Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Explicit Numerical Study on Dynamic Behavior of Threadbar under Impact Loading

Version 1 : Received: 2 April 2024 / Approved: 2 April 2024 / Online: 2 April 2024 (10:26:04 CEST)

How to cite: Marulanda, L.; Vallejos, J.; Velásquez, J. Explicit Numerical Study on Dynamic Behavior of Threadbar under Impact Loading. Preprints 2024, 2024040192. https://doi.org/10.20944/preprints202404.0192.v1 Marulanda, L.; Vallejos, J.; Velásquez, J. Explicit Numerical Study on Dynamic Behavior of Threadbar under Impact Loading. Preprints 2024, 2024040192. https://doi.org/10.20944/preprints202404.0192.v1

Abstract

Due to the continued deepening of today’s mining projects, there is a need to develop new or improved rockbolts that are strong and yielding and have high energy absorption when exposed to dynamic loading. Impact tests can provide useful information about the dynamic response of rockbolts but most laboratory tests involve high costs in preparation and result validation. Numerical modeling is an alternative that, in addition to complementing laboratory results, can be used to represent the process of deformation and energy absorption of support elements. In this paper the implementation and results obtained from a finite difference (FDM) numerical model are presented. The model functions as a simulation tool to illuminate all the elements that conform the large-scale (1:1) impact test and their behavior and influence on the dynamic response of a threadbar bolt (22 mm nominal diameter). The model was calibrated using published results and based on these results as well as parametric analysis, the response of each component (steel tube, grout, and bolt) could be identified and its behavior in terms of absorbed energy and displacement could be observed. Results show the model can provide important preliminary information to make design decisions about support elements design.

Keywords

Rockbursts; Threadbar; Dynamic testing; Numerical modelling; energy absorption

Subject

Engineering, Mining and Mineral Processing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.