Submitted:
10 April 2024
Posted:
11 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Literature Review
3.1. AI Marketing Technologies
3.1.1. Data Analytics in Marketing
3.1.2. Machine Learning in Marketing
3.1.3. Natural Language Processing (NLP) in Marketing
3.2. Integrating Data Analytics
3.3. Emerging Dilemmas
3.4. Ethical Implications of AI in Marketing
3.4.1. Privacy and Data Collection Concerns
3.4.2. Mitigating Privacy and Security Concerns:
3.4.3. Privacy Breaches through AI
3.4.4. Misuse of Data through AI
3.4.5. Consent and Transparency
3.4.6. Complexity and Misunderstanding of AI Systems
3.4.7. Ethical and Societal Implications
3.4.8. Manipulation and Bias
3.4.9. Bias in AI and Its Impact
3.4.10. Accountability and Control
3.4.11. Towards a Collaborative
4. Case Studies
4.1. Case Study 1: Facebook's Ad Delivery Algorithm
4.2. Case Study 2: YouTube's Recommendation Algorithm
4.3. Case Study 3: Amazon's AI Recruitment Tool
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hemalatha, A. AI-Driven Marketing: Leveraging Artificial Intelligence for Enhanced Customer Engagement; Consortium, J.P., Ed.; First Edit.; Chennai, India, 2023; ISBN 9789391303617.
- Naz, H.; Kashif, M. Artificial Intelligence and Predictive Marketing: An Ethical Framework from Managers’ Perspective. Spanish J. Mark. - ESIC 2024, ahead-of-print. [Google Scholar] [CrossRef]
- Benlian, A.; Wiener, M.; Cram, W.A.; Krasnova, H.; Maedche, A.; Möhlmann, M.; Recker, J.; Remus, U. Algorithmic Management: Bright and Dark Sides, Practical Implications, and Research Opportunities. Bus. Inf. Syst. Eng. 2022, 64, 825–839. [Google Scholar] [CrossRef]
- Flink, C.; Gross, L.; Pasmore, W. Why Human-Centered Digital Transformation Leadership Matters. In Digital Transformation: Accelerating Organizational IntelligenceDoing Well and Doing Good; World Scientific, 2023; Vol. 3, pp. 1–15.
- Díaz-Rodríguez, N.; Del Ser, J.; Coeckelbergh, M.; López de Prado, M.; Herrera-Viedma, E.; Herrera, F. Connecting the Dots in Trustworthy Artificial Intelligence: From AI Principles, Ethics, and Key Requirements to Responsible AI Systems and Regulation. Inf. Fusion 2023, 99, 101896. [Google Scholar] [CrossRef]
- Ehsan, U.; Liao, Q.V.; Muller, M.; Riedl, M.O.; Weisz, J.D. Expanding Explainability: Towards Social Transparency in AI Systems. In Proceedings of the Conference on Human Factors in Computing Systems - Proceedings; 2021; pp. 1–19. [Google Scholar]
- Aguirre, E.; Roggeveen, A.L.; Grewal, D.; Wetzels, M. The Personalization-Privacy Paradox: Implications for New Media. J. Consum. Mark. 2016, 33, 98–110. [Google Scholar] [CrossRef]
- Hermann, E. Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective. J. Bus. Ethics 2022, 179, 43–61. [Google Scholar] [CrossRef]
- Voeneky, S.; Kellmeyer, P.; Mueller, O.; Burgard, W. Part IV - Fairness and Nondiscrimination in AI Systems. In The Cambridge Handbook of Responsible Artificial Intelligence Interdisciplinary Perspectives; Cambridge University Press Print publication, 2022; pp. 227–278.
- Ameen, N.; Tarhini, A.; Reppel, A.; Anand, A. Customer Experiences in the Age of Artificial Intelligence. Comput. Human Behav. 2021, 114, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Blösser, M.; Weihrauch, A. A Consumer Perspective of AI Certification – the Current Certification Landscape, Consumer Approval and Directions for Future Research. Eur. J. Mark. 2024, 58, 441–470. [Google Scholar] [CrossRef]
- Priya, A. Case Study Methodology of Qualitative Research: Key Attributes and Navigating the Conundrums in Its Application. Sociol. Bull. 2021, 70, 94–110. [Google Scholar] [CrossRef]
- Vries, K. de Case Study Methodology. In Critical Qualitative Health Research; Routledge: London, 2020; p. 12. [Google Scholar]
- Kumar, V. Transformative Marketing: The Next 20 Years. J. Mark. 2018, 82, 1–12. [Google Scholar] [CrossRef]
- Davenport, T.; Guha, A.; Grewal, D.; Bressgott, T. How Artificial Intelligence Will Change the Future of Marketing. J. Acad. Mark. Sci. 2020, 48, 24–42. [Google Scholar] [CrossRef]
- Wedel, M.; Kannan, P.K. Marketing Analytics for Data-Rich Environments. J. Mark. 2016, 80, 97–121. [Google Scholar] [CrossRef]
- Herhausen, D.; Bernritter, S.F.; Ngai, E.W.T.; Kumar, A.; Delen, D. Editorial for the Special Issue “Machine Learning in Marketing. ” J. Bus. Res. 2024, 170, 1–11. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, Y.; Rhu, M. Lazy Batching: An SLA-Aware Batching System for Cloud Machine Learning Inference. In Proceedings of the Proceedings - International Symposium on High-Performance Computer Architecture; 2021; pp. 493–506. [Google Scholar]
- Kaplan, A.; Haenlein, M. Siri, Siri, in My Hand: Who’s the Fairest in the Land? On the Interpretations, Illustrations, and Implications of Artificial Intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Huang, M.-H.; Rust, R.T. A Strategic Framework for Artificial Intelligence in Marketing. J. Acad. Mark. Sci. 2021, 49, 30–50. [Google Scholar] [CrossRef]
- Jain, M.; Kumar, P.; Kota, R.; Patel, S.N. Evaluating and Informing the Design of Chatbots. In Proceedings of the DIS 2018 - Proceedings of the 2018 Designing Interactive Systems Conference 9-13, 2018, Hong Kong; 2018; pp. 895–906. [Google Scholar]
- Liu, B. Synthesis Lectures on Human Language Technologies (SLHLT). In Sentiment Analysis and Opinion Mining; Springer Cham, 2022; pp. XIV, 167.
- McTear, M.F.; Callejas, Z.; Griol, D. The Conversational Interface; Springer Cham, 2016; Vol. 6;
- Li, X. Harnessing the Synergy between Neural and Probabilistic Machine Learning: Data Representations and Model Structures, Hong Kong University of Science and Technology, 2019.
- Zuboff, S. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power. Profile Book. 2019. [Google Scholar]
- Richards, N.M.; King, J.H. Big Data Ethics. Big Data Soc. 2014, 49, 393–432. [Google Scholar] [CrossRef]
- Zou, J.; Schiebinger, L. AI Can Be Sexist and Racist — It’s Time to Make It Fair. Nature 2018, 559, 324–326. [Google Scholar] [CrossRef]
- Murphy, P.E.; Laczniak, G.R.; Harris, F. Ethics in Marketing International Cases and Perspectives; second; Routledge. 2017. [Google Scholar]
- Hagendorff, T. The Ethics of AI Ethics: An Evaluation of Guidelines. Minds Mach. 2020, 30, 99–120. [Google Scholar] [CrossRef]
- Benjamin, R. Race after Technology: Abolitionist Tools for the New Jim Code; first Edit.; John Wiley & Sons., 2019; ISBN 978-1-509-52643-7.
- Jobin, A.; Ienca, M.; Vayena, E. Artificial Intelligence: The Global Landscape of Ethics Guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Barocas, S.; Nissenbaum, H. Big Data’s End Run around Anonymity and Consent. In Privacy, Big Data, and the Public Good: Frameworks for Engagement; Cambridge University Press, 2013; pp. 44–75 ISBN 9781107590205.
- Chen, H.S.; Jai, T.M. Trust Fall: Data Breach Perceptions from Loyalty and Non-Loyalty Customers. Serv. Ind. J. 2021, 41, 947–963. [Google Scholar] [CrossRef]
- Cranor, L.F.; Garfinkel., S. Security and Usability: Designing Secure Systems That People Can Use, Fist Editi.; O’Reilly Media, Inc., 2005.
- Konečný, J.; McMahan, H.B.; Ramage, D.; Richtárik, P. Federated Optimization: Distributed Machine Learning for On-Device Intelligence; arXiv preprint, 2016.
- Dwork, C.; Roth, A. The Algorithmic Foundations of Differential Privacy. Found. Trends Theor. Comput. Sci. 2013, 9, 211–487. [Google Scholar] [CrossRef]
- Voigt, P.; Bussche, A. von dem The EU General Data Protection Regulation (GDPR) A Practical Guide; Springer Nature. 2020. [Google Scholar]
- Garvie, C.; Bedoya, A.M.; Frankle, J. The Perpetual Line-up: Unregulated Police Face Recognition in America; Georgetown Law Center on Privacy & Technology. 2019. [Google Scholar]
- Cadwalladr, C.; Graham-Harrison, E. Revealed: 50 Million Facebook Profiles Harvested for Cambridge Analytica in Major Data Breach. Guard. 2018, 1, 22. [Google Scholar]
- Coiera, E.; Ash, J.; Berg, M. The Unintended Consequences of Health Information Technology Revisited. In IMIA Yearbook of Medical Informatics 2016; 2016; pp. 163–169.
- Thapa, C.; Camtepe, S. Precision Health Data: Requirements, Challenges and Existing Techniques for Data Security and Privacy. Comput. Biol. Med. 2021, 129, 1–35. [Google Scholar] [CrossRef]
- Martin, K. Ethical Implications and Accountability of Algorithms. J. Bus. Ethics 2019, 160, 835–850. [Google Scholar] [CrossRef]
- Pasquale, F. The Black Box Society: The Secret Algorithms That Control Money and Information; Harvard University Press. 2015. [Google Scholar]
- McGuire, A.L.; Beskow, L.M. INFORMED CONSENT IN GENOMICS AND GENETIC RESEARCH. Annu. Rev. Genomics Hum. Genet. 2010, 11, 361–381. [Google Scholar] [CrossRef]
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.Z. XAI - Explainable Artificial Intelligence. Sci. Robot. 2019, 4, 1–6. [Google Scholar] [CrossRef]
- Burrell, J. How the Machine ‘Thinks’: Understanding Opacity in Machine Learning Algorithms. Big Data Soc. 2016, 3, 1–12. [Google Scholar] [CrossRef]
- Ananny, M.; Crawford, K. Seeing without Knowing: Limitations of the Transparency Ideal and Its Application to Algorithmic Accountability. New Media Soc. 2018, 20, 1–17. [Google Scholar] [CrossRef]
- D’Ignazio, C.; Klein, L.F. Data Feminism; Cambridge, Massachusetts and London, England: The MIT Press: London, England, 2020; ISBN 9780262044004. [Google Scholar]
- Yeung, K. ‘Hypernudge’: Big Data as a Mode of Regulation by Design. Inf. Commun. Soc. 2017, 20, 118–136. [Google Scholar] [CrossRef]
- Susser, D.; Roessler, B.; Nissenbaum, H. Technology, Autonomy, and Manipulation. Internet Policy Rev. 2019, 8, 1–22. [Google Scholar] [CrossRef]
- Eslami, M.; Rickman, A.; Vaccaro, K.; Aleyasen, A.; Vuong, A.; Karahalios, K.; Hamilton, K.; Sandvig, C. I Always Assumed That I Wasn’t Really That Close to [Her]": Reasoning about Invisible Algorithms in News Feeds. In Proceedings of the Facebook Newsfeeds & Friendships: CHI 2015, Crossings, Seoul, Korea; 2015; Vol. 2015-April; pp. 153–162. [Google Scholar]
- Kaminski, M.E.; Bertolini, A.; Brennan-Marquez, K.; Comandé, G.; Cushing, M.; Helberger, N.; Van Drunen, M.; Van Eijk, N.; Eskens, S.; Malgieri, G.; et al. The Right to Explanation, Explained The Right to Explanation, Explained Citation Information Citation Information Copyright Statement THE RIGHT TO EXPLANATION, EXPLAINED. Berkeley Technol. Law J. 2019, 34, 189. [Google Scholar]
- Suresh, H.; Guttag, J. A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle. ACM Int. Conf. Proceeding Ser. 2021. [Google Scholar] [CrossRef]
- Selbst, A.D.; Boyd, D.; Friedler, S.A.; Venkatasubramanian, S.; Vertesi, J. Fairness and Abstraction in Sociotechnical Systems. In Proceedings of the FAT 2019 - Proceedings of the 2019 Conference on Fairness, Accountability, and Transparency; 2019; pp. 59–68. [Google Scholar]
- Ali, M.; Sapiezynski, P.; Bogen, M.; Korolova, A.; Mislove, A.; Rieke, A. Discrimination through Optimization: How Facebook’s Ad Delivery Can Lead to Biased Outcomes. Proc. ACM Human-Computer Interact. 2019, 3, 1–30. [Google Scholar] [CrossRef]
- Pariser, E.; Allen, J. The Filter Bubble: What the Internet Is Hiding From You; Penguin Press HC, UK. 2012. [Google Scholar]
- Ezrachi, A.; Stucke, M.E. Virtual Competition. J. Eur. Compet. Law Pract. 2016, 7, 585–586. [Google Scholar] [CrossRef]
- O’Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Vikalpa J. Decis. Makers 2019, 44, 97–98. [Google Scholar] [CrossRef]
- Buolamwini, J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of the Proceedings of Machine Learning Research, 2018; 81, 77–91. [Google Scholar]
- Kroll, J.A.; Huey, J.; Barocas, S.; Felten, E.W.; Reidenberg, J.R.; Robinson, D.G.; Yu, H. Accountable Algorithms. Univ. PA. Law Rev. 2017, 165, 633–705. [Google Scholar]
- Dignum, V. Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way C; Springer Cham, 2019; Vol. 1; ISBN 978-1-492-03971-6.
- Ribeiro, M.H.; Ottoni, R.; West, R.; Almeida, V.A.F.; Wagner Meira, W.M. Auditing Radicalization Pathways on YouTube Manoel. In Proceedings of the FAT*2020 - Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency; 2020; pp. 131–141. [Google Scholar]
- Dastin, J. Amazon Scraps Secret AI Recruiting Tool That Showed Bias against Women. In Ethics of data and analytics; Auerbach Publications, 2022; pp. 296–299.
- CHELLAPPA, R.K.; SIN, R.G. Personalization versus Privacy: An Empirical Examination of the Online Consumer’s Dilemma. Inf. Technol. Manag. 2005, 6, 181–202. [Google Scholar] [CrossRef]
- EUROPEIA, C. Proposal for a Regulation on a European Approach for Artificial Intelligence; Bruxelas: Comissão Europeia, 2021. [Google Scholar]
- Booker, C.; Wyden, R.; Clarke, Y. Algorithmic Accountability Act of 2019. In Proceedings of the 116TH CONGRESS, 1ST SESSION, IN THE SENATE OF THE UNITED STATES; Federal Trade Commission, 2019; p. 15.
- IEEE ETHICALLY ALIGNED DESIGN: A Vision for Prioritizing Human Well-Being with Autonomous and Intelligent Systems; 2nd ed.; IEEE, 2018; ISBN 9781509062645.
- PAI Partnership on AI Releases Guidance for Safe Foundation Model Deployment, Takes the Lead to Drive Positive Outcomes and Help Inform AI Governance Ahead of AI Safety Summit in UK Available online: https://partnershiponai.org/pai-model-deployment-guidance-press-release/.
- IAPP Jordan Creates National Ethics Charter for AI Available online: https://iapp.org/news/a/jordan-creates-national-ethics-charter-for-ai/.
- UNIDO Jordan Presents Its AI Strategy and Implementation Roadmap Available online: https://aim.unido.org/jordan-presents-its-ai-strategy-and-implementation-roadmap/.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
