Submitted:
09 April 2024
Posted:
11 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Optimization of Niosomes Encapsulated ClotrimazolE by Experimental Design
2.3. Preparation of Niosomes Encapsulated Clotrimazole
2.4. Preparation of Niosomal Based SubgingivaL Film
2.5. Characterization of Niosomal Based Subgingival FiLm
2.5.1. Solubility Studies
2.5.2. Scanning Electron Microscopy (SEM)
2.5.3. Spectral Characterization of drug by UV Spectroscopy
2.5.3. (a) Determination of Maximum Wavelength
2.5.3. (b) Calibration Curve of Drug
2.5.4. Fourier Transform-Infrared Spectroscopy (FTIR)
2.5.5. Differential Scanning Calorimeter (DSC)
2.5.6. Percent Drug Entrapment Efficiency (%EE)
2.5.7. Particle Size, Polydispersity Index and Zeta Potential
2.5.8. Transmission Electron Microscopy (TEM)
2.5.9. Antifungal Activity
2.5.10. Drug Content
2.5.11. Percent Moisture Uptake
2.5.12. Percent Moisture Content
2.5.13. Thickness Measurement
2.5.14. Weight Determination
2.5.15. Tensile Strength
2.5.16. Folding Endurance
2.5.17. In-Vitro Diffusion and Drug Release
2.5.18. Stability Studies
3. Results and Discussions
3.1. Optimization of Niosomes
3.2. Characterization of Niosomal Based Subgingival Film
3.2.1. Solubility Studies
3.2.2. Scanning Electron Microscopy (SEM)
3.2.3. Spectral Characterization of Drug by UV Spectroscopy
3.2.4. Fourier Transform-Infrared Spectroscopy (FTIR)
3.2.5. Differential Scanning Calorimeter (DSC)
3.2.6. Particle Size, Polydispersity Index and Zeta Potential
3.2.7. Transmission Electron Microscopy (TEM)
3.2.8. Anti-FUNGAL Activity
3.2.9. In-Vitro Diffusion and Drug Release
3.2.10. Physico-Chemical Properties of Niosomal film
3.2.11. Stability Studies
4. Conclusion
Acknowledgments
References
- Barot, T.; Rawtani, D.; Kulkarni, P. Development, characterization and in vitro–in vivo evaluation of Farnesol loaded niosomal gel for applications in oral candidiasis treatment. Heliyon 2021, 7, e07968. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, A. Everything You Need to Know About Oral Thrush. Available online: https://www.healthline.com/health/thrush (accessed on 24 April 2019).
- Shirsand, S.B.; Kumar, G.R.; Keshavshetti, G.G.; Bushetti, S.S.; Swamy, P.V. Formulation and Evaluation of Clotrimazole Niosomal Gel for Tropical Application. RGUHS Journal of Pharmaceutical Sciences 2015, 5, 32–38. [Google Scholar] [CrossRef]
- Shwetha, K.; Bharath, S. Design of Chlorhexidine Loaded Periochip. SASTech- Technical Journal of RUAS 2015, 14, 37–39. [Google Scholar]
- Crowley, P.; Gallagher, H. Clotrimazole as a pharmaceutical: Past, present and future. J. Appl. Microbiol. 2014, 117, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.A.; Srinivas, S.; Hemanth, A.; Anitha, M. Preparation and Evaluation of Niosomes Containing Aceclofenac. Digest Journal of Nanomaterials and Biostructures 2010, 5, 249–254. [Google Scholar]
- Ruckmani, K.; Sankar, V. Formulation and Optimization of Zidovudine Niosomes. Aaps Pharmscitech 2010, 11, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Sathyavathi, V.; Hasansathali, A.A.; Ilavarasan, R.; Sangeetha, T. Formulation and Evaluation of Niosomal in-situ Gel Ocular Delivery System of Brimonidine Tartarate. International Journal of Life Science and Pharma Research 2012, 2, 82–95. [Google Scholar]
- Sharma, S.K.; Chauhan, M.; Anilkumar, N. Span 60 Niosomal Oral Suspension of Fluconazole: Formulation and In-vitro Evaluation. Asian journal of pharmaceutical research and health care 2009, 1, 142–156. [Google Scholar]
- Zarei, M.; Norouzian, D.; Chiani, M.; Ebrahimi, H.; Mohammadi, M.; Akbarzadeh, A. Advantages of Paclitaxel-Loaded Nano Niosomes to Nanoliposomal Formulation: An In-vitro Study. International Journal of Life Sciences Biotechnology and Pharma Research 2013, 2, 335–342. [Google Scholar]
- Jadon, P.S.; Gajbhiye, V.; Jadon, R.S.; Gajbhiye, K.R.; Ganesh, N. Enhanced Oral Bioavailability of Griseofulvin via Niosomes. American Association of Pharmaceutical Scientists 2009, 10, 1186–1192. [Google Scholar] [CrossRef]
- Penhasi, A.; Reuveni, A.; Shoshani, E. Local Therapeutic Release device. United States Patent 0100192 A1, 2012. [Google Scholar]
- Singh, A.; et al. Development and Characterization of Moxifloxacin HCl Loaded Dental Strips for Treatment of Periodontitis. Journal of Pharmacy Research 2010, 3, 2836–2839. [Google Scholar]
- Belsen David, J.; Manavalan, R.; Parthasarathy, V. Effective Antimicrobial Therapy of Periodontitis- An Overview of Dental/Periodontal Chip. International Journal of Pharmaceutical Development & Technology 2011, 1, 11–19. [Google Scholar]
- Reddy, S.H.K.; Reddy, S.A. Periodontal treatment by local drug delivery using resorbable base materials; in-vitro comparative study assessing drug delivery properties of cellulose acetate and alginate strips. Indian Journal of Dental Advancements 2012, 4, 744–749. [Google Scholar]
- Bhardwaj, V.; Shukla, V.; Goyal, N.; Malviya, R.; Sharma, P.K. Formulation and Evaluation of Different Concentration Chitosan based Periodontal Film of Ofloxacin. Journal of Pharmacy Research 2010, 3, 528–532. [Google Scholar]
- Reddy, N.R.; Ravindra, S.; Kumar, T.P. In-vitro release of tinidazole from polyvinyl alcohol and polyvinylpyrrolidine strips- local drug delivery system to treat periodontal pockets. International Journal of Dental Clinics 2011, 3, 26–28. [Google Scholar]
- Kumar, M.; Prabhushankar, G.; Sathesh Babu, P. Formulation and In-vitro Evaluation of Periodontal Films Containing Metronidazole. International Journal of Pharm Tech Research 2010, 2, 2188–2193. [Google Scholar]
- Sudeep, K.; et al. Formulation and In-vitro Evaluation of Clarithromycin Periodontal Strips for Periodontitis. International Research Journal of Pharmacy 2012, 3, 265–267. [Google Scholar]
- Prabhushankar, G.L.; Gopalkrishna, B.; Manjunatha, K.M.; Girisha, C.H. Formulation and Evaluation of Levofloxacin Dental Films for Periodontitis. International Journal of Pharmacy and Pharmaceutical Sciences 2010, 2, 162–168. [Google Scholar]
- Perugini, P.; Genta, I.; Conti, B.; Modena, T.; Pavanetto, F. Periodontal delivery of ipriflavone: New chitosan/PLGA film delivery system for a lipophilic drug. Int. J. Pharm. 2003, 252, 1–9. [Google Scholar] [CrossRef]
- Golomb, G.; Friedman, M.; Soskolne, A.; Stabholz, A.; Sela, M. Sustained Release Device Containing Metronidazole for Periodontal Use. J. Dent. Res. 1984, 63, 1149–1153. [Google Scholar] [CrossRef]
- Stasiewicz, M.; Karpiński, T.M. The oral microbiota and its role in carcinogenesis. Semin. Cancer Biol. 2021, 86, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wei, M.; He, S.; Yuan, W.-E. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics 2019, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Kazi, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: A future of targeted drug delivery systems. Journal of Advanced Pharmaceutical Technology & Research 2010, 1, 374–380. [Google Scholar]
- Saini, P.; Kumar, A.; Sharma, P.; Visht, S. Fast Disintegrating Oral Films: A Recent Trend of Drug Delivery. Int. J. Drug Dev. & Res. 2012, 4, 80–94. [Google Scholar]
- Soskolne, W.A. Subgingival Delivery of Therapeutic Agents in the Treatment of Periodontal Diseases. Crit. Rev. Oral Biol. Med. 1997, 8, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Chandramouli, M.; Shivalingappa, R.P.; Basavanna, V.; Doddamani, S.; Shanthakumar, D.C.; Nagarajaiah, S.R.; Ningaiah, S. Oral Thin-films from Design to Delivery: A Pharmaceutical Viewpoint. Biointerface Research in Applied Chemistry 2022, 13, 2023. [Google Scholar]
- Almangour, T.A.; Kaye, K.S.; Alessa, M.; Eljaaly, K.; Aleanizy, F.S.; Alsharidi, A.; Al Majid, F.M.; Alotaibi, N.H.; Alzeer, A.A.; Alnezary, F.S.; et al. Efficacy of clotrimazole for the management of oral candidiasis: A meta-analysis of randomized clinical trials. Saudi Pharm. J. 2021, 29, 315–323. [Google Scholar] [CrossRef]
- Keservani, R.K.; Gautam, S.P. Skeletal muscle relaxant activity of different formulation of span 60 niosomes. Ars Pharm. (Internet) 2021, 63, 32–44. [Google Scholar] [CrossRef]
- AbuElfadl, A.M.; Boughdady, M.; Meshali, M. New Peceol™/Span™ 60 Niosomes Coated with Chitosan for Candesartan Cilexetil: Perspective Increase in Absolute Bioavailability in Rats. Int. J. Nanomed. 2021, 16, 5581–5601. [Google Scholar] [CrossRef]
- Ammar, H.O.; Haider, M.; Ibrahim, M.; El Hoffy, N.M. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv. 2017, 24, 414–421. [Google Scholar] [CrossRef]
- Mirzaie, A.; Peirovi, N.; Akbarzadeh, I.; Moghtaderi, M.; Heidari, F.; Yeganeh, F.E.; Noorbazargan, H.; Mirzazadeh, S.; Bakhtiari, R. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorg. Chem. 2020, 103, 104231. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.K.S.H.A.Y.; Gupta, V.I.S.H.A.L.; Guda, D.V.; Sivadasu, P.R.A.V.E.E.N. Formulation And Development Of In Situ Forming Gel For The Treatment Of Oral Thrush. Asian J. Pharm. Clin. Res. 2018, 11, 342–346. [Google Scholar] [CrossRef]
- Vainionpää, A.; Tuomi, J.; Kantola, S.; Anttonen, V. Neonatal thrush of newborns: Oral candidiasis? Clin. Exp. Dent. Res. 2019, 5, 580–582. [Google Scholar] [CrossRef] [PubMed]
- Takakura, N.; Sato, Y.; Ishibashi, H.; Oshima, H.; Uchida, K.; Yamaguchi, H.; Abe, S. A Novel Murine Model of Oral Candidiasis with Local Symptoms Characteristic of Oral Thrush. Microbiol. Immunol. 2003, 47, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Ellepola, A.N.; Samaranayake, L.; Khan, Z. Extracellular phospholipase production of oral Candida albicans isolates from smokers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimycotics. Braz. J. Microbiol. 2016, 47, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Awen, B.Z.; Katakam, P.; Rao, C.B.; Mohammed, S.A.; Alokbe, T.O. Design and in-vitro evaluation of controlled release cephalexin subgingival films using natural biodegradable polymer. Recent Research in Science and Technology 2010, 2, 06–11. [Google Scholar]
- Nawaz, A.; Jan, S.U.; Khan, N.; Hussain, A.; Khan, G.M. Formulation and in vitro evaluation of clotrimazole gel containing almond oil and tween 80 as penetration enhancer for topical application. Pak J Pharm Science 2013, 26, 617–22. [Google Scholar]
- Bash, B.N.; Prakasam, K. Formulation and evaluation of gel containing fluconazole- antifungal agent. Int J Drug Dev Research 2011, 3, 119–27. [Google Scholar]
- Balata, G.; Bakera, R.; Mahdi, M. Improvement of solubility and dissolution properties of clotrimazole by solid dispersions and inclusion complexes. Indian J. Pharm. Sci. 2011, 73, 517–26. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, A.; Shokri, H.; Darabi, M.; Kashani, A.; Mansouri, P.; Naser, A. Comparative study on the effects of a new antifungal lotion (Artemisia sieberi essential oil) and a clotrimazole lotion in the treatment of pityriasis versicolor. J. Med Mycol. 2009, 19, 17–21. [Google Scholar] [CrossRef]
- Sudeep, K.; Gnanaranjan, G.; Preeti, K. Periodontal chip: An adjunct to conventional surgical treatment. Int. J. Drug Res. Tech. 2012, 2, 411–421. [Google Scholar]
- Ali, M.S.; Ali, J.; Ahuja, A.; Alam, M.S. Formulation and characterization of Dental Film Containing Ofloxacin. Journal of Applied Pharmaceutical Science 2012, 2, 114–119. [Google Scholar]
- Umadevi, S.; Rohini, B.; Nithyapriya, S. Formulation and evaluation of ciprofloxacin dental films for periodontitis. J. Chem. Pharm. Res. 2012, 4, 2964–2971. [Google Scholar]
- Şenel, S.; İkinci, G.; Kaş, S.; Yousefi-Rad, A.; Sargon, M.; Hıncal, A. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int. J. Pharm. 2000, 193, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Rana, P.; Murthy, R.S.R. Formulation and evaluation of mucoadhesive buccal films impregnated with carvedilol nanosuspension: A potential approach for delivery of drugs having high first-pass metabolism. Drug Deliv. 2013, 20, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Bushetti, S.S.; Mane, P.P.; Kardame, S.S. Development and evaluation of mucoadhesive buccal films of nebivolol. RGUHS J Pharm Science 2011, 1, 157–62. [Google Scholar]
- Chaudhary, R.; Qureshi, M.S.; Patel, J.; Panigrahi, U.P.; Giri, I.C. Formulation, development and in-vitro evaluation of mucoadhesive buccal patches of methotrexate. Int J Pharma Sci Res 2010, 1, 357–65. [Google Scholar]
- Giovino, C.; Ayensu, I.; Tetteh, J.; Boateng, J.S. Development and characterization of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): A potential approach for buccal delivery of macromolecules. Int J Pharm 2012, 428, 143–51. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.C.; Wang, L.H.; Lin, T.C.; Chang, Y.T.; Lee, M.C.; Chiang, C.P. The impact of integrating oral health education into a microbiology curriculum for students of department of life science. Journal of Dental Sciences, 2022; 17, 1253–1259. [Google Scholar]
- Zijnge, V.; Ammann, T.; Thurnheer, T.; Gmür, R. Subgingival biofilm structure. Periodontal Disease 2011, 15, 1–16. [Google Scholar]
- Radaic, A.; Kapila, Y.L. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Computational and Structural Biotechnology Journal 2021, 19, 1335–1360. [Google Scholar] [CrossRef]
- Davies, A.N.; Brailsford, S.R.; Beighton, D.; Shorthose, K.; Stevens, V.C. Oral Candidosis in Community-Based Patients with Advanced Cancer. Journal of Pain and Symptom Management 2008, 35, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Delaney, C.; O'Donnell, L.E.; Kean, R.; Sherry, L.; Brown, J.L.; Calvert, G.; Nile, C.J.; Cross, L.; Bradshaw, D.J.; Brandt, B.W.; et al. Interkingdom interactions on the denture surface: Implications for oral hygiene. Biofilm 2019, 1, 100002. [Google Scholar] [CrossRef] [PubMed]
- Moyes, D.L.; Runglall, M.; Murciano, C.; Shen, C.; Nayar, D.; Thavaraj, S.; Kohli, A.; Islam, A.; Mora-Montes, A.; Challacombe, H.; et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of candida albicans in epithelial cells. Cell Host and Microbe 2010, 8, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Peña, D.E.R.; Innocentini, L.M.A.R.; Saraiva, M.C.P.; Lourenco, A.G.; Motta, A.C.F. Oral candidiasis prevalence in human immunodeficiency virus-1 and pulmonary tuberculosis coinfection: A systematic review and meta-analysis. Microbial Pathogenesis 2021, 150, 1–6. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Mima, E.G.; Pavarina, A.C.; Dovigo, L.N.; Vergani, C.E.; de Souza Costa, C.A.; Kurachi, C.; Bagnato, V.S. Susceptibility of Candida albicans to photodynamic therapy in a murine model of oral candidosis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology 2010, 109, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Shodo, R.; Yamazaki, K.; Katsura, K.; Ueki, Y.; Nakano, T.; Oshikane, T.; Yamana, N.; Tanabe, S.; Utsunomiya, S.; et al. The association between oral candidiasis and severity of chemoradiotherapy-induced dysphagia in head and neck cancer patients: A retrospective cohort study. Clinical and Translational Radiation Oncology 2020, 20, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Hato, H.; Sakata, K.I.; Sato, J.; Hasebe, A.; Yamazaki, Y.; Kitagawa, Y. Factor associated with oral candidiasis caused by co-infection of Candida albicans and Candida glabrata: A retrospective study. Journal of Dental Sciences 2022, 17, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
- He, X.S.; Shi, W.Y. Oral microbiology: Past, present and future. International journal of oral science 2009, 1, 47–58. [Google Scholar] [CrossRef]
- Fellows, J.L.; Atchison, K.A.; Chaffin, J.; Chávez, E.M.; Tinanoff, N. Oral Health in America: Implications for dental practice. Journal of the American Dental Association 2022, 153, 601–609. [Google Scholar] [CrossRef]
- das Chagas, M.S.; Portela, M.B.; Cerqueira, D.F.; de Souza, I.P.R.; Soares, R.M.; Castro, G.F. Reduction of Candida species colonization in the oral cavity of children infected with human immunodeficiency virus after dental treatment. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology 2009, 108, 383–388. [Google Scholar] [CrossRef]
- AAbullais, S.S.; Perla, N.; Shamsudeen, S.M.; AlShahrani, M.Y.; Ahmad, I.; Baba, S.M.; Khateeb, S.U.; AlQahtani, N.A. Association of oral candidal carriage, candidal density and CD4 count among normal, HIV patients with HAART and without HAART. Journal of King Saud University – Science 2022, 34, 102010. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Z.; He, X. Influence of fixed orthodontic appliances on the change in oral Candida strains among adolescents. Journal of Dental Sciences 2016, 11, 17–22. [Google Scholar] [CrossRef]
- Ahmed, M.G.; et al. Preparation and Evaluation of Periodontal Strips of Gatifloxacin for Periodontal Diseases. International Journal of Pharma and Bio Sciences 2010, 1, 1. [Google Scholar]
- Addy, M.; Hassan, H.; Moran, J.; Wade, W.; Newcombe, R. Use of Antimicrobial Containing Acrylic Strips in the Treatment of Chronic Periodontal Disease. J. Periodontol. 1988, 59, 557–564. [Google Scholar] [CrossRef]
- Hu, C.; Rhodes, D.G. Proniosomes: A Novel Drug Carrier Preparation. International Journal of Pharmaceutics 1999, 185, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Singh, S.K.; Syan, N.; Mathur, P.; Valecha, V. Nanoparticle vesicular systems: A versatile tool for drug delivery. Journal of Chemical and Pharmaceutical Research 2010, 2, 496–509. [Google Scholar]
- Mujoriya, R.Z.; Dhamande, K.; Bodla, R.B. Niosomal Drug Delivery System- A Review. International Journal of Applied Pharmaceutics 2011, 3, 7–10. [Google Scholar]
- Chavda, Y.; et al. Niosome and Proniosome-Vesicular Structured Dosage Form for Targeted Drug Delivery System. Journal of Advanced Pharmaceutical Research 2011, 2, 175–184. [Google Scholar]
- Abhinav, K.; Lal, P.J.; Amit, J.; Vishwabhan, S. Review on Niosomes as Novel Drug Delivery System. International Research Journal of Pharmacy 2011, 2, 61–65. [Google Scholar]
- Sankhyan, A.; Pawar, P. Recent Trends in Niosome as Vesicular Drug Delivery System. Journal of Applied Pharmaceutical Science 2012, 2, 20–32. [Google Scholar]
- Pawar, S.D.; Pawar, R.G.; Kodag, P.P.; Waghmare, A.S. Niosome: A unique drug delivery system. International Journal of Biology, Pharmacy and Allied Sciences 2012, 1, 406–416. [Google Scholar]
- Udasi, T.A.; Wankhade, V.P.; Ingle, L.M.; Atram, S.; Tapar, K.K. Proniosome: A Novel Approach to Vesicular Drug Delivery System. International Journal of Pharmacy and Pharmaceutical Science Research 2012, 3, 1–6. [Google Scholar]
- Sharma, R.; Mahatma, R.; Bharkatiya, M.; Goyal, A. Niosomes- as potential drug delivery system. International Journal of Drug Research and Technology 2012, 2, 422–429. [Google Scholar]
- Diljyot, K. Niosomes: A new approach to targeted drug delivery. International Journal of Pharmaceutical and Phytopharmacological Research 2012, 2, 53–59. [Google Scholar]
- Nagaraju, R.; Udupa, N.; Mathew, J.; Varma, B.R.R. Biodegradable Dental Implants of Ciprofloxacin β-cyclodextrin inculsion complex in treatment of periodontitis. Indian Journal of Experimental Biology 1998, 37, 305–307. [Google Scholar]
- Lee, J.Y.; Seo, M.H.; Choi, I.J.; Kim, J.H.; Pai, C.M. Locally Administrable, Biodegradable and Sustained Release Pharmaceutical Composition for Periodontitis and Process for Preparation Thereof. United. United States Patent 6, 193, 994 B1, 2001. [Google Scholar]
- Rahman, S.; Ahuja, A.; Ali, J.; Khar, R.K. Site-Specific Delivery Systems for the treatment of Periodontitis. Indian Journal of Pharmaceutical Sciences 2002, 65, 106–112. [Google Scholar]
















| Factors | Lower Level (-) |
Higher Level (+) |
|---|---|---|
| A) Speed of rotation | 80 | 130 |
| B) Cholesterol: Surfactant ratio | 1:2 | 1:3 |
| C) Hydration Time | 30 mins | 60 mins |
| D) Temperature | 40ᵒC | 45ᵒC |
| E) Amount of hydration solvent | 10 ml | 20 ml |
| F) Dummy | - | + |
| G) Dummy | - | + |
| Run | Speed of Rotation (rpm) | Cholesterol: Surfactant ratio | Hydration Time (mins) | Temperature (ᵒC) | Amount of Hydration Solvent (ml) | Dummy | Dummy | Entrapment Efficiency (%) |
|---|---|---|---|---|---|---|---|---|
| 1 | 130 | 1:1:2 | 30 | 45 | 10 | + | + | 85.14 |
| 2 | 130 | 1:1:3 | 30 | 40 | 20 | - | + | 69.92 |
| 3 | 130 | 1:1:3 | 60 | 40 | 10 | + | - | 78.40 |
| 4 | 80 | 1:1:3 | 60 | 45 | 10 | - | + | 88.46 |
| 5 | 130 | 1:1:2 | 60 | 45 | 20 | - | - | 83.64 |
| 6 | 80 | 1:1:3 | 30 | 45 | 20 | + | - | 85.00 |
| 7 | 80 | 1:1:2 | 60 | 40 | 20 | + | + | 81.64 |
| 8 | 80 | 1:1:2 | 30 | 40 | 10 | - | - | 84.88 |
| Run | Speed of Rotation (rpm) | Temperature (ᵒC) | Amount of Hydration Solvent (ml) | Entrapment Efficiency (%) |
|---|---|---|---|---|
| 1 | 80 | 40 | 10 | 84.32 |
| 2 | 130 | 40 | 10 | 78.10 |
| 3 | 80 | 45 | 10 | 77.80 |
| 4 | 130 | 45 | 10 | 78.94 |
| 5 | 80 | 40 | 20 | 71.12 |
| 6 | 130 | 40 | 20 | 79.52 |
| 7 | 80 | 45 | 20 | 77.46 |
| 8 | 130 | 45 | 20 | 67.36 |
| Source | F-value | p-value | |
|---|---|---|---|
| Model | 53.57 | 0.0184 | significant |
| A- Speed of rotation | 8.03 | 0.1052 | |
| B- Temperature | 23.11 | 0.0406 | |
| C- Amount of Hydration Solvent | 98.16 | 0.0100 | |
| AB | 21.69 | 0.0431 | |
| ABC | 116.87 | 0.0084 |
| Responses | R2 | Adjusted R2 | Predicted R2 | Adeq Precision |
|---|---|---|---|---|
| Entrapment Efficiency (%) | 0.9926 | 0.9741 | 0.8814 | 23.1561 |
| Response | Predicted by DOE | Experimental Data |
|---|---|---|
| Entrapment Efficiency (%) | 75.85 | 74.66 ± 3.12 |
| Expected Peak Range (cm-1) | Observed Peak Range of drug (cm-1) | Observed Peak Range of physical mixture (cm-1) | Functional Group |
|---|---|---|---|
| 3100-3000 | 3063.99 | 3063.99 | =C-H stretch |
| 1600-1400 | 1433.66 | 1466.44 | Aromatic C=C stretch |
| 1350-1200 | 1305.40 | 1276.90 | C-N stretch |
| 860-680 | 765.28 | 752.46 | Aromatic C-H bending |
| 1700-1500 | 1566.20 | 1566.20 | Aromatic C=C bending |
| 800-600 | 708.28 | 695.45 | C-Cl stretch |
| Release Model | Equation | Clotrimazole Film (R2) | Niosomal Film (R2) |
|---|---|---|---|
| Zero-order | Ct = C0 + K0t | 0.876 | 0.961 |
| First-order | log C = log C0 + Kt/2.303 | 0.885 | 0.957 |
| Korsmeyer-Peppas | Ktn = Mt/M∞ | 0.867 | 0.900 |
| Higuchi | Q = KH√t | 0.950 | 0.785 |
| Hixson- Crowell | Kt = C01/3–Ct1/3 | 0.882 | 0.959 |
| Parameters | Results |
|---|---|
| Thickness | 0.52 ± 0.03 mm |
| Drug Content | 90.82 ± 0.67 % |
| Weight Variation | 0.64 ± 0.21 gm |
| Tensile Strength | 1.62 ± 0.02 kg⁄cm2 |
| Folding Endurance | 250 ± 12 times |
| Percent Moisture Uptake | 20.47 ± 0.66 % |
| Percent Moisture Content | 40.25 ± 7.85 % |
| Parameters (Months) | Appearance | Drug Content % |
Entrapment Efficiency % |
|---|---|---|---|
| 5-8 ± 2ᵒC | |||
| 0 | White and Smooth | 91.44 | 79.08 |
| 1 | White and Smooth | 91.40 | 77.06 |
| 2 | White and Smooth | 90.88 | 75.60 |
| 3 | White and Smooth | 89.87 | 72.00 |
| 25 ± 2ᵒC | |||
| 0 | White and Smooth | 91.44 | 79.08 |
| 1 | White and Slightly Shrink | 91.25 | 78.40 |
| 2 | White and Slightly Shrink | 90.00 | 75.03 |
| 3 | White and Slightly Shrink | 89.02 | 72.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
