Submitted:
18 November 2024
Posted:
19 November 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. The Current State of Digital Marketing
| Papers | Technologies | Role | Tools |
|---|---|---|---|
| [8,9,10,11] | Machine Learning (ML) | Enhances personalized content, optimizes usability, targets marketing | Chatbots, Content Recommendation Engines, Targeted Advertising |
| [12,13,14] | Natural Language Processing (NLP) |
Improves customer interaction, provides personalized answers in chatbots | Chatbots, Virtual Assistants, Voice Search Optimization |
| [15,16,17] | Predictive Analytics | Analyzes historical data to Predict consumer behavior and trends |
Recommendation Systems, Churn Prediction Models |
| [18,19,20] | Sentiment Analysis | Detects emotional cues to tailor communication for better satisfaction |
NLP systems, Sentiment Analysis Engines |
| [21,22,23,24] | Programmatic Advertising | Automates ad targeting and budget allocation, detects ad fraud | Real-Time Bid Optimization, Fraud Detection Systems |
| [25,26,27,28] | Explainable AI (XAI) | Provides transparency in AI decision-making processes |
Explainability Algorithms, Auditing Tools |
| [29,30,31] | Deep Learning | Models complex user-object interactions for accurate content recommendations |
Recommendation Engines, Context-Aware Recommenders |
| [32,33,34,35] | Neuromarketing (EEG, fMRI, Eye-Tracking) | Analyzes brain and Physiological responses to optimize product design |
EEG, fMRI, Eye- tracking Technologies |
| [36,37,38,39,40] | Generative AI | Automates content creation, generates personalized content at scale |
Generative Models, Text and Image Generators |
|
[41,42,43,44] |
Federated Learning | Enables decentralized model training, preserving user data privacy |
Federated AI Systems, Decentralized ML Models |
| [45,46,47,48,49,50,51] | Computer Vision | Analyzes images and videos to enhance visual marketing content | Visual Recognition Systems, AR/VR for Ads, Image Classification Models |
|
[52,53,54] |
Reinforcement Learning | Optimizes marketing strategies by learning from trial and error | Reinforcement Learning Agents, Ad Placement Optimization Engines |
|
[55,56,57,58] |
Blockchain for Digital Marketing | Secures transactions and improves transparency in digital ad bidding |
Blockchain-Ledger Systems, Smart Contracts for Digital Ads |
3. Methodology
4. Machine Learning Technologies in Digital Marketing

5. The Intersection of AI, ML, and Neuromarketing
6. Challenges and Future Trends
6.1. The Impact of AI and ML on Marketing Jobs and Skills
6.2. The Role of AI and ML in Social Media Marketing
6.3. The Future of AI and ML in Digital Marketing
8. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Hirvonen, N., Jylhä, V., Lao, Y., & Larsson, S. Artificial intelligence in the information ecosystem: Affordances for everyday information seeking. Journal of the Association for Information Science and Technology. 2023. https://asistdl.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/asi.24860.
- Masnita, Y., Ali, J. K., Zahra, A., Wilson, N., & Murwonugroho, W. Artificial intelligence in marketing: Literature review and future research agenda. Journal of System and Management Sciences, 2024, 14(1), 120-140. https://www.researchgate.net/profile/Jati-Kasuma/publication/377177409_Artificial_Intelligence_in_Marketing_Literature_Review_and_Future_Research_Agenda/links/659801b02468df72d3fd120e/Artificial-Intelligence-in-Marketing-Literature-Review-and-Future-Research-Agenda.pdf.
- Alkhayyat, A., & Ahmed, A. M.. The impact of artificial intelligence on digital marketing. Diva. 2022. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1663148&dswid=2424.
- Bulling, Andreas, et al. ETRA'21 Adjunct: ACM Symposium on Eye Tracking Research and Applications. In: Symposium on Eye Tracking Research and Applications (ETRA 2021). Association for Computing Machinery, 2021. [CrossRef]
- Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119-132. 2022. https://www.sciencedirect.com/science/article/pii/S2666603022000136.
- Floridi, L., et al. AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds and Machines. 2018, 28(4), 689-707. https://link.springer.com/content/pdf/10.1007/s11023-018-9482-5.pdf.
- Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. A comparison of machine learning techniques for customer churn prediction. Simulation Modelling Practice and Theory, 55, 1-9. 2015. https://www.academia.edu/download/55431256/A_comparison_of_machine_learning_techniques_for_customer_churn_prediction.pdf.
- Brei, V. A. Machine learning in marketing: The ultimate guide. Towards Data Science. 2020. https://www.nowpublishers.com/article/DownloadSummary/MKT-065.
- Thirumagal, P. G., Bhattacharjee, K., Dorbala, R., Palav, M. R., Viji, S., & Mahajan, V. Application of Machine Learning Algorithms in Personalized Marketing. In 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), 2024, 165-170. IEEE. https://www.researchgate.net/profile/Rajesh-Dorbala/publication/382011085_Application_of_Machine_Learning_Algorithms_in_Personalized_Marketing/links/669788e4cb7fbf12a457808c/Application-of-Machine-Learning-Algorithms-in-Personalized-Marketing.pdf.
- Potla, R. T. Enhancing Customer Relationship Management (CRM) through AI-Powered Chatbots and Machine Learning. Distributed Learning and Broad Applications in Scientific Research, 2023, 9, 364-383. https://dlabi.org/index.php/journal/article/download/85/83.
- Khanal, S. S., Prasad, P. W. C., Alsadoon, A., & Maag, A. A systematic review: machine learning based recommendation systems for e-learning. Education and Information Technologies, 2020, 25(4), 2635-2664. https://researchoutput.csu.edu.au/ws/portalfiles/portal/56945122/37059927_Published_article.pdf.
- Ekasari, S., Judijanto, L., & Vandika, A. Y. THE ROLE OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN PRECISION TARGETING: REVOLUTIONIZING MARKETING STRATEGIES. Jurnal Ekonomi dan Bisnis, 2024, 2(3), 347-361. https://j-economics.my.id/index.php/home/article/download/130/161.
- Abiagom, C. N., & Ijomah, T. I. Enhancing customer experience through AI-driven language processing in service interactions. Open Access Research Journal of Engineering and Technology, 2024. https://www.researchgate.net/profile/Tochukwu-Ijomah-2/publication/383847613_Enhancing_customer_experience_through_AI-driven_language_processing_in_service_interactions/links/66dc43e12390e50b2c7212d0/Enhancing-customer-experience-through-AI-driven-language-processing-in-service-interactions.pdf.
- Xu, A., Liu, Z., Guo, Y., Sinha, V., & Akkiraju, R. A new chatbot for customer service on social media. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017, 3506–3510. [CrossRef]
- Croft, W. B., Metzler, D., & Strohman, T. Search Engines: Information retrieval in practice (2nd ed.). Addison-Wesley. 2010. https://www.academia.edu/download/30740463/z2009_2465.pdf.
- Waller, M. A., & Fawcett, S. E. Click here for a data scientist: Big data, predictive analytics, and theory development in the era of a maker movement supply chain. Journal of Business Logistics, 2013. 34(4), 249-252. https://onlinelibrary.wiley.com/doi/pdf/10.1111/jbl.12024.
- Aggarwal, C. C. Recommender Systems. Springer. 2016. https://www.academia.edu/download/63186644/2016_Book_RecommenderSystems20200503-102501-wsddcn.pdf.
- Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., & Kim, S. W. A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector, 2019, IEEE access, 7, 60134-60149. https://ieeexplore.ieee.org/iel7/6287639/8600701/08706988.pdf.
- Ma, E., Cheng, M., & Hsiao, A. Sentiment analysis–a review and agenda for future research in hospitality contexts. International Journal of Contemporary Hospitality Management, 2018, 30(11), 3287-3308. https://www.emerald.com/insight/content/doi/10.1108/IJCHM-10-2017-0704/full/html.
- Pandey, K. K., Thorat, M., Joshi, A., Srinivas, D., Hussein, A., & Alazzam, M. B. Natural Language Processing for Sentiment Analysis in Social Media Marketing. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2023, May, pp. 326-330. IEEE. https://ieeexplore.ieee.org/abstract/document/10182590/.
- Rane, N. L., Desai, P., Rane, J., & Mallick, S. K. Using artificial intelligence, machine learning, and deep learning for sentiment analysis in customer relationship management to improve customer experience, loyalty, and satisfaction. Trustworthy Artificial Intelligence in Industry and Society, 2024, 233-261. https://www.researchgate.net/profile/Nitin-Rane-2/publication/385144825_Using_artificial_intelligence_machine_learning_and_deep_learning_for_sentiment_analysis_in_customer_relationship_management_to_improve_customer_experience_loyalty_and_satisfaction/links/6718965068ac304149aba1a8/Using-artificial-intelligence-machine-learning-and-deep-learning-for-sentiment-analysis-in-customer-relationship-management-to-improve-customer-experience-loyalty-and-satisfaction.pdf.
- Lambrecht, A., & Tucker, C. Can Big Data Protect a Firm from Competition? Strategic Management Journal. 2019, 40(8), 1378-1400. [CrossRef]
- Yuan, Y., Wang, F., Li, J., & Qin, R. A survey on real time bidding advertising. In Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics, 2014, October, (pp. 418-423). IEEE. https://www.researchgate.net/profile/Yong-Yuan-6/publication/288385861_A_survey_on_real_time_bidding_advertising/links/5857826308ae8f6955591df4/A-survey-on-real-time-bidding-advertising.pdf.
- Sadeghpour, S., & Vlajic, N. Ads and Fraud: a comprehensive survey of fraud in online advertising. Journal of Cybersecurity and Privacy, 2021, 1(4), 804-832. https://www.mdpi.com/2624-800X/1/4/39/pdf.
- Oentaryo, R., Lim, E. P., Finegold, M., Lo, D., Zhu, F., Phua, C., ... & Berrar, D. Detecting click fraud in online advertising: a data mining approach. The Journal of Machine Learning Research, 2014, 15(1), 99-140. https://www.jmlr.org/papers/volume15/oentaryo14a/oentaryo14a.pdf.
- Chen, L., Zhang, Z., Liu, Q., Yang, L., Meng, Y., & Wang, P. A method for online transaction fraud detection based on individual behavior. In Proceedings of the ACM Turing Celebration Conference-China, 2019, May, pp. 1-8). https://drive.google.com/file/d/1x29Ui9bMUM244wCw8udVVWs3hrfLucPB/view.
- Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. Explaining explanations: An overview of interpretability of machine learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 80-89). IEEE. 2018. https://arxiv.org/pdf/1806.00069.
- Samek, W., Wiegand, T., & Müller, K. R. Explainable artificial intelligence: Understanding, visualizing, and interpreting deep learning models, arXiv:1708.08296, 2017. https://arxiv.org/abs/1708.08296.
- Binns, R., Veale, M., Van Kleek, M., & Shadbolt, N. 'It's reducing a human being to a percentage': Perceptions of justice in algorithmic decisions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1-14). ACM. 2018. https://arxiv.org/pdf/1801.10408.
- Yang, Q., Liu, Y., Chen, T., & Tong, Y. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST). 2019, 10(2), 1-19. https://arxiv.org/pdf/1902.04885.
- Kumar, V., Rajan, B., Venkatesan, R., & Lecinski, J. Understanding the role of artificial intelligence in personalized engagement marketing. California Management Review. 2019, 61(4), 135-155. https://www.academia.edu/download/86990072/000812561985931720220604-1-poaljx.pdf.
- Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine. 2020, 37(3), 50-60. https://arxiv.org/pdf/1908.07873.
- Venkatraman, V., Clithero, J. A., Fitzsimons, G. J., & Huettel, S. A. New scanner data for brand marketers: How neuroscience can help better understand differences in brand preferences. Journal of Consumer Psychology. 2012, 22(1), 143-153. https://www.academia.edu/download/43033754/neuroscience_brands_jcp_2012.pdf.
- Plassmann, H., Ramsøy, T. Z., & Milosavljevic, M. Branding the brain: A critical review and outlook. Journal of Consumer Psychology. 2012, 22(1), 18-36. https://www.insead.edu/sites/insead/files/assets/faculty-personal-site/hilke-plassmann/documents/16_Plassmann_etal_JCP_2012.pdf.
- Wedel, M., & Pieters, R. A review of eye-tracking research in marketing. Review of Marketing Research. 2017, 4(1), 123-147. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9a52501bf7a3737f44836f63f3b219f24c8ecc02#page=144.
- Harris, J. M., Ciorciari, J., & Gountas, J. Consumer neuroscience for marketing researchers. Journal of consumer behaviour, 2018, 17(3), 239-252. https://www.academia.edu/download/67825891/fullpdf.pdf.
- Soni, V. Adopting generative ai in digital marketing campaigns: An empirical study of drivers and barriers. Sage Science Review of Applied Machine Learning, 2023, 6(8), 1-15. https://journals.sagescience.org/index.php/ssraml/article/download/108/90.
- Dwivedi, Y. K., Hughes, D. L., & Ismagilova, E. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management. 2021, 57, 102-110. https://uobrep.openrepository.com/bitstream/handle/10547/623613/1_s2.0_S026840121930917X_main.pdf?sequence=4.
- Raghulan, A., & Jayanthi, N. Revolutionizing Marketing: How Ai is Transforming Customer Engagement. In International Conference on Digital Transformation in Business: Navigating the New Frontiers Beyond Boundaries (DTBNNF, 2024, (pp. 478-492). Atlantis Press. https://www.atlantis-press.com/article/126000484.pdf.
- Rodríguez Guzmán, M. M. Using generative AI tools to improve marketing communication: opportunities, challenges and best practices, Universitat Politècnica de València, 2024, https://riunet.upv.es/bitstream/handle/10251/207793/Rodriguez%20-%20Uso%20de%20herramientas%20de%20IA%20generativa%20para%20mejorar%20la%20comunicacion%20de%20marketing%20oportu....pdf?sequence=1.
- Divya, V., & Mirza, A. U. Transforming Content Creation: The Influence of Generative AI on a New Frontier. EXPLORING THE FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES, 143, 2024, https://www.researchgate.net/profile/Agha-Urfi-Mirza/publication/379654562_Exploring_the_Frontiers_of_Artificial_Intelligence_and_Machine_Learning_Technologies_CHAPTER_8_Transforming_Content_Creation_The_Influence_of_Generative_AI_on_a_New_Frontier/links/66138dd13d96c22bc77ada5f/Exploring-the-Frontiers-of-Artificial-Intelligence-and-Machine-Learning-Technologies-CHAPTER-8-Transforming-Content-Creation-The-Influence-of-Generative-AI-on-a-New-Frontier.pdf.
- Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivkin, N., & Kiddon, C. Towards federated learning at scale: System design. Proceedings of Machine Learning and Systems. 2019, 12(1), 374-388. https://doi.org/10.48550/arXiv.1902.01046. [CrossRef]
- Bishop, S. Influencer management tools: Algorithmic cultures, brand safety, and bias. Social media+ society, 2021, 7.1: 20563051211003066. https://journals.sagepub.com/doi/pdf/10.1177/20563051211003066.
- Kairouz, P., McMahan, H. B., Alizadeh, M., & Wei, H. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning. 2021, 14(1-2), 1-210. [CrossRef]
- Dwork, C., & Roth, A. The Algorithmic Foundations of Differential Privacy. Foundations and Trends in Theoretical Computer Science. 2014, 9(3-4), 211-407. [CrossRef]
- Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 308-318). 2016. [CrossRef]
- Geyer, R. C., Klein, T., & Nabi, M. Differentially private federated learning: A client-level perspective. In Advances in Neural Information Processing Systems (NeurIPS). 2017. https://arxiv.org/abs/1712.07557.
- Jordon, J., Yoon, J., & van der Schaar, M. PATE-GAN: Generating synthetic data with differential privacy guarantees. In International Conference on Learning Representations (ICLR). 2018. https://arxiv.org/abs/1805.01993.
- Li, H., & Zhang, N. Computer Vision Models for Image Analysis in Advertising Research. Journal of Advertising, 2024, 1-20. https://www.tandfonline.com/doi/pdf/10.1080/00913367.2024.2407644.
- Du, Z., Liu, J., & Wang, T. Augmented reality marketing: A systematic literature review and an agenda for future inquiry. Frontiers in psychology, 2022, 13, 925963. https://www.frontiersin.org/articles/10.3389/fpsyg.2022.925963/pdf.
- Sysoiev, V., Kuchina, S., Kitchenko, O., Romanchik, T., & Kuchin, A. The Creation of Dynamic Visual Objects as a Factor for Optimizing Advertisements in E-Commerce. Jurnal The Messenger, 2023, 14(1), 57-75. https://core.ac.uk/download/pdf/577813755.pdf.
- Chen, W., Qiu, X., Cai, T., Dai, H. N., Zheng, Z., & Zhang, Y. Deep reinforcement learning for Internet of Things: A comprehensive survey. IEEE Communications Surveys & Tutorials, 2021, 23(3), 1659-1692. https://www.comp.hkbu.edu.hk/~henrydai/pubs/Deep_Reinforcement_Learning_for_Internet_of_Things_A_Comprehensive_Survey.pdf.
- Zhang, S. Utilizing Reinforcement Learning Bandit Algorithms in Advertising Optimization. Highlights in Science, Engineering and Technology, 2024, 94, 195-200, https://drpress.org/ojs/index.php/HSET/article/download/20574/20133.
- Sahu, M. K. Machine Learning for Personalized Marketing and Customer Engagement in Retail: Techniques, Models, and Real-World Applications. Journal of Artificial Intelligence Research and Applications, 2022, 2(1), 219-254. https://aimlstudies.co.uk/index.php/jaira/article/download/206/197.
- Raghavendra, G. S., & Lingam, M. S. Blockchain Technology In Digital Advertising: Transparency, Fraud Prevention And Trust. Educational Administration: Theory And Practice, 2024, 30(4), 3041-3049. https://kuey.net/index.php/kuey/article/download/1477/1074.
- Rabby, F., Chimhundu, R., & Hassan, R. Blockchain technology transforms digital marketing by growing consumer trust. Transformations Through Blockchain Technology: The New Digital Revolution, 2022, 265-289. https://www.researchgate.net/profile/Fazla_Rabby4/publication/359068019_Blockchain_Technology_Transforms_Digital_Marketing_by_Growing_Consumer_Trust/links/6375387754eb5f547cda1946/Blockchain-Technology-Transforms-Digital-Marketing-by-Growing-Consumer-Trust.pdf.
- Joo, M., Kim, S. H., Ghose, A., & Wilbur, K. C.Designing Distributed Ledger technologies, like Blockchain, for advertising markets. International Journal of Research in Marketing, 2023, 40(1), 12-21. https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=4194180.
- Naqvi, M. H. A., Hongyu, Z., Naqvi, M. H., & Kun, L. Impact of service agents on customer satisfaction and loyalty: mediating role of Chatbots. Journal of Modelling in Management, 2024, 19(2), 470-491. https://www.researchgate.net/profile/Mishal-Naqvi/publication/373483868_Impact_of_service_agents_on_customer_satisfaction_and_loyalty_mediating_role_of_Chatbots/links/66fb6abe553d245f9e45d25e/Impact-of-service-agents-on-customer-satisfaction-and-loyalty-mediating-role-of-Chatbots.pdf.
- Hartmann, J., & Netzer, O. Natural language processing in marketing. In Artificial intelligence in marketing, 2023, 20, pp. 191-215). Emerald Publishing Limited. https://business.columbia.edu/sites/default/files-efs/citation_file_upload/HartmannNetzer2023.pdf.
- Siham, B.; Boumadiene, B; Abdelhamid, M. Symbiosis or Surveillance? Exploring the Relationship between AI, Big Data, and Consumer Privacy in Digital Marketing. Symbiosis, 2024, 9.04: 192-208. https://www.asjp.cerist.dz/en/downArticle/351/9/4/253534.
- Poria, S., Majumder, N., Mihalcea, R., & Hovy, E. Emotion recognition in conversation: Research challenges, datasets, and recent advances. IEEE access, 2019, 7, 100943-100953. https://ieeexplore.ieee.org/iel7/6287639/6514899/08764449.pdf.
- Singh, C. B., & Ahmed, M. M. Revolutionizing digital marketing: the impact of artificial intelligence on personalized campaigns, International Research Journal of Business and Social Science, 2024. https://www.researchgate.net/profile/Chandra-Bhooshan-Singh/publication/380270138_Publishers_Revolutionizing_digital_marketing_the_impact_of_artificial_intelligence_on_personalized_campaigns_ARTICLE_HISTORY/links/6633704f7091b94e93ea8dff/Publishers-Revolutionizing-digital-marketing-the-impact-of-artificial-intelligence-on-personalized-campaigns-ARTICLE-HISTORY.pdf.
- Wang, R., Bush-Evans, R., Arden-Close, E., Bolat, E., McAlaney, J., Hodge, S., ... & Phalp, K. Transparency in persuasive technology, immersive technology, and online marketing: Facilitating users’ informed decision making and practical implications. Computers in Human Behavior, 2023, 139, 107545. https://www.sciencedirect.com/science/article/pii/S074756322200365X.
- Yu, W., Zhu, C., Li, Z., Hu, Z., Wang, Q., Ji, H., & Jiang, M. A survey of knowledge-enhanced text generation. ACM Computing Surveys, 2022, 54(11s), 1-38. https://arxiv.org/pdf/2010.04389.
- Rana, J., Gaur, L., Singh, G., Awan, U., & Rasheed, M. I. Reinforcing customer journey through artificial intelligence: a review and research agenda. International Journal of Emerging Markets, 2022, 17(7), 1738-1758. https://core.ac.uk/download/pdf/483413717.pdf.
- Kaminskas, M., & Bridge, D. Diversity, serendipity, novelty, and coverage: a survey and empirical analysis of beyond-accuracy objectives in recommender systems. ACM Transactions on Interactive Intelligent Systems (TiiS), 2016, 7(1), 1-42. http://old-eclass.uop.gr/modules/document/file.php/DIT104/%CE%92%CE%B9%CE%B2%CE%BB%CE%B9%CE%BF%CE%B3%CF%81%CE%B1%CF%86%CE%AF%CE%B1%202017-2018/Diversity,%20Serendipity,%20Novelty,%20and%20Coverage.pdf.
- Zhang, S., Yao, L., Sun, A., & Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM computing surveys (CSUR), 2019, 52(1), 1-38. https://arxiv.org/pdf/1707.07435.
- Wu, L., Quan, C., Li, C., Wang, Q., Zheng, B., & Luo, X. A context-aware user-item representation learning for item recommendation. ACM Transactions on Information Systems (TOIS), 2019, 37(2), 1-29. https://arxiv.org/pdf/1712.02342.
- Liu, B. Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University Press. 2020. http://tcci.ccf.org.cn/conference/2014/ppts/adl/adl52-l3.pdf.
- Anttila, M. M. Research on Search Engine Optimization Strategy for voice search. International Journal of Economics, Business and Management Research, 2021, 5(11). https://e-research.siam.edu/wp-content/uploads/2022/01/IMBA-2021-IS-Research-on-Search-Engine-Optimization-Strategy-for-Voice-Search.pdf.
- Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C. Social media analytics—Challenges in topic discovery, data collection, and data preparation. International Journal of Information Management. 2018, 59, 102350. https://www.sciencedirect.com/science/article/pii/S0268401217308526.
- Smith, K. T. Digital marketing strategies that Millennials find appealing, motivating, or just annoying. Journal of Strategic marketing, 2011, 19(6), 489-499. https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=1692443.
- Agrawal, S., & Nadakuditi, S. AI-based Strategies in Combating Ad Fraud in Digital Advertising: Implementations, and Expected Outcomes. International Journal of Information and Cybersecurity, 2023, 7(5), 1-19. https://publications.dlpress.org/index.php/ijic/article/download/93/85.
- Nedić, B. Gartner’s top strategic technology trends. Proceedings on Engineering Sciences, 2019, 1(2), 433-442. http://www.cqm.rs/2019/papers_iqc/41.pdf.
- Pathak, A. R., Pandey, M., & Rautaray, S. Application of deep learning for object detection. Procedia computer science, 2018, 132, 1706-1717. https://www.sciencedirect.com/science/article/pii/S1877050918308767/pdf?md5=d31a961271e33c7dc31f12bb04bb66ae&pid=1-s2.0-S1877050918308767-main.pdf.
- Li, F., Zhu, L., Wang, T., Li, J., Zhang, Z., & Shen, H. T. Cross-modal retrieval: a systematic review of methods and future directions, arXiv preprint arXiv:2308.14263, 2023, https://arxiv.org/pdf/2308.14263.
- Zurawicki, L. Neuromarketing: Exploring the brain of the consumer, Springer Science & Business Media, 2010. https://books.google.com/books?hl=el&lr=&id=gy45SfmuxK4C&oi=fnd&pg=PR3&dq=Zurawicki,+L.+Neuromarketing:+Exploring+the+brain+of+the+consumer&ots=1uSrNZgK92&sig=-CdWnIpU0RBAxiStV1V9HFN7SPU.
- Pluta-Olearnik, M., & Szulga, P. The importance of emotions in consumer purchase decisions—A neuromarketing approach. Marketing of Scientific and Research Organizations, 2022, 44(2), 87-104. https://sciendo.com/pdf/10.2478/minib-2022-0010.
- Ariely, D., & Berns, G. S. Neuromarketing: the hope and hype of neuroimaging in business. Nature reviews neuroscience, 2010, 11(4), 284-292. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875927/.
- Hubert, M., & Kenning, P. A current overview of consumer neuroscience. Journal of Consumer Behaviour: An International Research Review, 2008, 7(4-5), 272-292. https://www.academia.edu/download/50831188/A_current_overview_of_consumer_neuroscie20161211-21751-y07wk8.pdf.
- Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G., Hadfield, G., ... & Anderljung, M. Toward trustworthy AI development: mechanisms for supporting verifiable claims. arXiv preprint arXiv:2004.07213, 2020, https://arxiv.org/pdf/2004.07213.pdf%C2%A0&hellip.
- El Ouadrhiri, A., & Abdelhadi, A. Differential privacy for deep and federated learning: A survey. IEEE access, 2022, 10, 22359-22380. https://ieeexplore.ieee.org/iel7/6287639/6514899/09714350.pdf.
- Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. A survey on bias and fairness in machine learning. ACM computing surveys (CSUR), 2021, 54(6), 1-35. https://arxiv.org/pdf/1908.09635.pdf?fbclid=IwAR3pBovhUWB420mkGiw5ehZ7dHOg4b02n5g2XbDQf13nEoaHwBbNt6KSfRQ.
- Barocas, S., Hardt, M., & Narayanan, A. Fairness and machine learning: Limitations and opportunities. MIT press. 2023. https://fairmlbook.org/pdf/fairmlbook.pdf.
- Zhou, B., & Zou, T. Competing for recommendations: The strategic impact of personalized product recommendations in online marketplaces. Marketing Science, 2023, 42(2), 360-376. https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=3761350.
- Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information fusion, 2020, 58, 82-115. https://arxiv.org/pdf/1910.10045.
- Binns, R. Fairness in machine learning: Lessons from political philosophy. In Conference on fairness, accountability and transparency, PMLR. 2018, pp. 149-159. http://proceedings.mlr.press/v81/binns18a/binns18a.pdf.
- Kotler, P., Kartajaya, H., & Setiawan, I. Marketing 6.0: the future is immersive. John Wiley & Sons, 2023. https://elib.vku.udn.vn/bitstream/123456789/4084/1/2024.%20Marketing%206.0-The%20Future%20Is%20Immersive%20%28English%29.pdf.
- Boddu, R. S. K., Santoki, A. A., Khurana, S., Koli, P. V., Rai, R., & Agrawal, A. An analysis to understand the role of machine learning, robotics and artificial intelligence in digital marketing. Materials Today: Proceedings, 2022, 56, 2288-2292. https://e-tarjome.com/storage/btn_uploaded/2022-02-02/1643779080_12308-English.pdf.
- Israeli, A., & Ascarza, E. Algorithmic bias in marketing. Harvard Business School Technical Note, 2020, 521-020. https://www.hbs.edu/faculty/Pages/item.aspx?num=59008.
- Lee, K. F. AI superpowers: China, Silicon Valley, and the new world order. Houghton Mifflin, 2018. https://theyonseijournal.com/wp-content/uploads/2020/07/Book-Review-Samuel-Gardner.pdf.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
