Submitted:
22 April 2024
Posted:
23 April 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Part 1. Holobionts and Benefits to Plants and the Environment
Holobionts and Endophytes
Benefits to Plants and the Environment
Strain Selection
Evolution of Trichoderma
Mitigation of Abiotic Stresses
Drought
Salinity
Flooding
Enhanced Mineral Nutrition
Competition
Alleviation of Environmental Pollutants
Enhanced Photosynthesis
Enhanced Yield and Plant Growth
Mechanisms
Antibiosis
Parasitism
Antifeedants
Systemic Reactions and Differentially Expressed Genes and Proteins
Elicitors
Reactive Oxygen Species (ROS)
Acc Deaminase
Part 2. Integrated Solutions for Commercial Agriculture
Large-Scale Production and Formulation Methods
Integrated Biological-Biological and Chemical-Biological Treatments
References
- Margulis, L.; Fester, R. Symbiosis as a Source of Evolutionary Innovation; MIT Press: Boston, 1991; p. 470. [Google Scholar]
- Chi, F.; Shen, S.-H.; Cheng, H.-P.; Jing, Y.-X.; Yanni, Y.G.; Dazzo, F.B. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol. 2015, 71, 7271–7278. [Google Scholar] [CrossRef]
- Sutton, J.C.; Liu, W.; Huang, R.; Owen-Going, N. Ability of Clonostachys rosea to establish and suppress sporulation potential of Botrytis cinerea in deleafed stems of hydroponic greenhouse tomatoes. Biocontrol Sci. Tech. 2002, 12, 413–425. [Google Scholar] [CrossRef]
- Harman, G.E.; Uphoff, N. Advantages and methods of using symbiotic microbes to enhance plant agriculture and the environment. Scientifica 2019. [Google Scholar]
- Wilson, D.O. Endophyte: the evolution of a term, and clarification of its use and defition. Oikos 1995, 73, 274–276. [Google Scholar] [CrossRef]
- Chen, X.-L.; Sun, M.-C.; Chong, S.-I.; Si, Y.-P.; Wu, L.-S. Transcriptome and metabolomic approaches deepen our knowledge of plant-endophyte interactions. Front. Plant Sci. 2022, 12, 700200. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species---opportunistic, avirulent plant symbionts. Nature Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Alonso-Ramirez, A.; Poveda, J.; Martin, I.; Hermosa, R.; Monte, E.; Nicolas, C. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Moleb. Plant Pathol. 2014, 15, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E. Trichoderma--not just for biocontrol anymore. Phytoparasitica 2011, 39, 103–108. [Google Scholar] [CrossRef]
- Woo, S.J.; Ruocco, M.; Vinale, F.; Marra, R.; Lombardi, N.; Pascale, A.; Lanzuise, S.; Manganiello, G.; Lorito, M. Trichoderma-based and their widespread use in agriculture. Open Mycology J. 2014, 8, 71–126. [Google Scholar] [CrossRef]
- Doni, F.; Zaln, C.R.C.M.; Isahak, A.; Faturrahaman, F.; Anhar, A.; Mohamad, W.; Yusoff, W.M.W.; Uphoff, N. A simple, efficient, and farmer-friendly Trichoderma-based biofertilizer evaluated with the SRI rice management system. Organic Agric. 2017. [Google Scholar] [CrossRef]
- Ismail; Hamayun, M. ; Hussain, A.; Iqbal, A.; Khan, S.A.; Lee, I.-J. Aspergillus niger boosted heat stress tolerance in sunflower and soybean via regulating their metabolic and antioxidant system. J. Plant Interact. 2020, 15, 223–232. [Google Scholar] [CrossRef]
- Ikram, M.; Ali, N.; Jan, G.; Jan, F.G.; Rahman, I.U.; Iqbal, A.; Hamayun, M. IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS One 2018, 13, e0208150. [Google Scholar] [CrossRef] [PubMed]
- Shafia, A.; Sutton, J.C.; Yu, H.; Fletcher, R.A. Influence of preinoculation light intensity on development and interactions of Botrytis cinerea and Clonostachys rosea in tomato leaves. Canadian J. Plant Pathol. 2001, 23, 346–357. [Google Scholar] [CrossRef]
- Sherameti, I.; Shahollari, B.; Venus, Y.; Altschmied, L.; Varma, A.; Oelmueller, R. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J. Biol. Chem. 2005, 280, 26241–26247. [Google Scholar]
- Franza, G.J.; Muhammad, H.; Hussain, A.; Gul, J.; Aman, K.; In-Jung, L. An endophyte isolate of the fungus Yarrowia lipolytica produce metabolite that ameliorate the negative impact of salt stress on the physiology of maiaze. BMC Microbiol. 2019, 19, 3. [Google Scholar]
- Konappa, N.; Krishnamurthy, S.; Arakere, U.C.; Chowdappa, S.; Ramachandrappa, N.S. Efficacy of indigenous plant growth-promoting rhizobacteria and Trichoderma strains in eliciting resistance against bacterial wilt in a tomato. Egyptian J. Biol.l Pest Control 2020, 30, 106. [Google Scholar] [CrossRef]
- Brannen, P.M. , Kenney, D. S. Kodiak: A successful biological-control product for suppression of soil-borne plant pathogens of cotton. J. Industr. Microbiol. Biotechnol. 1997, 19, 169–171. [Google Scholar] [CrossRef]
- Poveda, J.; Eugui, D.; Abtil-Urias, P.; Velasco, P. Endophytic fungi as direct plant growth promoters for sustainable agriculture. Symbiosis 2021, 85, 1–19. [Google Scholar] [CrossRef]
- Woo, S.; Ruocco, M.; Vinale, F.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Lanzuise, S.; Manganiello, G.; Lorito, M. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 2014, 8, 71–126. [Google Scholar] [CrossRef]
- Harman, G.E. Microbial plant symbionts: new tools to improve plant productivity. International Conference of Food Processing and Technology, Paris, France 2018.
- Leger, R.J.S. Studies on adaptations of Metarhizium anisopliae to life in the soil. Journal of Invertebrate Pathology 2008, 98, 271–276. [Google Scholar] [CrossRef]
- Coppola, M.; Diretto, G.; Digilio, M.C.; Woo, S.L.; Giuliano, G.; Molisso, D.; Pennacchio, F.; Lorito, M.; Rao, R. Transcriptome and metabolome reprogramming in tomato plants by Trichoderma harzianum strain T22 primes and enhances defense responses against aphids. Front. Physiol. 2019, 10, 745. [Google Scholar] [CrossRef] [PubMed]
- Stasz, T.E.; Harman, G.E.; Weeden, N.F. Protoplast preparation and fusion in two biocontrol strains of Trichoderma harzianum. Mycologia 1988, 80, 141–150. [Google Scholar] [CrossRef]
- Hubbard, J.P.; Harman, G.E.; Hadar, Y. Effect of soilborne Pseudomonas sp. on the biological control agent, Trichoderma hamatum, on pea seeds. Phytopathology 1983, 73, 655–659. [Google Scholar] [CrossRef]
- Harman, G.E.; Hayes, C.K.; Ondik, K.L. Asexual genetics in Trichoderma and Gliocladium: mechanisms and implications. In Trichoderma and Gliocladium, Vol. 1; Kubicek, C.P., Harman, G.E., Eds.; Taylor and Francis: London, 1998; pp. 243–270. [Google Scholar]
- Stackhouse, T.; Browm, D.; Glenn, A.; Gold, S.E. Fungal imposter syndrome: A forensic analysis of the genomic contributions to the important biological control agent, Trichoderma strain T22. In Proceedings of the Annual meeting Am. Phyopathol. Socirty.
- Woo, S.; Hermosa, R.M.; Lorito, M.; Monte, E. Trichoderma: a multipurpose, plant-beneficial miroorganism for eco-sustainable agriculture. Nature Rev. Microbol. 2023, 21, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Druzhinia, I.S.; Chenthamara, M.S.; Zhang, J.; Atanasove, L.D.Y.; Miao, Y.; Rhami, M.R.; Grujic, M.; Cai, F.; Pourmedhi, M.S.; al, e. Massive lateral transfer of genes encoding cell-wall degrading to the mycoparasitic fungus Trichoderma from its plant-assoxiated hosts. PLOS Genetics 2018.
- Shahid, M.; Pinelli, E.; Dumat, C. Tracing trends in plant physiology and biochemistry: need of databases from genetic to kingdom level. Plant. Physiol. Biochem. 2018, 127, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E. Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol. 2011, 189, 647–649. [Google Scholar] [CrossRef] [PubMed]
- Rodriquez, R.; Baird, A.S.; Gray, Z.; Groove, R.E.; Harto, R.; et al. Programming plants for climate resilence through symbiotics. In Seed Endophytes; Verma, S., White, J.j., Eds.; Springer: Cham, 2019; pp. 127–137. [Google Scholar]
- Mastouri, F.; Bjorkman, T.; Harman, G.E. Trichoderma harzianum strain T22 enhances antioxidant defense of tomato seedlings and resistance to water deficit. Molec. Plant Microbe Interact. 2012, 25, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Mastouri, F. Use of Trichoderma spp. to improve plant performance under abiotic stress. PhD, Cornell University, Ithaca, NY, 2010.
- Shukla, V.; Awasthi, R.P.; Rawat, L.; Kumar, J. Regulation of plant growth, photosynthesis and drought tolerance in Triticum aestivum. Ann. Appl. Biol. 2015, 2015. [Google Scholar] [CrossRef]
- Mo, Y.; Wang, R.; Yang, R.; Yang, R.; Jun, Z.; Liu, C.; Li, H. Regulation of plant growth, photosynthesis, and osmosis by an arbuscular fungus in watermelon seedlings. Front. Plant Sci. 2017, 7. [Google Scholar] [CrossRef]
- Azad, K.; Kaminskyj, S. A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis 2016, 68, 73–77. [Google Scholar] [CrossRef]
- Redman, R.S.; Kim, Y.O.; Woodward, C.J.G.C.; Espino, L.; Doty, S.L.; Rodriguez, R.J. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 2011, 10. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.M.; Kang, B.R.; Kim, Y.C. Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana. Plant Pathol J. 2013, 29, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Vaishnav, L.J.; Choudhary, D.K. Regulation of drought responsive in Glycine max is mediated through Pseudomonas simiae strain AU. J. Plant Growth Regul. 2019, 38, 333–342. [Google Scholar] [CrossRef]
- Glick, B.R. Bacteria ACC deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 2004, 56, 297–312. [Google Scholar]
- Mastouri, F.; Bjorkman, T.; Harman, G.E. Seed treatments with Trichoderma harzianum alleviate biotic, abiotic and physiological stresses in germinating seeds and seedlings. Phytopathology 2010, 100, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, C.S.; Srivastava, S.; Chauhan, P.S.; Seem, K.; Mishra, A.; Sopory, S.K. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Biochem. 2013, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Hueckelhoven, R.; Neumann, C.; von Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS 2005, 102, 13386–13391. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, M.E.; Abdelsatter, M.; Abdelaym, E.A.; Atia, M.A.M.; Mahmooud, A.W.M.; Saad, M.M.; sl., r. Piriformaspora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomatoes under sakt stress. Scien. Hort. 2019, 256, 108532. [CrossRef]
- Bharti, N.; Pandey, S.S.; Barnawal, D.; Patel, V.K.; Kalra, A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 2016, 6, 1–16. [Google Scholar] [CrossRef]
- Faranza, g.J.; Mahmmad, H.; Hassian, A.; Gul, J.; Ahmad, J.S.; Faranza, G.J.; Mahmood, H.; Hassan, A.; Gul, J.; Amad, I.; et al. An endophytic isolate of Yarrowia lipolytica produce metabolites thst amelorate the negative effects of salt stress on maize. BMC Micorobiol. 2019, 19. [Google Scholar] [CrossRef]
- Harrison, M.J. The arbuscular mycorrhizal symbiosis: an underground association. Trends in Plant Sci. 1997, 2, 54–60. [Google Scholar] [CrossRef]
- Altomare, C.; Norvell, W.A.; Björkman, T.; Harman, G.E. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbiol. 1999, 65, 2926–2933. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E.; Mastouri, F. (Eds.) Enhancing nitrogen use efficiency in wheat using Trichoderma seed inoculants; International Society for Plant-Microbe Intereactons: St. Paul, MN, 2010; Volume 7, p. 4. [Google Scholar]
- Bailey, B.A.; Lumsden, R.D. Direct effects of Trichoderma and Gliocladium on plant growth and resistance to plant pathogens. In Trichoderma and Gliocladium, Vol. 2; Harman, G.E., Kubicek, C.P., Eds.; Taylor and Francis: London, 1998; pp. 185–204. [Google Scholar]
- Harman, G.E. Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis. 2000, 84, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Garber, R.K.; Cotty, P.J. Formation of sclerotia and aflatoxins in developing cotton bolls infected by the S strain of Aspergillus flavus and potential for biocontrol with an atoxigenic strain. Phytopathology 1997, 87, 940–945. [Google Scholar] [CrossRef]
- Khan, A.L.; Hussain, J.; Al-Harrasi, A.; Al-Rawahi, A.; Lee, I.-J. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology 2015, 35, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E.; Lorito, M.; Lynch, J.M. Uses of Trichoderma spp. to remediate soil and water pollution. Adv. Appl. Microbiol. 2004, 56, 313–330. [Google Scholar] [PubMed]
- Glick, B.R.; Cheng, Z.; Czarny, J.; Duan, J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 2007, 119, 329–339. [Google Scholar] [CrossRef]
- Shoresh, M.; Harman, G.E. The relationship between increased growth and resistance induced in plants by root colonizing microbes. Plant Signal. Behavior 2008, 3, 737–739. [Google Scholar] [CrossRef]
- Paradiso, R.; Arena, C.; De Micco, V.; Giordano, M.; Aronne, G.; De Pascale, S. Changes in leaf anatomical traits enhanced photosynthetic activity of soybean Ggrown in hydroponics with plant growth-promoting microorganisms. Front. Plant Science 2017, 8, 674. [Google Scholar] [CrossRef]
- Doni, F.; Fathurrahman, F.; Mispan, M.S.; Suhaimi, M.; Yussof, W.M.W.; Uphoff, N. Transciptome profiling of rice seedlings inoculated with symbiotic fungus Trichoderma asperellum SL2. J. Plant Growth Reg. 2019. [Google Scholar] [CrossRef]
- Vitti, A.; Pellegrini, E.; Nali, C.; Lovelli, S.; Sofo, A.; Valerio, M.; Scopa, A.; Nuzzaci, M. Trichoderma harzianum T-22 induces systemic resistance in tomato Infected by Cucumber mosaic virus. Front. Plant Science 2016, 7, 1520. [Google Scholar] [CrossRef] [PubMed]
- Pelhivan, N.; Yesilyurt, A.M.; Durmas, N.; Karaoglu, S.A. Trichoderma lixii ID11D seed biopriming mitigates dose dependent salt toxicity in maize. Acta Physiol. Plantarum 2017, 39. [Google Scholar] [CrossRef]
- Fu, J.; Wang, W.-F.; LI, Z.-T.; Yang, K.-J. Trichoderma asperellum alleviates the effects of sale-alkaline stress on maize seedling via the regulation of photosynthesis and nitrogen metaolism. Plant Growth Regul. 2018, 85, 363–374. [Google Scholar] [CrossRef]
- Harman, G.E.; Doni, F.; Khada, R.B.; Uphoff, N. Endophytic strains of Trichoderma increase plants’ photosynthetic capability. App. Microbiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lugtenberg, B.; Malfanova, N.; Kamilova, F.; Berg, G. Plant growth promotion by microbes. In Molecular Microbial Ecology of the Rhizosphere; de Bruijn, F., Ed.; J. Wiley and sons, 2013; pp. 561–573. [Google Scholar]
- Thomashow, L.S.; Weller, D.M.; Bonsall, R.F.; Pierson, L.S.I. Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 1990, 56, 908–912. [Google Scholar] [CrossRef] [PubMed]
- Sivasithamparam, K.; Ghisalberti, E.L. Secondary metabolism in Trichoderma and Gliocladium. In Trichoderma and Gliocladium, Vol. 1; Kubicek, C.P., Harman, G.E., Eds.; Taylor and Francis: London, 1998; pp. 139–191. [Google Scholar]
- Howell, C.R.; Stipanovic, R.D. Suppression of Phytium ultimum-induced damping-off of cotton seedlings by and its antibiotic, pyoluteorin. Phytopathology 1980, 70, 712–715. [Google Scholar] [CrossRef]
- The Manual of Biocontrol Agents, 4th ed.; Gwynn, R.L., Ed.; British Crop Protection Council: Alton. Hamshire, UK, 2014; p. 277. [Google Scholar]
- Whipps, J.M. Effects of mycoparasites on sclerotia-forming fungi. In Developments In Agricultural And Managed Forest Ecology; Beemster, A. B. R., et al., Eds.; 1990; pp. 0–444. [Google Scholar]
- Eckenrode, C.J.; Harman, G.E.; Webb, D.R. Seed-borne microorganisms stimulate seedcorn maggot egg laying. Nature 1975, 256, 487–488. [Google Scholar] [CrossRef]
- Harman, G.E.; Eckenrode, C.J.; Webb, D.R. Alteration of spermoshere ecosystems affecting ovipoistion of the bean seed fly and attack by soilborne fungi on germinating seeds. Annal. Appl. Biol. 1978, 90, 1–6. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, M.S.C.; Bakker, P.A.H.M. Induced systemic resistance by beneficial microbes. Ann. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Waller, F.; Molitor, A.; Pfiffi, S.; Achatz, B.; Kogel, K. The root endophytic fungus Piriformospora indica accelerates host plant development and primes plants for disease resistance. Phytopathology 2008, 98, 6. [Google Scholar]
- Yedidia, I.; Shoresh, M.; Kerem, Z.; Benhamou, N.; Kapulnik, Y.; Chet, I. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl. Environ. Microbiol. 2003, 69, 7343–7353. [Google Scholar] [CrossRef]
- Yedidia, I.; Benhamou, N.; Kapulnik, Y.; Chet, I. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 2000, 38, 863–873. [Google Scholar] [CrossRef]
- Vinale, F.; Ghisalberti, E.L.; Flematti, G.; Marra, R.; Lorito, M.; Sivasithamparam, K. Secondary metabolites produced by a root-inhabiting sterile fungus antagonistic towards pathogenic fungi. Letters in Applied Microbiology 2010, 50, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Djonovic, S.; Vargas, W.A.; Kolomiets, M.V.; Horndeski, M.; Weist, A.; Kenerley, C.M. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for systemic resistance in maize. Plant Physiol. 2007, 145, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Lorito, M.; Woo, S.L.; Harman, G.E.; Monte, E. Translational research on Trichoderma: from ‘omics to the field. Annu. Rev. Phytopathol. 2010, 48, 395–417. [Google Scholar] [CrossRef]
- Ramirez-Valdespino, C.A.; Casas-Flores, S.; Olmedo-Monfil, V. Trichoderma as a Model to Study Effector-Like Molecules. Front. Microbiol. 2019, 10, 1030. [Google Scholar] [CrossRef]
- Jaskiewicz, M.l.R.; Conrath, U.; Peterhaensel, C. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Reports 2011, 12, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Jaskiewicz, M.; Peterhansel, C.; Conrath, U. Detection of Histone Modifications in Plant Leaves. Jove-J. Visualized Experi. 2011. [Google Scholar] [CrossRef]
- Conrath, U.; Thulke, O.; Katz, V.; Schwindling, S.; Kohler, A. Priming as a mechanism in induced systemic resistance of plants. European J. Plant Pathol. 2001, 107, 113–119. [Google Scholar] [CrossRef]
- Agripino de Medeiros, H.; de Araujo Filho, J.V.; de Freitas, L.G.; Castillo, P.; Belen Rubio, M.; Hermosa, R.; Monte, E. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Scientific Reports 2017, 7, 40216. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Chepsergon, J.; Mwamburi, L.; Kassem, K.M. Mechanism of drought tolerance using Trichoderma spp. Intern. J, Science Research 2014, 3, 1592–1596. [Google Scholar]
- Sun, C.; Johnson, J.; Cai, D.; Sherameti, I.; Oelmueller, R.; Lou, B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 2010, 167, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Baltruschat, H.; Fodor, J.; Harrach, B.D.; Niemczyk, E.; Barna, B.; Gullner, G.; Janeczko, A.; Kogel, K.-H.; Schaefer, P.; Schwarczinger, I.; et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist 2008, 180, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Vadassery, J.; Tripathi, S.; Prasad, R.; Varma, A.; Oelmueller, R. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. Journal of Plant Physiology 2009, 166, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Shelke, G.M.; Kumar, A.; Jha, P.N. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants (vol 6, 937, 2015). Front. Microbiol. S 2015, 6, 1255. [Google Scholar] [CrossRef]
- Ali, S.; Charles, T.C.; Glick, B.R. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry (Paris) 2014, 80, 160–167. [Google Scholar] [CrossRef]
- Zhang, S.; Gan, Y.; Xu, B. Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology 2019, 19, 22. [Google Scholar] [CrossRef]
- Jin, X.; Harman, G.E.; Taylor, A.G. Conidial biomass and desiccation tolerance in Trichoderma harzianum. Biol. Control 1992, 1, 237–243. [Google Scholar] [CrossRef]
- Sunde, M.; Kwan, A.H.T., M. D.; Beever, R.E.; Mackay, J.P. Structual analysis of hydrophobins. Micron 2008, 39, 773–784. [Google Scholar] [CrossRef]
- Harman, G.E.; Custis, D. US Patent 9,090,884. Formulations of viable microorganisms and their method of use 2006.
- Datnoff, L.E.; Nemec, S.; Pernezny, K. Biological control of fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biological Control 1995, 5, 427–431. [Google Scholar] [CrossRef]
- Buysens, C.; Cesar, V.; Ferrais, F.; de Boulois, H.; Declerck, S. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 2016, 105, 137–143. [Google Scholar] [CrossRef]
- Vitti, A.; Pelligrini, E.; Nali, C.; Lovelli, S.; Sofo, A.; Valerio, M.; Scopa, A.; Nuzzaci, M. Trichoderma harzianum T22 induces sytemic restance in tomato infected by cucumber mosaic virus. Front. Plant Sci. 2916, 7, 1520–doi1510. [Google Scholar]
- Poveda, l.; Eudui, D.; Abtil--Urias, P.; Velasco, P. Endophytic fungi as diect plant growth promoters for sustainable agricultue. Symbiosis 2021, 85, 1–19. [Google Scholar] [CrossRef]
- Xue, A.G. Biological control of pathogens causing root rot complex in field pea using Clonostachys rosea strain ACM941. Phytopathology 2003, 93, 329–335. [Google Scholar] [CrossRef]
- Gwynn, R.L. The Manual of Biocontrol Agents, 5th ed.; British Crop Protection Council: Alton, Hamshire UK, 2009; p. 277. [Google Scholar]
- Gill, S.S.; Gill, R.; Trivedi, D.K.; Anjum, N.A.; Sharma, K.K.; Ansari, M.W.; Ansari, A.A.; Johri, A.K.; Prasad, R.; Pereira, E.; et al. Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Front. Microbiol. 2016, 7, 332. [Google Scholar] [CrossRef]
- Hu, J.-L.; Lin, X.-G.; Wang, J.-H.; Shen, W.-S.; Wu, S.; Peng, S.-P.; Mao, T.T. Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils. Pedosphere (Beijing) 2010, 20, 586–593. [Google Scholar] [CrossRef]
- Zhang, J.X.; Cotty, P.J. Diversity within communities of L and S strains of Aspergillus flavus in cotton fields in Texas and Arizona. Phytopathology 2007, 97, S172. [Google Scholar]
- Leger, R.J.S. Studies on adaptations of Metarhizium anisopliae to life in the soil. J. Invert. Pathol 2008, 98, 271–276. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
