Submitted:
09 April 2024
Posted:
10 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material and Methods
2.1. Participants
2.2. Blood Samples
2.3. Biochemical Measurements
2.3.1. Glutathione Peroxidase
2.4. Selenium Intake
2.5. Serum Selenium Determination
2.6. Pregnancy Outcome Data
2.7. Statistical Analysis
3. Results
3.1. Participant Baseline Characteristics (Table 1)
3.2. Selenium Status during Gestation (Table 2)
|
T I N=27 |
T II N=27 |
T III N=27 |
p-value | |
|---|---|---|---|---|
| Se intake [µg/day] | 56.53±25.32 | 61.79±25.71 | 58.37±21.29 | NS |
| Se serum [µg/l] | 43.75±6.06 | 41.77±7.96 | 42.13±6.60 | NS |
| GPX [U/l] | 225.70±44.65 | 231.07±40.62 | 229.77±48.51 | NS |
3.3. Mean Values of Neonatal Outcome Measurements and Selenium Status in Normal and Complicated Pregnancy (Table 3)
|
Physiological pregnancy N=12 |
Pregnancy complications N=15 |
||
| Se intake [µg/day] | 52.93±16.36 | 63.67±27.94 | NS |
| Se serum [µg/l] | 44.50±6.71 | 40.99±6.70 | 0.029 |
| GPX [U/l] | 217.52±33.81 | 237.91±49.55 | NS |
| Body length[cm] | 53.08±3.20 | 53.80±2.62 | NS |
| Chest circumference [cm] | 32.91±2.15 | 33.53±1.50 | NS |
| Head circumference [cm] | 32.83±1.26 | 33.40±1.24 | NS |
| Birth weight [g] | 3231.60±619.50 | 3513.06±410.30 | NS |
| APGAR score at 1 minutes | 8.53±3.08 | 9.66±0.61 | NS |
| APGAR score at 5 minutes | 9.5±1.24 | 9.8±0.56 | NS |
| Gestational age at birth [weeks] | 38.66±1.30 | 40.0±1.51 | 0.005 |
3.4. Correlations Observed between Selenium Status Parameters and Neonatal Outcome Measurements during Normal and Complicated Pregnancy (Table 4)
| Correlations | T I | T II | T III | |||
| R | p-value | R | p-value | R | p-value | |
| Physiological pregnancy | ||||||
| Se intake vs body length | 0.481 | 0.019 | 0.090 | 0.748 | 0.047 | 0.884 |
| Se intake vs birth weight | 0.472 | 0.022 | 0.017 | 0.949 | 0.316 | 0.315 |
| Se intake vs chest circumference | 0.379 | 0.074 | -0.060 | 0.830 | -0.071 | 0.825 |
| Se intake vs head circumference | 0.247 | 0.255 | -0.247 | 0.374 | 0.111 | 0.730 |
| Se intake vs APGAR score at 1min. | 0.090 | 0.680 | 0.680 | 0.005 | 0.658 | 0.019 |
| Se intake vs APGAR score at 5 min. | 0.119 | 0.586 | 0.551 | 0.033 | 0.573 | 0.051 |
| Se intake vs gestational age | 0.093 | 0.671 | -0.153 | 0.584 | -0.279 | 0.379 |
| Se serum vs body length | 0.046 | 0.832 | -0.064 | 0.819 | 0.285 | 0.367 |
| Se serum vs birth weight | 0.033 | 0.878 | 0.078 | 0.779 | 0.239 | 0.453 |
| Se serum vs chest circumference | -0.018 | 0.931 | -0.027 | 0.922 | 0.203 | 0.524 |
| Se serum vs head circumference | 0.216 | 0.321 | -0.122 | 0.663 | 0.200 | 0.532 |
| Se serum vs APGAR score at 1min. | 0.150 | 0.494 | 0.212 | 0.447 | 0.496 | 0.100 |
| Se serum vs APGAR score at 5 min. | 0.122 | 0.578 | -0.133 | 0.635 | 0.286 | 0.365 |
| Se serum vs gestational age | -0.108 | 0.622 | -0.035 | 0.900 | -0.213 | 0.504 |
| GPX vs body length | 0.318 | 0.138 | 0.243 | 0.381 | 0.231 | 0.469 |
| GPX vs birth weight | 0.155 | 0.478 | 0.334 | 0.222 | 0.598 | 0.039 |
| GPX vs chest circumference | -0.008 | 0.970 | -0.022 | 0.936 | 0.225 | 0.481 |
| GPX vs head circumference | 0.212 | 0.329 | 0.173 | 0.537 | 0.155 | 0.628 |
| GPX vs APGAR score at 1min. | 0.132 | 0.545 | 0.650 | 0.008 | 0.055 | 0.863 |
| GPX vs APGAR score at 5 min. | -0.033 | 0.880 | 0.497 | 0.058 | -0.108 | 0.737 |
| GPX vs gestational age | -0.182 | 0.404 | -0.116 | 0.679 | 0.025 | 0.937 |
| Complicated pregnancy | ||||||
| Se intake vs body length | x | x | -0.281 | 0.375 | -0.133 | 0.634 |
| Se intake vs birth weight | x | x | -0.394 | 0.204 | -0.322 | 0.240 |
| Se intake vs chest circumference | x | x | -0.400 | 0.197 | -0.134 | 0.633 |
| Se intake vs head circumference | x | x | -0.102 | 0.752 | -0.168 | 0.548 |
| Se intake vs APGAR score at 1min. | x | x | -0.142 | 0.658 | 0.142 | 0.611 |
| Se intake vs APGAR score at 5 min. | x | x | -0.091 | 0.777 | -0.012 | 0.965 |
| Se intake vs gestational age | x | x | -0.618 | 0.032 | -0.083 | 0.766 |
| Se serum vs body length | x | x | 0.060 | 0.851 | -0.045 | 0.871 |
| Se serum vs birth weight | x | x | 0.309 | 0.327 | 0.039 | 0.889 |
| Se serum vs chest circumference | x | x | 0.392 | 0.206 | 0.272 | 0.326 |
| Se serum vs head circumference | x | x | 0.510 | 0.089 | 0.587 | 0.021 |
| Se serum vs APGAR score at 1min. | x | x | 0.046 | 0.887 | -0.096 | 0.731 |
| Se serum vs APGAR score at 5 min. | x | x | 0.252 | 0.428 | 0.211 | 0.449 |
| Se serum vs gestational age | x | x | 0.058 | 0.857 | 0.142 | 0.612 |
| GPX vs body length | x | x | 0.068 | 0.833 | 0.004 | 0.987 |
| GPX vs birth weight | x | x | -0.078 | 0.809 | -0.053 | 0.848 |
| GPX vs chest circumference | x | x | 0.056 | 0.861 | 0.051 | 0.855 |
| GPX vs head circumference | x | x | 0.051 | 0.873 | 0.225 | 0.418 |
| GPX vs APGAR score at 1min. | x | x | -0.194 | 0.544 | -0.108 | 0.700 |
| GPX vs APGAR score at 5 min. | x | x | -0.092 | 0.776 | -0.145 | 0.606 |
| GPX vs gestational age | x | x | 0.066 | 0.837 | 0.395 | 0.144 |
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kuršvietienė, L.; Mongirdienė, A.; Bernatonienė, J.; Šulinskienė, J.; Stanevičienė, I. Selenium anticancer properties and impact on cellular redox status. Antioxidants 2020, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xie, L.; Song, A.; Zhang, C. Selenium status and its antioxidant role in metabolic diseases. Oxid Med Cell Longev 2022, 2022, 7009863. [Google Scholar] [CrossRef]
- Kiełczykowska, M.; Kocot, J.; Paździor, M.; Musik, I. Selenium-a fascinating antioxidant of protective properties. Adv. Clin. Exp. Med 2018, 27, 245–255. [Google Scholar] [CrossRef]
- Rayman, M.P.; Bath, S.C.; Westaway, J.; Williams, P.; Mao, J.; Vanderlelie, J.J.; ...; Redman, C.W. Selenium status in UK pregnant women and its relationship with hypertensive conditions of pregnancy. Br. J. Nutr. 2015, 113, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Pieczyńska, J.; Płaczkowska, S.; Sozański, R.; Orywal, K.; Mroczko, B.; Grajeta, H. Is maternal dietary selenium intake related to antioxidant status and the occurrence of pregnancy complications? J. Trace Elemen. Med. Biol. 2019, 54, 110–117. [Google Scholar] [CrossRef]
- Pieczyńska, J.; Grajeta, H. The role of selenium in human conception and pregnancy. J. Trace Elemen. Med. Biol. 2015, 29, 31–38. [Google Scholar] [CrossRef]
- Filipowicz, D.; Szczepanek-Parulska, E.; Kłobus, M.; Szymanowski, K.; Chillon, T. S.; Asaad, S.; ...; Ruchała, M. Selenium Status and Supplementation Effects in Pregnancy—A Study on Mother–Child Pairs from a Single-Center Cohort. Nutrients 2022, 14, 3082. [Google Scholar]
- Modzelewska, D.; Solé-Navais, P.; Brantsæter, A.L.; Flatley, C.; Elfvin, A.; Meltzer, H.M.; ...; Jacobsson, B. Maternal dietary selenium intake during pregnancy and neonatal outcomes in the Norwegian mother, father, and child cohort study. Nutrients, 2021; 13, 1239. [Google Scholar]
- Yang, J.; Kang, Y.; Chang, Q.; Zhang, B.; Liu, X.; Zeng, L.; ...; Dang, S. Maternal zinc, copper, and selenium intakes during pregnancy and congenital heart defects. Nutrients 2022, 14(1055). [Google Scholar]
- Wang, X.; Li, H.; Yang, L.; Kong, C.; Wang, J.; Li, Y. Selenium nutritional status of rural residents and its correlation with dietary intake patterns in a typical low-selenium area in China. Nutrients 2020, 12, 3816. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Y.; Liang, K.; Hu, Z.; Sun, X.; Fang, Y.; ...; Lu, B. Determination of selenium in common and selenium-rich rice from different areas in China and assessment of their dietary intake. Int. J. Environ. Res. Pub Health 2020, 17, 4596. [Google Scholar] [CrossRef] [PubMed]
- Giacosa, A.; Faliva, M.A.; Perna, S.; Minoia, C.; Ronchi, A.; Rondanelli, M. Selenium fortification of an Italian rice cultivar via foliar fertilization with sodium selenate and its effects on human serum selenium levels and on erythrocyte glutathione peroxidase activity. Nutrients 2014, 6, 1251–1261. [Google Scholar] [CrossRef]
- Huguenin, G.V.; Oliveira, G.M.; Moreira, A.S.; Saint’Pierre, T.D.; Gonçalves, R.A.; Pinheiro-Mulder, A.R.; ...; Rosa, G. Improvement of antioxidant status after Brazil nut intake in hypertensive and dyslipidemic subjects. Nutr. J. 2015, 14, 1–10. [Google Scholar] [CrossRef]
- Rocourt, C.R.; Cheng, W.H. Selenium supranutrition: are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients 2013, 5, 1349–1365. [Google Scholar] [CrossRef] [PubMed]
- Zachara, B.A. Selenium in complicated pregnancy. A review. Adv. Clin. Chem. 2018, 86, 157–178. [Google Scholar] [PubMed]
- Molnar, J.; Garamvolgyi, Z.; Herold, M.; Adanyi, N.; Somogyi, A.; Rigo, J. Serum selenium concentrations correlate significantly with inflammatory biomarker high-sensitive CRP levels in Hungarian gestational diabetic and healthy pregnant women at mid-pregnancy. Biol. Trace Elem. Res. 2008, 121, 16–22. [Google Scholar] [CrossRef]
- Onat, T.; Demir Caltekin, M.; Turksoy, V.A.; Baser, E.; Aydogan Kirmizi, D.; Kara, M.; Yalvac, E.S. The relationship between heavy metal exposure, trace element level, and monocyte to HDL cholesterol ratio with gestational diabetes mellitus. Biol. Trace Elem. Res. 2021, 199, 1306–1315. [Google Scholar] [CrossRef]
- Mihailović, M.; Cvetković, M.; Ljubić, A.; Kosanović, M.; Nedeljković, S.; Jovanović, I.; Pešut, O. Selenium and malondialdehyde content and glutathione peroxidase activity in maternal and umbilical cord blood and amniotic fluid. Biol. Trace Elem. Res. 2000, 73, 47–54. [Google Scholar] [CrossRef]
- Kálló, K.; Lehóczki, S.; Just, Z.; Gyurkovits, Z.; Pálfi, G.; Orvos, H. A cross-sectional study of newborns over a 20-year period in Szeged, Hungary. J. Mater. Fetal Neonat. Med. 2015, 28, 540–543. [Google Scholar] [CrossRef]
- Wierzejska, R.; Jarosz, M.; Siuba-Strzelińska, M. Maternal and cord blood vitamin D status and anthropometric measurements in term newborns at birth. Front. Endocrinol. 2018, 9, 326389. [Google Scholar] [CrossRef] [PubMed]
- Hesse, V.; Schnabel, O.; Judis, E.; Cammann, H.; Hinkel, J.; Weissenborn, J. Longitudinal study of the growth of German children aged 0 to 6 years: Part 2: Longitudinal age-related development of head circumference, growth rate of head circumference, head circumference/body height ratios, as well as chest circumference, width, and depth and elbow width, frame index, and metric index. Monatsschrift Kinderheilkunde 2016, 164, 892–912. [Google Scholar]
- Santos, C.; García-Fuentes, E.; Callejón-Leblic, B.; García-Barrera, T.; Gómez-Ariza, J.L.; Rayman, M.P.; Velasco, I. Selenium, selenoproteins and selenometabolites in mothers and babies at the time of birth. Br. J. Nutr. 2017, 117, 1304–1311. [Google Scholar] [CrossRef]
- Woynarowska, B.; Palczewska, I.; Oblacińska, A. WHO child standards for children 0-5 years. Percentile charts of length/hight, weight, Body Mass Index and head circumference. Medycyna Wieku Rozwojowego 2012, 16, 232–239. [Google Scholar]
- Barman, M.; Brantsæter, A.L.; Nilsson, S.; Haugen, M.; Lundh, T.; Combs, G.F.; ...; Sengpiel, V. Maternal dietary selenium intake is associated with increased gestational length and decreased risk of preterm delivery. Br. J. Nutr. 2020, 123, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Xaverius, P.K.; Salas, J.; Woolfolk, C.L.; Leung, F.; Yuan, J.; Chang, J.J. Predictors of size for gestational age in St. Louis City and County. BioMed Res. Int. 2014, 2014, 515827. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, N.; Stubblefield, P. Human Fetal Growth and Development. First and Second Trimesters. In Human Fetal Growth and Development; Springer, 2016. [Google Scholar]
- Mistry, H.D.; Williams, P.J. The importance of antioxidant micronutrients in pregnancy. Oxid Med Cell Longev. 2011, 2011, 841749. [Google Scholar] [CrossRef] [PubMed]
- Mendes, S.; Timóteo-Ferreira, F.; Almeida, H.; Silva, E. New insights into the process of placentation and the role of oxidative uterine microenvironment. Oxidative medicine and cellular longevity 2019, 2019, 9174521. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. The Lancet 2012, 379, 1256–1268. [Google Scholar]
- Nogales, F.; Ojeda, M.L.; Fenutría, M.; Murillo, M.L.; Carreras, O. Role of selenium and glutathione peroxidase on development, growth, and oxidative balance in rat offspring. Reproduction 2013, 146, 659–667. [Google Scholar]
- Hofstee, P.; Bartho, L.A.; McKeating, D.R.; Radenkovic, F.; McEnroe, G.; Fisher, J.J.; ...; Cuffe, J.S. Maternal selenium deficiency during pregnancy in mice increases thyroid hormone concentrations, alters placental function and reduces fetal growth. J. Physiol 2019, 597, 5597–5617. [Google Scholar]
- Delgado, M.J.; Nogales, F.; Ojeda, M.L.; Murillo, M.L.; Carreras, O. Effect of dietary selenite on development and intestinal absorption in offspring rats. Life Sci. 2011, 88, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, M.L.; Nogales, F.; Romero-Herrera, I.; Carreras, O. Fetal programming is deeply related to maternal selenium status and oxidative balance; experimental offspring health repercussions. Nutrients 2085, 13, 2085. [Google Scholar] [CrossRef] [PubMed]
- Bogden, J.D.; Kemp, F.W.; Chen, X.; Stagnaro-Green, A.; Stein, T.P.; Scholl, T.O. Low-normal serum selenium early in human pregnancy predicts lower birth weight. Nutr. Res. 2006, 26, 497–502. [Google Scholar] [CrossRef]
- Lewandowska, M.; Sajdak, S.; Lubiński, J. The role of early pregnancy maternal selenium levels on the risk for small-for-gestational age newborns. Nutrients 2019, 11, 2298. [Google Scholar] [CrossRef] [PubMed]
- Mistry, H.D.; Kurlak, L.O.; Young, S.D.; Briley, A.L.; Broughton Pipkin, F.; Baker, P.N.; Poston, L. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Mater. Child Nutr. 2014, 10, 327–334. [Google Scholar] [CrossRef]
- Oghagbon, S.E.; Agu, K.C.; Omorowa, F.E.; Okolie, N.P.; Okwumabua, M.; Omo-Erhabor, J.A. Oxidative stress parameters as markers of the different trimesters in normal pregnancy. J. Appl. Sci. Environ. Manag. 2016, 20, 567–571. [Google Scholar] [CrossRef]
- Little, R.E.; Gladen, B.C. Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod. Toxicol. 1999, 13, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Manzano, E.C.; Postigo, O.E.; Osorio, J.C.; León, M. Maternal oxidant and antioxidant status in the third trimester of gestation and its relation to the birthweight. Obstert Gynecol: An Int J 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- El-Abd Ahmed, A.; Abd-Elmawgood, E.A.; Hassan, M.H. Circulating protein carbonyls, antioxidant enzymes and related trace minerals among preterms with respiratory distress syndrome. J. Clin. Diag. Res. JCDR 2017, 11, BC17. [Google Scholar]
- Lozano, M.; Murcia, M.; Soler-Blasco, R.; Iñiguez, C.; Irizar, A.; Lertxundi, A.; ...; Llop, S. Prenatal Se concentrations and anthropometry at birth in the INMA study (Spain). Environ. Res. 2020, 181, 108943. [Google Scholar]
- Monangi, N.; Xu, H.; Khanam, R.; Khan, W.; Deb, S.; Pervin, J.; ...; INTERBIO-21st Study Consortium. Association of maternal prenatal selenium concentration and preterm birth: a multicountry meta-analysis. BMJ Global Health 2021, 6, e005856. [Google Scholar] [CrossRef] [PubMed]
| Demographics | T I | T II | T III |
|---|---|---|---|
| Pregnancy complications n (% of group) | |||
| No | 23 (85.2%) | 15 (55.6%) | 12 (44.4%) |
| Yes | 4 (14.8%) | 12 (44.4%) | 15 (55.6%) |
| Hypothyroidism | 2 (7.4%) | 4 (14.8%) | 5 (18.5%) |
| Gestational diabetes mellitus | 1 (3.7%) | 1 (3.7%) | 3 (11.1%) |
| Urinary tract infections | 1 (3.7%) | 5 (18.5%) | 3 (11.1%) |
| Anemia | - | 2 (7.4%) | 4 (14.8%) |
| Weight (kg) | 62.82±10.54 | 68.92±11.96 | 74.48±11.79 |
| Pregnancy (weeks) | 10.95 ± 2.87 | 22.32 ± 3.48 | 34.07 ± 2.16 |
| Mean age (year) 29.6±4.8 | |||
| Deliveryn (% of group) | |||
| Term delivery | 26 (96.3%) | ||
| Preterm delivery | 1 (3.7%) | ||
| Birth weight | |||
| <2500g | 1 (3.7%) | ||
| >2500g | 26 (96.3%) | ||
| Education n (% of group) | |||
| Elementary school | 1 (3.7%) | ||
| High school | 1 (3.7%) | ||
| Academic | 25 (92.6%) | ||
| Place of residence n (% of group) | |||
| Urban | 26 (96.3%) | ||
| Rural | 1 (3.7%) | ||
| Smoking cigarettes n (% of group) | |||
| Current smoker | 0 (0%) | ||
| Quit smoking | 6 (22.2%) | ||
| Never smoked | 21 (77.8%) | ||
| Pre-pregnancy BMIn (% of group) | |||
| BMI < 18,5 | 4 (14.8%) | ||
| BMI 18,6-24,9 | 15 (55.6%) | ||
| BMI >25 | 8 (29.6%) | ||
| Prenatal vitamin/mineral intake n (% of group) | |||
| Vitamin/mineral supplements without Se | 19 (70.4%) | ||
| Vitamin/mineral supplements with Se | 8 (29.6%) | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
