosage Protocol. J. Pediatr. Pharmacol. Ther. JPPT Off. J. PPAG 2017, 22, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Neeli, H.; Hanna, N.; Abduljalil, K.; Cusumano, J.; Taft, D.R. Application of Physiologically Based Pharmacokinetic-Pharmacodynamic Modeling in Preterm Neonates to Guide Gentamicin Dosing Decisions and Predict Antibacterial Effect. J. Clin. Pharmacol. 2021, 61, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Warris, A.; Pana, Z.-D.; Oletto, A.; Lundin, R.; Castagnola, E.; Lehrnbecher, T.; Groll, A.H.; Roilides, E. Etiology and Outcome of Candidemia in Neonates and Children in Europe. Pediatr. Infect. Dis. J. 2020, 39, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Shane, A.L.; Stoll, B.J. Recent Developments and Current Issues in the Epidemiology, Diagnosis, and Management of Bacterial and Fungal Neonatal Sepsis. Am. J. Perinatol. 2013, 30, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Pana, Z.D.; Roilides, E.; Warris, A.; Groll, A.H.; Zaoutis, T. Epidemiology of Invasive Fungal Disease in Children. J. Pediatr. Infect. Dis. Soc. 2017, 6, S3–S11. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.S.; Benjamin, D.K.; Smith, P.B. The Epidemiology and Diagnosis of Invasive Candidiasis Among Premature Infants. Clin. Perinatol. 2015, 42, 105–117. [Google Scholar] [CrossRef]
- Kilpatrick, R.; Scarrow, E.; Hornik, C.; Greenberg, R.G. Neonatal Invasive Candidiasis: Updates on Clinical Management and Prevention. Lancet Child Adolesc. Health 2022, 6, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; Ferreras-Antolin, L.; Adhisivam, B.; Ballot, D.; Berkley, J.A.; Bernaschi, P.; Carvalheiro, C.G.; Chaikittisuk, N.; Chen, Y.; Chibabhai, V.; et al. Neonatal Invasive Candidiasis in Low- and Middle-Income Countries: Data from the NeoOBS Study. Med. Mycol. 2023, 61, myad010. [Google Scholar] [CrossRef] [PubMed]
- Ting, J.Y.; Roberts, A.; Synnes, A.; Canning, R.; Bodani, J.; Monterossa, L.; Shah, P.S. ; Canadian Neonatal Network Investigators Invasive Fungal Infections in Neonates in Canada: Epidemiology and Outcomes. Pediatr. Infect. Dis. J. 2018, 37, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Aliaga, S.; Clark, R.H.; Laughon, M.; Walsh, T.J.; Hope, W.W.; Benjamin, D.K.; Kaufman, D.; Arrieta, A.; Benjamin, D.K.; Smith, P.B. Changes in the Incidence of Candidiasis in Neonatal Intensive Care Units. Pediatrics 2014, 133, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, W.J.; Roilides, E.; Berman, D.; Hoffman, J.A.; Groll, A.H.; Bin-Hussain, I.; Palazzi, D.L.; Castagnola, E.; Halasa, N.; Velegraki, A.; et al. Results from a Prospective, International, Epidemiologic Study of Invasive Candidiasis in Children and Neonates. Pediatr. Infect. Dis. J. 2012, 31, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Downes, K.J.; Fisher, B.T.; Zane, N.R. Administration and Dosing of Systemic Antifungal Agents in Pediatric Patients. Paediatr. Drugs 2020, 22, 165–188. [Google Scholar] [CrossRef]
- Hornik, C.D.; Bondi, D.S.; Greene, N.M.; Cober, M.P.; John, B. Review of Fluconazole Treatment and Prophylaxis for Invasive Candidiasis in Neonates. J. Pediatr. Pharmacol. Ther. JPPT Off. J. PPAG 2021, 26, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Ferreras-Antolin, L.; Bielicki, J.; Warris, A.; Sharland, M.; Hsia, Y. GARPEC Network Global Divergence of Antifungal Prescribing Patterns: Data From the Global Antimicrobial Resistance, Prescribing, and Efficacy in Neonates and Children Surveys. Pediatr. Infect. Dis. J. 2021, 40, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Ferreras-Antolín, L.; Irwin, A.; Atra, A.; Dermirjian, A.; Drysdale, S.B.; Emonts, M.; McMaster, P.; Paulus, S.; Patel, S.; Kinsey, S.; et al. Neonatal Antifungal Consumption Is Dominated by Prophylactic Use; Outcomes From The Pediatric Antifungal Stewardship: Optimizing Antifungal Prescription Study. Pediatr. Infect. Dis. J. 2019, 38, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
- Hope, W.W.; Castagnola, E.; Groll, A.H.; Roilides, E.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Cornely, O.A.; et al. ESCMID* Guideline for the Diagnosis and Management of Candida Diseases 2012: Prevention and Management of Invasive Infections in Neonates and Children Caused by Candida Spp. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18 Suppl 7, 38–52. [Google Scholar] [CrossRef]
- Ericson, J.E.; Kaufman, D.A.; Kicklighter, S.D.; Bhatia, J.; Testoni, D.; Gao, J.; Smith, P.B.; Prather, K.O.; Benjamin, D.K.; Fluconazole Prophylaxis Study Team on behalf of the Best Pharmaceuticals for Children Act–Pediatric Trials Network Steering Committeea; et al. Fluconazole Prophylaxis for the Prevention of Candidiasis in Premature Infants: A Meta-Analysis Using Patient-Level Data. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 63, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Ascher, S.B.; Smith, P.B.; Watt, K.; Benjamin, D.K.; Cohen-Wolkowiez, M.; Clark, R.H.; Benjamin, D.K.; Moran, C. Antifungal Therapy and Outcomes in Infants with Invasive Candida Infections. Pediatr. Infect. Dis. J. 2012, 31, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Driessen, M.; Ellis, J.B.; Cooper, P.A.; Wainer, S.; Muwazi, F.; Hahn, D.; Gous, H.; De Villiers, F.P. Fluconazole vs. Amphotericin B for the Treatment of Neonatal Fungal Septicemia: A Prospective Randomized Trial. Pediatr. Infect. Dis. J. 1996, 15, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Andrew, E.C.; Curtis, N.; Coghlan, B.; Cranswick, N.; Gwee, A. Adverse Effects of Amphotericin B in Children; a Retrospective Comparison of Conventional and Liposomal Formulations. Br. J. Clin. Pharmacol. 2018, 84, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Le, J.; Adler-Shohet, F.C.; Nguyen, C.; Lieberman, J.M. Nephrotoxicity Associated with Amphotericin B Deoxycholate in Neonates. Pediatr. Infect. Dis. J. 2009, 28, 1061–1063. [Google Scholar] [CrossRef] [PubMed]
- Cavassin, F.B.; Baú-Carneiro, J.L.; de Araújo Motta, F.; Ville, A.P.M.; Staszczak, L.; de Queiroz-Telles, F. Amphotericin B in Pediatrics: Analysis by Age Stratification Suggests a Greater Chance of Adverse Events from 13 Months of Age Onwards. Paediatr. Drugs 2022, 24, 513–528. [Google Scholar] [CrossRef] [PubMed]
- Wade, K.C.; Benjamin, D.K.; Kaufman, D.A.; Ward, R.M.; Smith, P.B.; Jayaraman, B.; Adamson, P.C.; Gastonguay, M.R.; Barrett, J.S. Fluconazole Dosing for the Prevention or Treatment of Invasive Candidiasis in Young Infants. Pediatr. Infect. Dis. J. 2009, 28, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Leroux, S.; Jacqz-Aigrain, E.; Elie, V.; Legrand, F.; Barin-Le Guellec, C.; Aurich, B.; Biran, V.; Dusang, B.; Goudjil, S.; Coopman, S.; et al. Pharmacokinetics and Safety of Fluconazole and Micafungin in Neonates with Systemic Candidiasis: A Randomized, Open-Label Clinical Trial. Br. J. Clin. Pharmacol. 2018, 84, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Piper, L.; Smith, P.B.; Hornik, C.P.; Cheifetz, I.M.; Barrett, J.S.; Moorthy, G.; Hope, W.W.; Wade, K.C.; Cohen-Wolkowiez, M.; Benjamin, D.K. Fluconazole Loading Dose Pharmacokinetics and Safety in Infants. Pediatr. Infect. Dis. J. 2011, 30, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Gerhart, J.G.; Watt, K.M.; Edginton, A.; Wade, K.C.; Salerno, S.N.; Benjamin, D.K.; Smith, P.B.; Hornik, C.P.; Cohen-Wolkowiez, M.; Duara, S.; et al. Physiologically-Based Pharmacokinetic Modeling of Fluconazole Using Plasma and Cerebrospinal Fluid Samples From Preterm and Term Infants. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 500–510. [Google Scholar] [CrossRef]
- Xie, J.; Zeng, J.; Zheng, S. The Efficacy and Safety of Fluconazole in Preventing Invasive Fungal Infection in Very Low Birth Weight Infants: A Systematic Review and Meta-Analysis. Ital. J. Pediatr. 2023, 49, 51. [Google Scholar] [CrossRef] [PubMed]
- Austin, N.; McGuire, W. Prophylactic Systemic Antifungal Agents to Prevent Mortality and Morbidity in Very Low Birth Weight Infants. Cochrane Database Syst. Rev. 2013, CD003850. [Google Scholar] [CrossRef] [PubMed]
- Leonart, L.P.; Tonin, F.S.; Ferreira, V.L.; Tavares da Silva Penteado, S.; de Araújo Motta, F.; Pontarolo, R. Fluconazole Doses Used for Prophylaxis of Invasive Fungal Infection in Neonatal Intensive Care Units: A Network Meta-Analysis. J. Pediatr. 2017, 185, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Taormina, G.; Gopinath, R.; Moore, J.; Yasinskaya, Y.; Colangelo, P.; Reynolds, K.; Nambiar, S. A Regulatory Review Approach for Evaluation of Micafungin for Treatment of Neonatal Candidiasis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 73, 2335–2340. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.L.; Hornik, C.D.; Zimmerman, K. Pharmacokinetic, Efficacy, and Safety Considerations for the Use of Antifungal Drugs in the Neonatal Population. Expert Opin. Drug Metab. Toxicol. 2020, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.J.; Carr, D.B. The Neuroanatomy, Neurophysiology, and Neurochemistry of Pain, Stress, and Analgesia in Newborns and Children. Pediatr. Clin. North Am. 1989, 36, 795–822. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.D.; Fernandes, A.M.; Oliveira, C.R. Epidemiology of Painful Procedures Performed in Neonates: A Systematic Review of Observational Studies. Eur. J. Pain Lond. Engl. 2016, 20, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Cong, X.; Wu, J.; Vittner, D.; Xu, W.; Hussain, N.; Galvin, S.; Fitzsimons, M.; McGrath, J.M.; Henderson, W.A. The Impact of Cumulative Pain/Stress on Neurobehavioral Development of Preterm Infants in the NICU. Early Hum. Dev. 2017, 108, 9–16. [Google Scholar] [CrossRef] [PubMed]
- McPherson, C.; Miller, S.P.; El-Dib, M.; Massaro, A.N.; Inder, T.E. The Influence of Pain, Agitation, and Their Management on the Immature Brain. Pediatr. Res. 2020, 88, 168–175. [Google Scholar] [CrossRef]
- COMMITTEE ON FETUS AND NEWBORN and SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE Prevention and Management of Procedural Pain in the Neonate: An Update. Pediatrics 2016, 137, e20154271. [CrossRef] [PubMed]
- Harris, J.; Ramelet, A.-S.; van Dijk, M.; Pokorna, P.; Wielenga, J.; Tume, L.; Tibboel, D.; Ista, E. Clinical Recommendations for Pain, Sedation, Withdrawal and Delirium Assessment in Critically Ill Infants and Children: An ESPNIC Position Statement for Healthcare Professionals. Intensive Care Med. 2016, 42, 972–986. [Google Scholar] [CrossRef]
- McPherson, C.; Grunau, R.E. Pharmacologic Analgesia and Sedation in Neonates. Clin. Perinatol. 2022, 49, 243–265. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Stempel, K.S.; Nascimento, I.J.B. do; Bruschettini, M. Systemic Opioids versus Other Analgesics and Sedatives for Postoperative Pain in Neonates. Cochrane Database Syst. Rev. 2023. [Google Scholar] [CrossRef] [PubMed]
- Donato, J.; Rao, K.; Lewis, T. Pharmacology of Common Analgesic and Sedative Drugs Used in the Neonatal Intensive Care Unit. Clin. Perinatol. 2019, 46, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Olsson, E.; Borys, F.; Bruschettini, M. Opioids for Procedural Pain in Neonates. Cochrane Database Syst. Rev. 2023, 6, CD015056. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Ng, C.M.; Bada, H.S.; Leggas, M. Clinical Pharmacology and Dosing Regimen Optimization of Neonatal Opioid Withdrawal Syndrome Treatments. Clin. Transl. Sci. 2021, 14, 1231–1249. [Google Scholar] [CrossRef] [PubMed]
- Choonara, I.A.; McKay, P.; Hain, R.; Rane, A. Morphine Metabolism in Children. Br. J. Clin. Pharmacol. 1989, 28, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Saarenmaa, E.; Huttunen, P.; Leppäluoto, J.; Meretoja, O.; Fellman, V. Advantages of Fentanyl over Morphine in Analgesia for Ventilated Newborn Infants after Birth: A Randomized Trial. J. Pediatr. 1999, 134, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.J.S.; Hall, R.W.; Desai, N.; Shephard, B.; Bergqvist, L.L.; Young, T.E.; Boyle, E.M.; Carbajal, R.; Bhutani, V.K.; Moore, M.B.; et al. Effects of Morphine Analgesia in Ventilated Preterm Neonates: Primary Outcomes from the NEOPAIN Randomised Trial. Lancet Lond. Engl. 2004, 363, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Hartley, C.; Moultrie, F.; Hoskin, A.; Green, G.; Monk, V.; Bell, J.L.; King, A.R.; Buckle, M.; van der Vaart, M.; Gursul, D.; et al. Analgesic Efficacy and Safety of Morphine in the Procedural Pain in Premature Infants (Poppi) Study: Randomised Placebo-Controlled Trial. Lancet Lond. Engl. 2018, 392, 2595–2605. [Google Scholar] [CrossRef] [PubMed]
- Quinn, M.W.; Wild, J.; Dean, H.G.; Hartley, R.; Rushforth, J.A.; Puntis, J.W.; Levene, M.I. Randomised Double-Blind Controlled Trial of Effect of Morphine on Catecholamine Concentrations in Ventilated Pre-Term Babies. Lancet Lond. Engl. 1993, 342, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Chay, P.C.; Duffy, B.J.; Walker, J.S. Pharmacokinetic-Pharmacodynamic Relationships of Morphine in Neonates. Clin. Pharmacol. Ther. 1992, 51, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.J.; Barton, B.A.; McIntosh, N.; Lagercrantz, H.; Pelausa, E.; Young, T.E.; Vasa, R. Analgesia and Sedation in Preterm Neonates Who Require Ventilatory Support: Results from the NOPAIN Trial. Neonatal Outcome and Prolonged Analgesia in Neonates. Arch. Pediatr. Adolesc. Med. 1999, 153, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulou, T.; Agakidou, E.; Paschaloudis, C.; Kontou, A.; Chatzioannidis, I.; Sarafidis, K. Strong Association between Inotrope Administration and Intraventricular Hemorrhage, Gestational Age, and the Use of Fentanyl in Very Low Gestational Age Infants: A Retrospective Study. Child. Basel Switz. 2023, 10, 1667. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.W.; Kronsberg, S.S.; Barton, B.A.; Kaiser, J.R.; Anand, K.J.S. NEOPAIN Trial Investigators Group Morphine, Hypotension, and Adverse Outcomes among Preterm Neonates: Who’s to Blame? Secondary Results from the NEOPAIN Trial. Pediatrics 2005, 115, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Steinhorn, R.; McPherson, C.; Anderson, P.J.; Neil, J.; Doyle, L.W.; Inder, T. Neonatal Morphine Exposure in Very Preterm Infants-Cerebral Development and Outcomes. J. Pediatr. 2015, 166, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.; Gregory, G.A. Fentanyl-Air-Oxygen Anesthesia for Ligation of Patent Ductus Arteriosus in Preterm Infants. Anesth. Analg. 1981, 60, 331–334. [Google Scholar] [CrossRef]
- Ziesenitz, V.C.; Vaughns, J.D.; Koch, G.; Mikus, G.; van den Anker, J.N. Pharmacokinetics of Fentanyl and Its Derivatives in Children: A Comprehensive Review. Clin. Pharmacokinet. 2018, 57, 125–149. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.; Schlünder, C.; Houben, F.; Günther, M.; Theisohn, M. Analgesia and Sedation in Neonatal Intensive Care Using Fentanyl by Continuous Infusion. Dev. Pharmacol. Ther. 1991, 17, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Völler, S.; Flint, R.B.; Andriessen, P.; Allegaert, K.; Zimmermann, L.J.I.; Liem, K.D.; Koch, B.C.P.; Simons, S.H.P.; Knibbe, C.A.J. ; DINO study group Rapidly Maturing Fentanyl Clearance in Preterm Neonates. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F598–F603. [Google Scholar] [CrossRef] [PubMed]
- Schofer, J.M. Premedication during Rapid Sequence Intubation: A Necessity or Waste of Valuable Time? Calif. J. Emerg. Med. 2006, 7, 75–79. [Google Scholar]
- Mills, K.P.; Lean, R.E.; Smyser, C.D.; Inder, T.; Rogers, C.; McPherson, C.C. Fentanyl Exposure in Preterm Infants: Five-Year Neurodevelopmental and Socioemotional Assessment. Front. Pain Res. Lausanne Switz. 2022, 3, 836705. [Google Scholar] [CrossRef] [PubMed]
- Lammers, E.M.; Johnson, P.N.; Ernst, K.D.; Hagemann, T.M.; Lawrence, S.M.; Williams, P.K.; Anderson, M.P.; Miller, J.L. Association of Fentanyl with Neurodevelopmental Outcomes in Very-Low-Birth-Weight Infants. Ann. Pharmacother. 2014, 48, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Penido, M.G.; Garra, R.; Sammartino, M.; Silva, Y.P.E. Remifentanil in Neonatal Intensive Care and Anaesthesia Practice. Acta Paediatr. 2010, 99, 1454–1463. [Google Scholar] [CrossRef] [PubMed]
- Galinkin, J.L.; Davis, P.J.; McGowan, F.X.; Lynn, A.M.; Rabb, M.F.; Yaster, M.; Henson, L.G.; Blum, R.; Hechtman, D.; Maxwell, L.; et al. A Randomized Multicenter Study of Remifentanil Compared with Halothane in Neonates and Infants Undergoing Pyloromyotomy. II. Perioperative Breathing Patterns in Neonates and Infants with Pyloric Stenosis. Anesth. Analg. 2001, 93, 1387–1392. [Google Scholar] [CrossRef]
- Pereira e Silva, Y.; Gomez, R.S.; Marcatto, J. de O.; Maximo, T.A.; Barbosa, R.F.; Simões e Silva, A.C. Morphine versus Remifentanil for Intubating Preterm Neonates. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F293–294. [Google Scholar] [CrossRef]
- de Kort, E.H.M.; Hanff, L.M.; Roofthooft, D.; Reiss, I.K.M.; Simons, S.H.P. Insufficient Sedation and Severe Side Effects after Fast Administration of Remifentanil during INSURE in Preterm Newborns. Neonatology 2017, 111, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Giannantonio, C.; Sammartino, M.; Valente, E.; Cota, F.; Fioretti, M.; Papacci, P. Remifentanil Analgosedation in Preterm Newborns during Mechanical Ventilation. Acta Paediatr. Oslo Nor. 1992 2009, 98, 1111–1115. [Google Scholar] [CrossRef] [PubMed]
- Maroni, A.; Aubelle, M.-S.; Chollat, C. Fetal, Preterm, and Term Neonate Exposure to Remifentanil: A Systematic Review of Efficacy and Safety. Paediatr. Drugs 2023, 25, 537–555. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; van den Anker, J.N. Perinatal and Neonatal Use of Paracetamol for Pain Relief. Semin. Fetal. Neonatal Med. 2017, 22, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Cuzzolin, L.; Antonucci, R.; Fanos, V. Paracetamol (Acetaminophen) Efficacy and Safety in the Newborn. Curr. Drug Metab. 2013, 14, 178–185. [Google Scholar] [PubMed]
- Anderson, B.J.; van Lingen, R.A.; Hansen, T.G.; Lin, Y.-C.; Holford, N.H.G. Acetaminophen Developmental Pharmacokinetics in Premature Neonates and Infants: A Pooled Population Analysis. Anesthesiology 2002, 96, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Mian, P.; Knibbe, C. a. J.; Calvier, E. a. M.; Tibboel, D.; Allegaert, K. Intravenous Paracetamol Dosing Guidelines for Pain Management in (Pre)Term Neonates Using the Paediatric Study Decision Tree. Curr. Pharm. Des. 2017, 23, 5839–5849. [Google Scholar] [CrossRef] [PubMed]
- Ceelie, I.; de Wildt, S.N.; van Dijk, M.; van den Berg, M.M.J.; van den Bosch, G.E.; Duivenvoorden, H.J.; de Leeuw, T.G.; Mathôt, R.; Knibbe, C.A.J.; Tibboel, D. Effect of Intravenous Paracetamol on Postoperative Morphine Requirements in Neonates and Infants Undergoing Major Noncardiac Surgery: A Randomized Controlled Trial. JAMA 2013, 309, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, A.; Shah, P.S. Paracetamol (Acetaminophen) for Prevention or Treatment of Pain in Newborns. Cochrane Database Syst. Rev. 2020, 1, CD011219. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, G.M. Clinical Pharmacology of Midazolam in Neonates and Children: Effect of Disease—A Review. Int. J. Pediatr. 2014, 2014, e309342. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.J.S.; Eriksson, M.; Boyle, E.M.; Avila-Alvarez, A.; Andersen, R.D.; Sarafidis, K.; Polkki, T.; Matos, C.; Lago, P.; Papadouri, T.; et al. Assessment of Continuous Pain in Newborns Admitted to NICUs in 18 European Countries. Acta Paediatr. Oslo Nor. 1992 2017, 106, 1248–1259. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.-C.; Chiu, N.-C.; Ho, C.-S.; Lee, S.-T.; Shen, E.-Y. Continuous Midazolam Infusion in the Treatment of Uncontrollable Neonatal Seizures. Acta Paediatr. Taiwanica Taiwan Er Ke Yi Xue Hui Za Zhi 2003, 44, 279–281. [Google Scholar]
- Ancora, G.; Garetti, E.; Pirelli, A.; Merazzi, D.; Mastrocola, M.; Pierantoni, L.; Faldella, G.; Lago, P. Analgesic and Sedative Drugs in Newborns Requiring Respiratory Support. J. Matern.-Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 4. [CrossRef]
- Ng, E.; Taddio, A.; Ohlsson, A. Intravenous Midazolam Infusion for Sedation of Infants in the Neonatal Intensive Care Unit. Cochrane Database Syst. Rev. 2017, 2017, CD002052. [Google Scholar] [CrossRef] [PubMed]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Riggs, L.M.; Highland, J.N.; Georgiou, P.; Pereira, E.F.R.; Albuquerque, E.X.; Thomas, C.J.; Zarate, C.A.; et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol. Rev. 2018, 70, 621–660. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.W. Anesthesia and Analgesia in the NICU. Clin. Perinatol. 2012, 39, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Sanatkar, M.; Dastjani Farahani, A.; Bazvand, F. Ketamine Analgesia as an Alternative to General Anesthesia During Laser Treatment for Retinopathy of Prematurity. J. Pediatr. Ophthalmol. Strabismus 2022, 59, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Madathil, S.; Thomas, D.; Chandra, P.; Agarwal, R.; Sankar, M.J.; Thukral, A.; Deorari, A. “NOPAIN-ROP” Trial: Intravenous Fentanyl and Intravenous Ketamine for Pain Relief during Laser Photocoagulation for Retinopathy of Prematurity (ROP) in Preterm Infants: A Randomised Trial. BMJ Open 2021, 11, e046235. [Google Scholar] [CrossRef] [PubMed]
- Huntsman, R.J.; Strueby, L.; Bingham, W. Are Ketamine Infusions a Viable Therapeutic Option for Refractory Neonatal Seizures? Pediatr. Neurol. 2020, 103, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K. The Clinical Pharmacology of Short Acting Analgo-Sedatives in Neonates. Curr. Clin. Pharmacol. 2011, 6, 222–226. [Google Scholar] [CrossRef] [PubMed]
- de Kort, E.H.M.; Prins, S.A.; Reiss, I.K.M.; Willemsen, S.P.; Andriessen, P.; van Weissenbruch, M.M.; Simons, S.H.P. Propofol for Endotracheal Intubation in Neonates: A Dose-Finding Trial. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 489–495. [Google Scholar] [CrossRef] [PubMed]
- de Kort, E.H.M.; Twisk, J.W.R.; van t Verlaat, E.P.G.; Reiss, I.K.M.; Simons, S.H.P.; van Weissenbruch, M.M. Propofol in Neonates Causes a Dose-dependent Profound and Protracted Decrease in Blood Pressure. Acta Paediatr. Oslo Nor. 1992 2020, 109, 2539–2546. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.S.; Shah, V.S. Propofol for Procedural Sedation/Anaesthesia in Neonates. Cochrane Database Syst. Rev. 2011, CD007248. [Google Scholar] [CrossRef] [PubMed]
- Hayden, J.C.; Breatnach, C.; Doherty, D.R.; Healy, M.; Howlett, M.M.; Gallagher, P.J.; Cousins, G. Efficacy of A2-Agonists for Sedation in Pediatric Critical Care: A Systematic Review. Pediatr. Crit. Care Med. J. Soc. Crit. Care Med. World Fed. Pediatr. Intensive Crit. Care Soc. 2016, 17, e66–75. [Google Scholar] [CrossRef] [PubMed]
- Romantsik, O.; Calevo, M.G.; Norman, E.; Bruschettini, M. Clonidine for Sedation and Analgesia for Neonates Receiving Mechanical Ventilation. Cochrane Database Syst. Rev. 2017, 2017, CD012468. [Google Scholar] [CrossRef]
- Romantsik, O.; Calevo, M.G.; Norman, E.; Bruschettini, M. Clonidine for Pain in Non-Ventilated Infants. Cochrane Database Syst. Rev. 2020, 4, CD013104. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfarpour, M.; Najafi, M.N.; Roozbeh, N.; Mashhadi, M.E.; Keramat-roudi, A.; Mégarbane, B.; Tsatsakis, A.; Moghaddam, M.M.M.; Rezaee, R. Therapeutic Approaches for Neonatal Abstinence Syndrome: A Systematic Review of Randomized Clinical Trials. DARU J. Pharm. Sci. 2019, 27, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Portelli, K.; Kandraju, H.; Ryu, M.; Shah, P.S. Efficacy and Safety of Dexmedetomidine for Analgesia and Sedation in Neonates: A Systematic Review. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2023. [Google Scholar] [CrossRef] [PubMed]
- O’Mara, K.; Weiss, M.D. Dexmedetomidine for Sedation of Neonates with HIE Undergoing Therapeutic Hypothermia: A Single-Center Experience. AJP Rep. 2018, 8, e168–e173. [Google Scholar] [CrossRef] [PubMed]
- Paris, A.; Mantz, J.; Tonner, P.H.; Hein, L.; Brede, M.; Gressens, P. The Effects of Dexmedetomidine on Perinatal Excitotoxic Brain Injury Are Mediated by the alpha2A-Adrenoceptor Subtype. Anesth. Analg. 2006, 102, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Bäcke, P.; Bruschettini, M.; Sibrecht, G.; Thernström Blomqvist, Y.; Olsson, E. Pharmacological Interventions for Pain and Sedation Management in Newborn Infants Undergoing Therapeutic Hypothermia. Cochrane Database Syst. Rev. 2022, 11, CD015023. [Google Scholar] [CrossRef] [PubMed]
- Dersch-Mills, D.A.; Banasch, H.L.; Yusuf, K.; Howlett, A. Dexmedetomidine Use in a Tertiary Care NICU: A Descriptive Study. Ann. Pharmacother. 2019, 53, 464–470. [Google Scholar] [CrossRef]
- Allegaert, K. A Critical Review on the Relevance of Paracetamol for Procedural Pain Management in Neonates. Front. Pediatr. 2020, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Glass, H.C.; Shellhaas, R.A.; Wusthoff, C.J.; Chang, T.; Abend, N.S.; Chu, C.J.; Cilio, M.R.; Glidden, D.V.; Bonifacio, S.L.; Massey, S.; et al. Contemporary Profile of Seizures in Neonates: A Prospective Cohort Study. J. Pediatr. 2016, 174, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Mruk, A.L.; Garlitz, K.L.; Leung, N.R. Levetiracetam in Neonatal Seizures: A Review. J. Pediatr. Pharmacol. Ther. JPPT 2015, 20, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, L.A.; Patel, A.D.; Slaughter, J.L. Pharmacological Treatment of Neonatal Seizures: A Systematic Review. J. Child Neurol. 2013, 28, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Pressler, R.M.; Lagae, L. Why We Urgently Need Improved Seizure and Epilepsy Therapies for Children and Neonates. Neuropharmacology 2020, 170, 107854. [Google Scholar] [CrossRef] [PubMed]
- Pressler, R.M.; Abend, N.S.; Auvin, S.; Boylan, G.; Brigo, F.; Cilio, M.R.; De Vries, L.S.; Elia, M.; Espeche, A.; Hahn, C.D.; et al. Treatment of Seizures in the Neonate: Guidelines and Consensus-Based Recommendations-Special Report from the ILAE Task Force on Neonatal Seizures. Epilepsia 2023, 64, 2550–2570. [Google Scholar] [CrossRef] [PubMed]
- Acar, D.B.; Bulbul, A.; Uslu, S. Current Overview of Neonatal Convulsions. Sisli Etfal Hastan. Tip Bul. 2019, 53, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Donovan, M.D.; Griffin, B.T.; Kharoshankaya, L.; Cryan, J.F.; Boylan, G.B. Pharmacotherapy for Neonatal Seizures: Current Knowledge and Future Perspectives. Drugs 2016, 76, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Ziobro, J.M.; Eschbach, K.; Shellhaas, R.A. Novel Therapeutics for Neonatal Seizures. Neurother. J. Am. Soc. Exp. Neurother. 2021, 18, 1564–1581. [Google Scholar] [CrossRef] [PubMed]
- Gowda, V.K.; Romana, A.; Shivanna, N.H.; Benakappa, N.; Benakappa, A. Levetiracetam versus Phenobarbitone in Neonatal Seizures - A Randomized Controlled Trial. Indian Pediatr. 2019, 56, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.A.; Rosen, K.R. Intravenous Conscious Sedation with Midazolam in Paediatric Patients. Int. J. Clin. Pract. 1998, 52, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Castro Conde, J.R.; Hernández Borges, A.A.; Doménech Martínez, E.; González Campo, C.; Perera Soler, R. Midazolam in Neonatal Seizures with No Response to Phenobarbital. Neurology 2005, 64, 876–879. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Fiorini, P.; Daniotti, M.; Catarzi, S.; Savelli, S.; Fonda, C.; Bartalena, L.; Boldrini, A.; Giampietri, M.; Scaramuzzo, R.; et al. Safety and Efficacy of Topiramate in Neonates with Hypoxic Ischemic Encephalopathy Treated with Hypothermia (NeoNATI). BMC Pediatr. 2012, 12, 144. [Google Scholar] [CrossRef]
- Filippi, L.; la Marca, G.; Fiorini, P.; Poggi, C.; Cavallaro, G.; Malvagia, S.; Pellegrini-Giampietro, D.E.; Guerrini, R. Topiramate Concentrations in Neonates Treated with Prolonged Whole Body Hypothermia for Hypoxic Ischemic Encephalopathy. Epilepsia 2009, 50, 2355–2361. [Google Scholar] [CrossRef] [PubMed]
- Patsalos, P.N.; Berry, D.J.; Bourgeois, B.F.D.; Cloyd, J.C.; Glauser, T.A.; Johannessen, S.I.; Leppik, I.E.; Tomson, T.; Perucca, E. Antiepileptic Drugs--Best Practice Guidelines for Therapeutic Drug Monitoring: A Position Paper by the Subcommission on Therapeutic Drug Monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 2008, 49, 1239–1276. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.R.; Garcia-Robles, A.; Usach, I.; Vento, M.; Poveda, J.L.; Peris, J.E.; Mangas-Sanjuan, V. Topiramate Pharmacokinetics in Neonates Undergoing Therapeutic Hypothermia and Proposal of an Optimised Dosing Schedule. Acta Paediatr. Oslo Nor. 1992 2020, 109, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Moffett, B.S.; Weingarten, M.M.; Galati, M.; Placencia, J.L.; Rodman, E.A.; Riviello, J.J.; Kayyal, S.Y. Phenobarbital Population Pharmacokinetics across the Pediatric Age Spectrum. Epilepsia 2018, 59, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Bittigau, P.; Sifringer, M.; Genz, K.; Reith, E.; Pospischil, D.; Govindarajalu, S.; Dzietko, M.; Pesditschek, S.; Mai, I.; Dikranian, K.; et al. Antiepileptic Drugs and Apoptotic Neurodegeneration in the Developing Brain. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 15089–15094. [Google Scholar] [CrossRef] [PubMed]
- Pressler, R.M.; Abend, N.S.; Auvin, S.; Boylan, G.; Brigo, F.; Cilio, M.R.; De Vries, L.S.; Elia, M.; Espeche, A.; Hahn, C.D.; et al. Treatment of Seizures in the Neonate: Guidelines and Consensus-Based Recommendations-Special Report from the ILAE Task Force on Neonatal Seizures. Epilepsia 2023, 64, 2550–2570. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.A.; Desai, S.J.; Bennett, M.M.; Ahmad, S.F.; Ng, Y.-T.; Clark, R.H.; Tolia, V.N. Changing Antiepileptic Drug Use for Seizures in US Neonatal Intensive Care Units from 2005 to 2014. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2017, 37, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Painter, M.J.; Scher, M.S.; Stein, A.D.; Armatti, S.; Wang, Z.; Gardiner, J.C.; Paneth, N.; Minnigh, B.; Alvin, J. Phenobarbital Compared with Phenytoin for the Treatment of Neonatal Seizures. N. Engl. J. Med. 1999, 341, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Alix, V.; James, M.; Jackson, A.H.; Visintainer, P.F.; Singh, R. Efficacy of Fosphenytoin as First-Line Antiseizure Medication for Neonatal Seizures Compared to Phenobarbital. J. Child Neurol. 2021, 36, 30–37. [Google Scholar] [CrossRef]
- Abiramalatha, T.; Thanigainathan, S.; Ramaswamy, V.V.; Pressler, R.; Brigo, F.; Hartmann, H. Anti-Seizure Medications for Neonates with Seizures. Cochrane Database Syst. Rev. 2023, 10, CD014967. [Google Scholar] [CrossRef] [PubMed]
- Abend, N.S.; Gutierrez-Colina, A.M.; Monk, H.M.; Dlugos, D.J.; Clancy, R.R. Levetiracetam for Treatment of Neonatal Seizures. J. Child Neurol. 2011, 26, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Khan, O.; Chang, E.; Cipriani, C.; Wright, C.; Crisp, E.; Kirmani, B. Use of Intravenous Levetiracetam for Management of Acute Seizures in Neonates. Pediatr. Neurol. 2011, 44, 265–269. [Google Scholar] [CrossRef]
- Sharpe, C.; Reiner, G.E.; Davis, S.L.; Nespeca, M.; Gold, J.J.; Rasmussen, M.; Kuperman, R.; Harbert, M.J.; Michelson, D.; Joe, P.; et al. Levetiracetam Versus Phenobarbital for Neonatal Seizures: A Randomized Controlled Trial. Pediatrics 2020, 145, e20193182. [Google Scholar] [CrossRef] [PubMed]
- Kilicdag, H.; Daglıoglu, K.; Erdogan, S.; Guzel, A.; Sencar, L.; Polat, S.; Zorludemir, S. The Effect of Levetiracetam on Neuronal Apoptosis in Neonatal Rat Model of Hypoxic Ischemic Brain Injury. Early Hum. Dev. 2013, 89, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Verwoerd, C.; Limjoco, J.; Rajamanickam, V.; Knox, A. Efficacy of Levetiracetam and Phenobarbital as First-Line Treatment for Neonatal Seizures. J. Child Neurol. 2022, 37, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, C.; Young, S.; Schapiro, M.; Thomas, C. Levetiracetam for the Treatment of Seizures in Neonatal Hypoxic Ischemic Encephalopathy. J. Child Neurol. 2017, 32, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Aihara, M.; Niijima, S.; Yamanouchi, H. Treatments with Midazolam and Lidocaine for Status Epilepticus in Neonates. Brain Dev. 2007, 29, 559–564. [Google Scholar] [CrossRef]
- Shany, E.; Benzaqen, O.; Watemberg, N. Comparison of Continuous Drip of Midazolam or Lidocaine in the Treatment of Intractable Neonatal Seizures. J. Child Neurol. 2007, 22, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Karlik, J. Neurotoxic Impact of Individual Anesthetic Agents on the Developing Brain. Children 2022, 9, 1779. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, R.; Parmeggiani, L. Topiramate and Its Clinical Applications in Epilepsy. Expert Opin. Pharmacother. 2006, 7, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Fiorini, P.; Catarzi, S.; Berti, E.; Padrini, L.; Landucci, E.; Donzelli, G.; Bartalena, L.; Fiorentini, E.; Boldrini, A.; et al. Safety and Efficacy of Topiramate in Neonates with Hypoxic Ischemic Encephalopathy Treated with Hypothermia (NeoNATI): A Feasibility Study. J. Matern.-Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 2018, 31, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.; Wade, K.C.; Davis, J.M. Challenges and Opportunities for Improving Access to Approved Neonatal Drugs and Devices. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2022, 42, 825–828. [Google Scholar] [CrossRef] [PubMed]
| Medication [references] | Mechanism of action / bactericidal spectrum |
Main neonatal indications |
Neonatal dosing regimen |
Side effects |
|---|---|---|---|---|
| AMPICILLIN(a beta-lactam antibiotic classified as aminopenicillins)[18,48] | Inhibition of bacterial cell wall synthesis.Bactericidal spectrum: susceptible Gram (+) (incl. Streptococcus spp, Enterococcus faecalis, Listeria monocytogenes) and Gram (-) bacteria (E. coli, Hemophilus influenzae, Neisseria meningitidis, Proteus mirabilis, Salmonellae). | Empiric and targeted treatment of suspected/proven LOS (incl. meningitis) combined with an aminoglycoside. | AAP recommendation: Septicemia: 50 - 75 mg/kg/dose, IV, q8 - q12 for 7 - 28 days, depending on GA & PNA.Meningitis: 75 - 100 mg/kg/dose, IV, q6 - q8 for ≤ 7 - 28 days depending on GA & PNA. |
Allergic reactions, diarrhea, neurotoxicity including seizures, prolonged bleeding time with repeated doses. |
| GENTAMICIN[28,45,50] | Inhibition of protein synthesis leading to cell death. Bactericidal spectrum: Enterobacteriaceae; Staph. aureus (MRSA and vancomycin̶̶ resistant isolates); P. aeruginosa. To a lesser extent Acinetobacter baumannii. |
Empiric treatment of suspected EOS combined with ampicillin. Targeted treatment of infections caused by susceptible Gram (-) bacilli (e.g., Pseudomonas, Klebsiella, E. coli) combined with a β-lactam antibiotic. |
Recommending dosages: 4–5 mg/kg/dose, dosing intervals 24–48 h depending on GA, PMA and PNA. TDM is strongly suggested in: therapy duration > 7 days, therapeutic hypothermia, renal impairment; target trough concentration: < 2 mg/L. | Nephrotoxicity, ototoxicity, hypersensitivity (very rare), neuromuscular blockade (reported only in adults). |
| AMIKACIN[36,44,45,47,49] |
Inhibition of protein synthesis leading to cell death.Potent bactericidal activity against Enterobacteriaceae (E. coli, Klebsiella spp., Enterobacter cloacae, Providencia spp., Proteus spp., Serratia spp); good activity against Staph. aureus (MRSA and vancomycin- resistant isolates) P. aeruginosa; lower activity against acinetobacter baumannii. | Treatment of suspected or proven Gram-negative infection resistant to other aminoglycosides used in combination usually with a β-lactam antibiotics | 12-14 mg/kg, IV, q24 – q48 depending on PMA & PNA. Increased dose intervals in perinatal asphyxia and therapeutic hypothermia, or in co-administration of indomethacin or ibuprofen. TDM: treatment duration ≥ 48 h, renal impairment. Target peak levels 24–35 mg/L and troughs <5 mg/L. |
Nephrotoxicity, ototoxicity, neuro-muscular blockade |
| MEROPENEM[31,41,43,45,46] |
Binds to membrane proteins disrupting bacterial cell wall synthesis. Bactericidal spectrum: i) Gram (-) pathogens: Enterobacteriaceae, ESBL- and AmpC-producing Enterobacteriaceae; ii) Gram (+) pathogens: Staph. aureus (methicillin/oxacillin-susceptible), Strept. pneumoniae (incl. penicillin resistant strains) and Strept. viridans; iii) anaerobes (Clostridium difficile). |
Severe neonatal infections (e.g., septicemia, bacterial meningitis) due to multi drug resistant Gram (-) organisms. | Intra-abdominal and non-CNS infections (FDA label): 20 -30 mg/kg/dose, IV, q12 – q8 depending on GA & PNA. CNS infections (off-label): Recommended dose: 40 mg/kg/dose, IV, at q12 – q8, depending on GA & PNA. |
Diarrhea, rash, vomiting, glossitis, neutropenia, leukopenia, elevated creatinine, direct bilirubin, live enzymes. |
| VANCOMYCIN [25,29,45] | Interferes with cell wall synthesis, inhibits RNA synthesis and alters plasma membrane function. | Infections due to susceptible strains of Stap. (incl. MRSA), Streptococci, Enterococci, Diphtheroid, Listeria monocytogenes, Actinomyces, Bacillus spp. | Standard dose: 15 mg/kg/dose, IV, q18 – q8 depending on GA & PNA. Consider loading dose 20 mg/kg/dose in cases of severe sepsis, MRSA, bone infection, meningitis, endocarditis. TDM is strongly suggested; more frequently in renal impairment, use of nephrotoxic drugs or suspected severe sepsis. |
Nephrotoxicity, ototoxicity, rash and hypotension (red man syndrome), neutropenia (reported in treatment duration >3 weeks). |
| Medication [references] | Mechanisms of action / fungicide spectrum |
Main neonatal indications |
Neonatal dosing regimen |
Side effects |
|---|---|---|---|---|
| Amphotericin B Deoxycholate (AmB-D) (Polyene) [60,64,67,69] |
Loss of cell membrane integrity by binding to ergosterol. Potent and broad fungicidal activity. |
Invasive fungal infections by susceptible Candida spp,, Aspergillus spp, and Cryptococcus spp.First-line therapy for neonatal IC including CNS infections. | First-line treatment: 1 mg/kg, IV, q24. Step-down treatment of CNS infections: 5 mg/kg, IV, q24 |
Nephrotoxicity (especially in co-adm. with other nephrotoxic drugs), electrolyte disturbances, anaemia, leukopenia, thrombocytopenia, elevated liver enzymes, diarrhoea, vomiting, thrombophlebitis at the injection site, infusion-related reactions (fever, hypotension, skin rashes). Monitoring: renal and liver function, electrolytes, and full blood count. |
|
Liposomal Amphotericin B (AmB-D) (Polyene) [60] |
Same as AmB-D | Same as AmB-D. Alternative therapy for neonatal IC (caution in renal infection or dysfunction). Drug of choice for invasive aspergillosis |
3-5 mg/kg, IV, q24. Step-down treatment of CNS infections: 5 mg/kg, IV, q24. |
Similar adverse events with AmB-D, but reduced incidence. Monitoring: renal and liver function, electrolytes, and full blood counts. |
| Fluconazole(Triazole) [60,61,65,72,73,74,78] | Inhibition of fungal cytochrome P450 activity and ergosterol synthesis, leading to cell membrane disruption. | Treatment of invasive infections by susceptible C. species. An alternative therapy of IC in neonates not been on fluconazole prophylaxis. A step-down treatment of C. meningitis. Prophylaxis of C. infections. |
LD: 25 mg/kg, MD: 12 mg/kg/d once a day. Prophylaxis: 3-6 mg/kg every 72h for 4-6 weeks. |
Most common adverse effects: Gastrointestinal irritation and elevation in liver tests. Rare: Rash, leukopenia, neutropenia, agranulocytosis, and thrombocytopenia. Weekly monitoring of SGOT, SGPT and ALP. |
| Micafungin (Echinocandin) [60,64,78,79] |
Inhibition of beta (1-3)-glucan synthase activity preventing synthesis of the fungal cell wall. Fungicidal spectrum: Candida spp. including resistant to fluconazole spp.) |
Salvage therapy of invasive Candida infections or where resistance or toxicity preclude the use of AmB-D or fluconazole. There are concerns regarding the penetration of echinocandins into the CSF. |
4 to 10 mg/kg/day, IV. Higher dose (≥ 10 mg/kg, q24) is likely needed for candidemia with meningoencephalitis. |
Most common adverse events: infusion reactions and transient elevation of hepatic enzymes. Electrolyte disturbances, elevated creatinine, acute intravascular hemolysis, hemolytic anemia and hemoglobinuria, monocytosis, thrombocytopenia, fever, rash, diarrhoea, vomiting. |
| Medication [references] | Mechanisms of action | Main indications | Dosing regimen | Side effects |
|---|---|---|---|---|
| Analgesic medications | ||||
| Morphine [84,93,94,95,96,97] | Opiate receptor agonist. | Pre-emptive analgesia in intubated and ventilated preterm neonates. | ID: 100-150 mcg/kg/h, IV; MD: 20-30 mcg/kg/h, IV, for =/> 24h. Lower doses may be needed in liver and renal dysfunction. |
Respiratory depression, miosis, hypotension, constipation, increased biliary pressure, urinary retention; tolerance & withdrawal s. |
| Fentanyl [88,89,93,103,104,106] | Opiate receptor agonist. | Acute painful procedures, such as intubation. | LD: 5 to 12.5 mcg/kg, IV, followed by infusion of 0.5 to 2.0 mcg/kg/h, IV. Doses > 5 mcg/kg were associated with increased incidence of hypotension. |
Respiratory depression, chest wall rigidity, and hypotension. No association with long-term neurodevelopment. |
| Remifentanyl [111,112,113,114] |
Opiate receptor agonist. | Premedication prior to intubation. Procedures and surgeries of short duration. |
Fast bolus of 1-3 mcg/kg IV within 60 sec. | Hypotension and chest wall rigidity. Insufficient sedation and severe side effects after fast adm. |
| Acetaminophen [89,116,117,118,119,120,144] |
Activation of descending serotonergic inhibitory pathways. | Mild to moderate procedural or postoperative pain. Adjunctive therapy to opioids in moderate to severe pain; reduces the use of opioids. FDA approval for > 2 years. |
Oral or rectal adm: 25-60 mg/kg/day, depending on GA. IV adm: 20-40 mg/kg/day depending on gestational age. | Hepatotoxicity, bradycardia, and hypotension. |
| Sedatives | ||||
| Midazolam [98,121,124,125,127] | Induces the inhibitory function of GABA through GABAA receptors. | Adjunct to analgesics; rarely alone in minor procedures. | Dosing for sedation: 209 mcg/kg/h (range: 100 to 500 mcg/kg/hour) IV. | Respiratory depression with hypotension, decrease in CBF, agitation (hyperexcitability and myoclonus). |
| Ketamine [126,127,129,130] | NMDA receptor and other brain receptor antagonist. | Minor procedures (i.e., intubation, endotracheal suctioning, cannulation for ECMO). | Analgesic doses: 0.15–0.25 mg/kg, I.V. or 0.5–1 mg/kg intramuscularly. Endotracheal suctioning: 2 mg/kg, IV. |
Mild increase in blood pressure and heart rate, minimal effects on CBF, suppresses respiratory drive, bronchodilation. |
| Propofol [131,133,134] | Induces the inhibitory function of GABA through GABAA receptors. | Short-duration interventions. | High ID (2.0 mg/kg) produces better results than lower doses (1.0 and 1.5 mg/kg). | Profound hypotension, especially with high dose. No practice recommendation. |
| α2-Agonists (clonidine; dexmedetomidine) [135,136,138,139,140,142,143] | Centrally acting alpha-2 agonists. | Adjunctive to opioids and benzodiazepines reducing their use. Therapeutic hypothermia Neonatal abstinence syndrome. Post-operatively after major surgeries. |
Clonidine: 6 mcg/kg/d, titrated up to 9 mcg/kg/d. Dexmedetomidine: ID: 0.2 to 0.3 mcg/ kg/h titrated up in 0.1 mcg/kg/h increments as required. |
Clonidine: Hypotension, rebound hypertension, bradycardia, and syndrome of inappropriate antidiuretic hormone, postoperative apnea. At high anesthesia, probably respiratory depression. Dexmedetomidine: bradycardia and hypotension. |
| Medication [references] | Mechanisms of action | Main indications | Dosing regimen | Side effects |
|---|---|---|---|---|
| Phenobarbital [145,149,150,151] | Increases GABAA mediated inhibition of GABA. | 1st line ASM regardless of seizures etiology. | LD: 20 mg/kg, IV, (up to a total dose of 40 mg/kg); MD: 5 mg/kg/day, IV or orally, in one dose. | Hypotension, poor feeding, sedation, respiratory depression, bradycardia, hepatotoxicity. |
| Phenytoin/ fosphenytoin [149,152] |
Sodium channel blocker. | Second-line ASM | LD: 20 mg/kg, IV; MD: 5-7.5 mg/kg/day, IV or orally, in two doses. | Hypotension, cardiac arrhythmias, irritability/necrosis, hypotonia, and respiratory depression/arrest. |
| Levetiracetam [146,149,153] |
Binds to synaptic vesicle protein SV2a | Second-line ASM; maybe first- line in some NICUs. | LD: 40 mg/kg/day, IV, up to a total dose of 60 mg/kg; MD: 40–60 mg/kg/day, IV or orally, in 3 doses. | Mild sedation, irritability, increased blood pressure. |
| Midazolam [121,123,125,149,154,155] |
Binds to GABAA receptors. | Refractory neonatal seizures. | LD: 0.05–0.15 mg/kg IV, MD: 1-5 mcg/kg/min, continuous IV infusion, titrated up in steps of 1 mcg/kg/min to a max. of 5 mcg/kg/min. | Respiratory depression, hypotension, poor feeding, dyskinetic movements and myoclonus |
| Topiramate [156,157,158,159] | Inhibition of glutamate-receptors., | Antiepileptic, potentially neuroprotective for HIE; Mainly therapeutic hypothermia. | Optimized dosing regimen: LD: dose of 15 mg/kg for cycle one; MD: 5 mg/kg for the following four cycles. | No adverse effects on respiratory and hemodynamic parameters, hematological and biochemical tests. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
