Submitted:
22 April 2024
Posted:
23 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Basis Dependent Separability
2.1. Concepts and Notations
2.2. Separability Depending on Basis
3. Basis Dependent Bell Locality
3.1. Concepts and Notations
3.2. Bell Locality Depending on Basis
4. Basis Dependent Unsteerability
4.1. Concepts and Notations
4.2. Unsteerability Depending on Basis
5. Basis Dependent Classical Correlation
5.1. Concepts and Notations
5.2. Classical Correlation Depending on Basis
6. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419–478. [Google Scholar] [CrossRef]
- Clauser, J.F.; Shimony, A. Experimental tests and implications. Rep. Prog. Phys. 1978, 41, 1881–1927. [Google Scholar] [CrossRef]
- Home, D.; Selleri, F. Bell’s theorem and the EPR paradox. Rivista Del Nuovo Cimento. 1991, 14, 1–96. [Google Scholar] [CrossRef]
- Khalfin, L.; Tsirelson, B. Quantum/classical correspondence in the light of Bell’s inequalities. Found. Phys. 1992, 22, 879–948. [Google Scholar] [CrossRef]
- Tsirelson, B.S. Some results and problems on quantum Bell-type inequalities. Hadronic J. Suppl. 1993, 8, 329–345. [Google Scholar]
- Zeilinger, A. Experiment and the foundations of quantum physics. Rev. Mod. Phys. 1999, 71, S288–S297. [Google Scholar] [CrossRef]
- Werner, R.F.; Wolf, M.M. All-multipartite Bell-correlation inequalities for two dichotomic observables per site. Phys. Rev. A 2001, 64, 032112. [Google Scholar] [CrossRef]
- Genovese, M. Research on hidden variable theories: a review of recent progresses. Phys. Rep. 2005, 413, 319–396. [Google Scholar] [CrossRef]
- Buhrman, H.; Cleve, R.; Massar, S.; de Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys. 2010, 82, 665–698. [Google Scholar] [CrossRef]
- Zhao, L.J.; Guo, Y.M.; Li-Jost, X.; Fei, S.M. Quantum nonlocality can be distributed via separable states. Sci. China-Phys. Mech. Astron. 2018, 61, 070321. [Google Scholar] [CrossRef]
- Long, G.L.; Qin, W.; Yang, Z.; Li, J.L. Realistic interpretation of quantum mechanics and encounter- delayed-choice experiment. Sci. China-Phys. Mech. Astron. 2018, 61, 030311. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, H.X.; Chen, L.; Huang, Y.F. Λk-Nonlocality of multipartite states and the related nonlocality inequalities. Int. J. Theor. Phys. 2018, 57, 1498–1515. [Google Scholar] [CrossRef]
- Cao, H.X.; Guo, Z.H. Characterizing Bell nonlocality and EPR steering. Sci. China-Phys. Mech. Astron. 2019, 62, 030311. [Google Scholar] [CrossRef]
- Schro¨dinger, E. Discussion of probability relations between separated systems. Math. Proc. Camb. Phil. Soc. 1935, 31, 555–563. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Reid, M.D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 1989, 40, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 1989, 40, 4277–4281. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.Y.; Pereira, S.F.; Kimble, H.J.; Peng, K.C. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett. 1992, 68, 3663. [Google Scholar]
- Wiseman, H.M.; Jones, S.J.; Doherty, A.C. Steering, entanglement, nonlocality, and the Einstein- Podolsky-Rosen paradox. Phys. Rev. Lett. 2007, 98, 140402. [Google Scholar] [CrossRef]
- Cavalcanti, E.G.; Jones, S.J.; Wiseman, H.M.; Reid, M.D. Experimental criteria for steering and the EinsteinPodolsky-Rosen paradox. Phys. Rev. A 2009, 80, 032112. [Google Scholar] [CrossRef]
- Saunders, D.J.; Jones, S.J.; Wiseman, H.M.; Pryde, G.J. Experimental EPR-steering using Bell-local states. Nat. Phys. 2010, 6, 845–849. [Google Scholar] [CrossRef]
- Bennet, A.J.; Evans, D.A.; Saunders, D.J.; Branciard, C.; Cavalcanti, E.G.; Wiseman, H.M.; Pryde, G.J. Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole. Phys. Rev. X 2012, 2, 031003. [Google Scholar]
- Händchen, V.; Eberle, T.; Steinlechner, S.; et al. Observation of one-way Einstein-Podolsky-Rosen steering. Nat. Photonics 2012, 6, 596–599. [Google Scholar] [CrossRef]
- Branciard, C.; Cavalcanti, E.G.; Walborn, S.P.; et al. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 2012, 85, 010301. [Google Scholar] [CrossRef]
- Wittmann, B.; Ramelow, S.; Steinlechner, F.; et al. New J. Phys. 2012, 14, 053030. [Google Scholar]
- Steinlechner, S.; Bauchrowitz, J.; Eberle, T.; et al. Strong Einstein-Podolsky-Rosen steering with unconditional entangled states. Phys. Rev. A 2013, 87, 022104. [Google Scholar] [CrossRef]
- Reid, M.D. Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities. Phys. Rev. A 2013, 88, 062338. [Google Scholar] [CrossRef]
- Piani, M.; Watrous, J. Necessary and sufficient quantum information characterization of Einstein-Podolsky- Rosen steering. Phys. Rev. Lett. 2015, 114, 060404. [Google Scholar] [CrossRef]
- Zukowski, M.; Dutta, A.; Yin, Z. Geometric Bell-like inequalities for steering. Phys. Rev. A 2015, 91, 032107. [Google Scholar] [CrossRef]
- Quintino, M.T.; Ve`rtesi, T.; Cavalcanti, D.; et al. Inequivalence of entanglement, steering, and Bell nonlocality for general measurements. Phys. Rev. A 2015, 92, 032107. [Google Scholar] [CrossRef]
- Zhu, H.; Hayashi, M.; Chen, L. Universal steering inequalities. Phys. Rev. Lett. 2016, 116, 070403. [Google Scholar] [CrossRef]
- Sun, K.; Ye, X.J.; Xu, J.S.; et al. Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 2016, 116, 160404. [Google Scholar] [CrossRef] [PubMed]
- Quan, Q.; Zhu, H.J.; Liu, S.Y.; et al. Steering Bell-diagonal states. Sci. Rep. 2016, 6, 22025. [Google Scholar] [CrossRef]
- Chen, J.L.; Ren, C.L.; Chen, C.B. Bell’s nonlocality can be detected by the violation of Einstein-Podolsky-Rosen steering inequality. Sci. Rep. 2016, 6, 39063. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Skrzypczyk, P. Quantum steering: a review with focus on semidefinite programming. Rep. Prog. Phys. 2017, 80, 024001. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Q.; Zhang, C.; et al. All entangled pure states violate a single Bell’s inequality. Phys. Rev. Lett. 2012, 109, 120402. [Google Scholar] [CrossRef]
- Sun, K.; Ye, X.J.; Xu, J.S.; et al. Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 2016, 116, 160404. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczyk, P.; Navascues, M.; Cavalcanti, D. Quantifying einstein-podolsky-rosen steering. Phys. Rev. Lett. 2014, 112, 180404. [Google Scholar] [CrossRef]
- Ollivier, H.; Zurek, W.H. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef]
- Luo, S. Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 2008, 77, 022301. [Google Scholar] [CrossRef]
- Guo, Z.H.; Cao, H.X.; Chen, Z.L. Distinguishing classical correlations from quantum correlations. J. Phys. A: Math. Theor. 2012, 45, 145301. [Google Scholar] [CrossRef]
- Guo, Z.H.; Cao, H.X.; Qu, S.X. Structures of three types of local quantum chan- nels based on quantum correlations. Found. Phys. 2015, 45, 355–369. [Google Scholar] [CrossRef]
- Knill, E.; Laflamme, R. Power of one bit of quantum information. Phys. Rev. Lett. 1998, 81, 5672. [Google Scholar] [CrossRef]
- Su, X.L. Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 2014, 59, 1083–1090. [Google Scholar] [CrossRef]
- Yue, H.D.; Zhang, Y.; Gong, J. Quantum discord in three-spin XXZ chain with three-spin interaction. Sci. China-Phys. Mech. Astron. 2012, 55, 1641–1645. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, H.X.; Guo, Z.H. Strongly separable operators on finite dimensional tensor product spaces. Acta Math. Sinica 2011, 54, 959–972. [Google Scholar]
- Cao, H.X.; Zhang, C.Y.; Guo, Z.H. Some measurement-based characterizations of separability of bipartite states. Int. J. Theor. Phys. 2021, 60, 2558–2572. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
