Submitted:
01 April 2024
Posted:
02 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
- By 2035, all WWTPs > 100,000 PE must be equipped with a quaternary level of treatment, and at least 50% of WWTPs > 10,000 PE must also have quaternary treatment.
- By 2040, all WWTPs > 10,000 PE in the areas where micropollutants pose a risk to human health or the environment should be equipped with a quaternary treatment stage.
2. Selected Micropollutants
2.1. Characterization of Selected Pharmaceuticals
2.2. Characterization of Selected Anti-Corrosives
3. Treatment Processes
Ozonation
The UV/O 3 System
The UV/H 2O2 System
The UV/Chlorine System
Photo(cata)lysis
Fenton and Fenton-like Processes
2.1. Overview of Processes for Removal of Pharmaceuticals
| Pharmaceuticals | Treatment process | Efficiency | Notes | Reference |
|---|---|---|---|---|
| Amisulpride (AMI) | Photocatalysis | 58.1% | C-TiO2/Vis | [75] |
| 86.6% | C-TiO2/UV-A | [75] | ||
| 80% | g-C3N4/UV-A | [17] | ||
| <90% | direct photolysis | [16] | ||
| Carbamazepine (CAR) | Ozonation | <90%, ACR1 |
potential toxicity of TPs | [65] [67] |
| Citalopram (CIT) | Ozonation | 80% | formation of TP | [81] |
| Chlorination | 40% | 21 μg/l of ClO2 | ||
| 95% | 131 μg/l of ClO2 | |||
| UV | 92-100% | 7min-30min, no TPs | ||
| Photo-Fenton | 90% | No TPs | ||
| Claritromycin (CLA) | Ozonation | ACR1 | N-oxides TP | [67,68] |
| 76% | Spiked STP at 0.1-0.3 mM O 3 | [82] | ||
| Diclofenac (DIC) | Ozonation | ACR1 | [67] | |
| O3/UV/S2O8 | 89% | [69] | ||
| UV/PS | 75% | [70] | ||
| UV/H2O2 | 99.2% | [72] | ||
| Hydrochlorothiazide (HCH) | Ozonation | 99% | Combined with Al2O3/GAC | [83] |
| Photo-Fenton | 71% | 7.5 mg/l of Fe2+, 50 mg/l of H2O2 | [82] | |
| Metoprolol (MET) | Ozonation | ACR1 | [67] | |
| UV/H2O2 | 85.6% | combined with CAS | [83] | |
| Venlafaxine (VEN) | Ozonation | ACR1 | N-oxides TP | [67,68] |
| UV/chlorine | 76% | [56] | ||
| Photocatalysis | 95% | C3N4/PVDF/Vis | [79] | |
| Candesartan (CAN) | Chlorination | 35% | NaClO 13% transformed into byproducts |
[85] |
| Irbesartan (IRB) | Moving bed biofilm reactor | 90% | after 70 h | [86] |
| Membrane biofilm reactor | 100% | Combined with forward osmosis, no TPs |
2.2. Anti-Corrosives Removal
4. Micropollutants Removal from Municipal Wastewater
5. Conclusion and Perspectives
- Ozonation has shown significant potential for removing MPs like carbamazepine, with over 90% removal achieved at low ozone dosages.
- UV irradiation enhances the degradation of MPs, particularly when combined with ozone or hydrogen peroxide, leading to accelerated transformation. Solar irradiation and visible light applications also contribute to the degradation of MPs, although degradation rates may vary depending on the water matrix and the specific compound.
- Sulfate radical-based technologies, such as UV/persulfate, exhibit promising results for removing pharmaceuticals like diclofenac, with removal efficiencies reaching up to 89%.
- Combined approaches, such as UV/H2O2 followed by biological treatment, show promise in achieving mineralization of MPs like carbamazepine.
- Photocatalytic processes utilizing catalysts like TiO2 and g-C3N4 demonstrate high removal percentages for various MPs, especially when combined with hydrogen peroxide.
- The simultaneous use of hydrogen peroxide in photocatalytic reactors enhances degradation rates, leading to the effective removal of various types of MPs from wastewater.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| 4MeBZT | 4-methylbenzotriazole |
| 5MeBZT | 5-methylbenzotriazole |
| 6MeBZT | 6-methylbenzotriazole |
| ACR | Almost complete removal |
| AMI | Amilsulpride |
| AOP(s) | Advanced oxidation process(es) |
| AS | Activated sludge |
| AsPhA | apricot kernel |
| ASBR | activated sludge bioreactor |
| API(s) | active pharmaceutical ingredient(s) |
| BOD | biological oxygen demand |
| BT | benzothiazole |
| BZT(s) | Benzotriazole(s) |
| CAN | Candesartan |
| CAR | Carbamazepine |
| CAS | conventional activated sludge |
| CIT | Citalopram |
| CLA | Claritromycin |
| ClCBZT | 5-chloro-1H-benzotriazole |
| CTW | cooling tower |
| CW | constructed wetlands |
| DBP(s) | disinfection byproduct(s) |
| DIC | Diclofenac |
| DMBZT | 5,6-dimethyl-1H-benzotriazole |
| DOC | dissolved organic carbon |
| EE2 | 17-alpha-ethinylestradiol |
| E1 | estrone |
| E2 | 17-betaestradiol |
| ECHA | European Chemicals Agency |
| EP | emerging pollutants |
| EU | European Union |
| GAC | granulated activated carbon |
| HCH | Hydrochlorothiazide |
| IRB | Irbesartan |
| IUPAC | International Union of Pure and Applied Chemistry |
| MBBR | moving bed biofilm reactor |
| MET | Metoprolol |
| MP(s) | micropollutant(s) |
| MWW | municipal wastewater |
| MWWTP(s) | municipal wastewater treatment plants |
| NZVI | nano zero-valent iron |
| PAC | powdered activated carbon |
| PE | Population Equivalent |
| PVDF | polyvinylidene fluoride |
| RCS | reactive chlorine species |
| RO | reverse osmosis |
| RSM | response surface methodology |
| TP(s) | transformation product(s) |
| TTZ | tolyltriazole |
| UF | ultrafiltration |
| UWWTD | Urban Wastewater Treatment Directive |
| VEN | Venlafaxine |
| WpOH | wild plum |
| WW | wastewater |
| WWTP(s) | wastewater treatment plant(s) |
References
- Proposal for a Revised Urban Wastewater Treatment Directive - European Commission. Available online: https://environment.ec.europa.eu/publications/proposal-revised-urban-wastewater-treatment-directive_en (accessed on 18 January 2024).
- European Commission Proposal for a Directive of the European Parliament and of the Council on Setting Standards of Quality and Safety for the Donation, Procurement, Testing, Processing, Storage, and Distribution of Human Tissues and Cells; 2002.
- EUR-Lex - 01991L0271-20140101 - EN - EUR-Lex Available online: http://data.europa.eu/eli/dir/1991/271/2014-01-01.
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An Overview on the Advanced Oxidation Processes Applied for the Treatment of Water Pollutants Defined in the Recently Launched Directive 2013/39/EU. Environment International 2015, 75, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Baronti, C.; Curini, R.; D’Ascenzo, G.; Di Corcia, A.; Gentili, A.; Samperi, R. Monitoring Natural and Synthetic Estrogens at Activated Sludge Sewage Treatment Plants and in a Receiving River Water. Environmental Science & Technology 2000, 34, 5059–5066. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Science of The Total Environment 2014, 473-474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Mulkerrins, D.; Dobson, A.D.W.; Colleran, E. Parameters Affecting Biological Phosphate Removal from Wastewaters. Environment International 2004, 30, 249–259. [Google Scholar] [CrossRef]
- WELCOME to the NORMAN NETWORK | NORMAN. Available online: http://www.norman-network.net (accessed on 30 March 2024).
- Commission implementing decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Commun., L 78/40.
- Eregowda, T.; Mohapatra, S. Fate of Micropollutants in Engineered and Natural Environment. Resilience, Response, and Risk in Water Systems. Springer Transactions in Civil and Environmental Engineering. 2020, 283–301.
- Yu, D.; Yi, X.; Ma, Y.; Yin, B.; Zhuo, H.; Li, J.; Huang, Y. Effects of Administration Mode of Antibiotics on Antibiotic Resistance of Enterococcus Faecalis in Aquatic Ecosystems. Chemosphere 2009, 76, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Registration Dossier - ECHA. Available online: https://echa.europa.eu/sk/registration-dossier/-/registered-dossier/23746/4/6 (accessed on 30 March 2024).
- 6-Methyl-1H-Benzotriazole 3D-FM11772 | CymitQuimica. Available online: https://cymitquimica.com/products/3D-FM11772/136-85-6/6-methyl-1h-benzotriazole/ (accessed on 30 March 2024).
- Substance Information - ECHA. Available online: https://echa.europa.eu/sk/substance-information/-/substanceinfo/100.004. (accessed on 30 March 2024).
- Grandclément, C.; Seyssiecq, I.; Piram, A.; Wong-Wah-Chung, P.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P. From the Conventional Biological Wastewater Treatment to Hybrid Processes, the Evaluation of Organic Micropollutant Removal: A Review. Water Research 2017, 111, 297–317. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Williams, M.; Llorca, M.; Rodriguez-Mozaz, S.; Damià Barceló; Kookana, R. S. Photolysis of the Antidepressants Amisulpride and Desipramine in Wastewaters: Identification of Transformation Products Formed and Their Fate. Science of The Total Environment 2015, 530-531, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, M.; Papadaki, M.; Rapti, I.; Konstantinou, I. Photocatalytic Degradation of Pharmaceutical Amisulpride Using G-C3N4 Catalyst and UV-A Irradiation. Catalysts 2023, 13, 226. [Google Scholar] [CrossRef]
- Qiang, L.; Cheng, J.; Yi, J.; Rotchell, J.M.; Zhu, X.; Zhou, J. Environmental Concentration of Carbamazepine Accelerates Fish Embryonic Development and Disturbs Larvae Behavior. Ecotoxicology 2016, 25, 1426–1437. [Google Scholar] [CrossRef]
- Milena Santariová; Kateřina Zadinová; Vostrá-Vydrová, H. ; Martina Frühauf Kolářová; Şebnem Kurhan; Chaloupková, H. Effect of Environmental Concentration of Carbamazepine on the Behaviour and Gene Expression of Laboratory Rats. Animals 2023, 13, 2097–2097. [Google Scholar] [CrossRef]
- Osawa, R.A.; Carvalho, A.P.; Monteiro, O.C.; Oliveira, M.C.; Florêncio, M.H. Transformation Products of Citalopram: Identification, Wastewater Analysis and in Silico Toxicological Assessment. Chemosphere 2019, 217, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Chen, R.; Zhang, L.; Yan, L.; Xin, J.; Li, J.; Zha, J. Long-Term Exposure to SSRI Citalopram Induces Neurotoxic Effects in Zebrafish. Environmental Science & Technology 2022, 56, 12380–12390. [Google Scholar] [CrossRef]
- About Clarithromycin. Available online: https://www.nhs.uk/medicines/clarithromycin/about-clarithromycin (accessed on 30 March 2024).
- Li, M.; Ji, D.; Malvin Subroto Pamudji; Ka Hei Lui; Zhao, Y. ; Zhao, G.; Zhou, S.-Q.; Mo, C.-H.; Han, W.; King Lun Yeung Occurrence, Risk, and Treatment of Ciprofloxacin and Clarithromycin in Drainage. Chemical Engineering Journal 2023, 466, 142968–142968. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Meena, R.A.A.; Palanisami, T.; Ashokkumar, V.; Palvannan, T.; Gu, F.L. Occurrence, Interactive Effects and Ecological Risk of Diclofenac in Environmental Compartments and Biota - a Review. Science of The Total Environment 2020, 698, 134057. [Google Scholar] [CrossRef] [PubMed]
- María Fernández-Perales; M. Sánchez-Polo; Rozalen, M.; M.V. López-Ramón; Mota, A.J.; J. Rivera-Utrilla Degradation of the Diuretic Hydrochlorothiazide by UV/Solar Radiation Assisted Oxidation Processes. Journal of Environmental Management 2020, 257, 109973–109973. [Google Scholar] [CrossRef] [PubMed]
- Hydrochlorothiazide Removal from Water. Available online: https://arviatechnology.com/pollutants/hydrochlorothiazide-removal-from-water (accessed on 30 March 2024).
- Mansor, N.A.; Tay, K.S. Potential Toxic Effects of Chlorination and UV/Chlorination in the Treatment of Hydrochlorothiazide in the Water. Science of The Total Environment 2020, 714, 136745. [Google Scholar] [CrossRef] [PubMed]
- Tajik, S.; Beitollahi, H.; Dourandish, Z.; Zhang, K.; Le, Q.V.; Nguyen, T.P.; Kim, S.Y.; Shokouhimehr, M. Recent Advances in the Electrochemical Sensing of Venlafaxine: An Antidepressant Drug and Environmental Contaminant. Sensors 2020, 20, 3675. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Mi, P.; Li, M.; Zhang, S.; Li, J.; Feng, X. Environmental Level of the Antidepressant Venlafaxine Induces Behavioral Disorders through Cortisol in Zebrafish Larvae (Danio Rerio). Neurotoxicology and Teratology 2021, 83, 106942. [Google Scholar] [CrossRef] [PubMed]
- Sehonova, P.; Svobodova, Z.; Dolezelova, P.; Vosmerova, P.; Faggio, C. Effects of Waterborne Antidepressants on Non-Target Animals Living in the Aquatic Environment: A Review. Science of The Total Environment 2018, 631-632, 789–794. [Google Scholar] [CrossRef]
- Candesartan Sandoz 8 Mg Tablety Available online:. Available online: https://www.adc.sk/databazy/produkty/detail/candesartan-sandoz-8-mg-tablety-508722.html (accessed on 30 March 2024).
- Candesartan Removal from Water. Available online: https://arviatechnology.com/pollutants/candesartan-removal-from-water (accessed on 30 March 2024).
- Struk-Sokołowska, J.; Urszula Kotowska; Piekutin, J. ; Laskowski, P.; Mielcarek, A. Analysis of 1H-Benzotriazole Removal Efficiency from Wastewater in Individual Process Phases of a Sequencing Batch Reactor SBR. Water Resources and Industry 2022, 28, 100182–100182. [Google Scholar] [CrossRef]
- Reemtsma, T.; Miehe, U.; Duennbier, U.; Jekel, M. Polar Pollutants in Municipal Wastewater and the Water Cycle: Occurrence and Removal of Benzotriazoles. Water Research 2010, 44, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Dimitra Voutsa; Hartmann, P. ; Schaffner, C.; Giger, W. Benzotriazoles, Alkylphenols and Bisphenol a in Municipal Wastewaters and in the Glatt River, Switzerland. Environmental Science and Pollution Research 2006, 13, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Hem, L.J.; Hartnik, T.; Roseth, R.; Breedveld, G.D. Photochemical Degradation of Benzotriazole. Journal of Environmental Science and Health, Part A 2003, 38, 471–481. [Google Scholar] [CrossRef]
- Hart, D.S.; Davis, L.C.; Erickson, L.E.; Callender, T.M. Sorption and Partitioning Parameters of Benzotriazole Compounds. Microchemical Journal 2004, 77, 9–17. [Google Scholar] [CrossRef]
- Cancilla, D.A.; Martinez, J.; van Aggelen, G.C. Detection of Aircraft Deicing/Antiicing Fluid Additives in a Perched Water Monitoring Well at an International Airport. Environmental Science & Technology 1998, 32, 3834–3835. [Google Scholar] [CrossRef]
- Cancilla, D.A.; J. Christopher Baird; Geis, S.W.; Corsi, S.R. Studies of the Environmental Fate and Effect of Aircraft Deicing Fluids: Detection of 5-Methyl-1H-Benzotriazole in the Fathead Minnow (Pimephales Promelas). Environmental Toxicology and Chemistry 2003, 22, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.-Q.; Liu, Y.-S.; Xiong, Q.; Cai, W.; Ying, G.-G. Occurrence, Toxicity and Transformation of Six Typical Benzotriazoles in the Environment: A Review. Science of The Total Environment 2019, 661, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Cancilla, D.A.; Holtkamp, A.; Matassa, L.; Fang, X. Isolation and Characterization of Microtox®-Active Components from Aircraftm De-Icing/Anti-Icing Fluids. Environmental Toxicology and Chemistry 1997, 16, 430–434. [Google Scholar] [CrossRef]
- Romero, V.; González, O.; Bayarri, B.; Marco, P.; Giménez, J.; Esplugas, S. Performance of Different Advanced Oxidation Technologies for the Abatement of the Beta-Blocker Metoprolol. Catalysis Today 2015, 240, 86–92. [Google Scholar] [CrossRef]
- Kaur, R.; Talan, A.; Tiwari, B.; Pilli, S.; Sellamuthu, B. ; R.D. Tyagi, R.D. Chapter 5 - Constructed wetlands for the removal of organic micro-pollutants. Current Developments in Biotechnology and Bioengineering, 2020, 87-140.
- Issaka, E.; AMU-Darko, J.N.-O.; Yakubu, S.; Fapohunda, F.O.; Ali, N.; Bilal, M. Advanced Catalytic Ozonation for Degradation of Pharmaceutical Pollutants―a Review. Chemosphere 2022, 289, 133208. [Google Scholar] [CrossRef]
- von Gunten, U. Ozonation of Drinking Water: Part I. Oxidation Kinetics and Product Formation. Water Research 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- Jesus, F.; Domingues, E.; Bernardo, C.; Pereira, J.L.; Martins, R.C.; Gomes, J. Ozonation of Selected Pharmaceutical and Personal Care Products in Secondary Effluent—Degradation Kinetics and Environmental Assessment. Toxics 2022, 10, 765–765. [Google Scholar] [CrossRef]
- Nawrocki, J.; Kasprzyk-Hordern, B. The Efficiency and Mechanisms of Catalytic Ozonation. Applied Catalysis B: Environmental 2010, 99, 27–42. [Google Scholar] [CrossRef]
- Haag, W.R.; Hoigne, Juerg. Ozonation of Bromide-Containing Waters: Kinetics of Formation of Hypobromous Acid and Bromate. Environmental Science & Technology 1983, 17, 261–267. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Science of The Total Environment 2020, 704, 135249. [Google Scholar] [CrossRef] [PubMed]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2019, 12, 102. [Google Scholar] [CrossRef]
- Lu, H.; Li, Q.; Feng, W. Application Progress of O3/UV Advanced Oxidation Technology in the Treatment of Organic Pollutants in Water. Sustainability 2022, 14, 1556. [Google Scholar] [CrossRef]
- Kurokawa, Y.; Maekawa, A.; Takahashi, M.; Hayashi, Y. Toxicity and Carcinogenicity of Potassium Bromate--a New Renal Carcinogen. Environmental Health Perspectives 1990, 87, 309–335. [Google Scholar] [CrossRef]
- None Shikha Agrawal; Anil, N.; None Poonam Sherry; None Gunwanti Malhotra; None Kanchan Verma A Review on Wastewater Treatment Containing Organic Pollutants Using Advance Oxidation Processes. International Journal of Scientific Research in Science and Technology, 2023, 50–75. [CrossRef]
- Urbina-Suarez, N.A.; López-Barrera, G.L.; García-Martínez, J.B.; Barajas-Solano, A.F.; Machuca-Martínez, F.; Zuorro, A. Enhanced UV/H2O2 System for the Oxidation of Organic Contaminants and Ammonia Transformation from Tannery Effluents. Processes 2023, 11, 3091. [Google Scholar] [CrossRef]
- Available online:. Available online: https://spartanwatertreatment.com/advanced-oxidation-uv-peroxide/ (accessed on 30 March 2024).
- Zhu, T.; Deng, J.; Zhu, S.; Cai, A.; Ye, C.; Ling, X.; Guo, H.; Wang, Q.; Li, X. Kinetic and Mechanism Insights into the Degradation of Venlafaxine by UV/Chlorine Process: A Modelling Study. Chemical Engineering Journal 2022, 431, 133473–133473. [Google Scholar] [CrossRef]
- Remucal, C.K.; Manley, D. Emerging Investigators Series: The Efficacy of Chlorine Photolysis as an Advanced Oxidation Process for Drinking Water Treatment. Environmental Science: Water Research & Technology 2016, 2, 565–579. [Google Scholar] [CrossRef]
- Buxton, G.V.; Subhani, M.S. Radiation Chemistry and Photochemistry of Oxychlorine Ions. Part 2.—Photodecomposition of Aqueous Solutions of Hypochlorite Ions. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1972, 68, 958–969. [Google Scholar] [CrossRef]
- Singh, P.; Jain, R.; Srivastava, N.; Borthakur, A.; Pal, D.B.; Singh, R.; Madhav, S.; Srivastava, P.; Tiwary, D.; Mishra, P.K. Current and Emerging Trends in Bioremediation of Petrochemical Waste: A Review. Critical Reviews in Environmental Science and Technology 2017, 47, 155–201. [Google Scholar] [CrossRef]
- Pirkanniemi, K.; Sillanpää, M. Heterogeneous Water Phase Catalysis as an Environmental Application: A Review. Chemosphere 2002, 48, 1047–1060. [Google Scholar] [CrossRef]
- Jiao, J.; Li, Y.; Song, Q.; Wang, L.; Luo, T.; Gao, C.; Liu, L.; Yang, S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. Materials 2022, 15, 8152–8152. [Google Scholar] [CrossRef]
- General chemistry of Fenton Reagent Available online: https://h2o2.com/industrial/fentonsreagent.aspx?pid=143&name=General-Chemistry-of-Fenton-s-Reagent (accessed February 2020).
- Navalon, S.; Alvaro, M.; Garcia, H. Heterogeneous Fenton Catalysts Based on Clays, Silicas and Zeolites. Applied Catalysis B: Environmental 2010, 99, 1–26. [Google Scholar] [CrossRef]
- Walling, C. Fenton’s Reagent Revisited. Accounts of Chemical Research 1975, 8, 125–131. [Google Scholar] [CrossRef]
- Deng, H. Ozonation Mechanism of Carbamazepine and Ketoprofen in RO Concentrate from Municipal Wastewater Treatment: Kinetic Regimes, Removal Efficiency and Matrix Effect. Science of The Total Environment 2020, 717, 137150. [Google Scholar] [CrossRef] [PubMed]
- Deng, H. A Review on the Application of Ozonation to NF/RO Concentrate for Municipal Wastewater Reclamation. Journal of Hazardous Materials 2020, 391, 122071. [Google Scholar] [CrossRef]
- Lee, W.; Choi, S.; Kim, H.; Lee, W.; Lee, M.; Son, H.-J.; Chang Ha Lee; Cho, M. ; Lee, Y. Efficiency of Ozonation and O3/H2O2 as Enhanced Wastewater Treatment Processes for Micropollutant Abatement and Disinfection with Minimized Byproduct Formation. Journal of Hazardous Materials 2023, 454, 131436–131436. [Google Scholar] [CrossRef]
- Edefell, E.; Per Falås; Suman Kharel; Hagman, M. ; Magnus Christensson; Cimbritz, M.; Bester, K. MBBRs as Post-Treatment to Ozonation: Degradation of Transformation Products and Ozone-Resistant Micropollutants. Science of The Total Environment 2021, 754, 142103–142103. [Google Scholar] [CrossRef]
- Jabbari, F.; Eslami, A.; Mahmoudian, J. Degradation of Diclofenac in Water Using the O3/UV/S2O8 Advanced Oxidation Process. Health Scope 2020, 9. [Google Scholar] [CrossRef]
- Lu, X.; Shao, Y.; Gao, N.; Chen, J.; Zhang, Y.; Xiang, H.; Guo, Y. Degradation of Diclofenac by UV-Activated Persulfate Process: Kinetic Studies, Degradation Pathways and Toxicity Assessments. 2017, 141, 139–147. [CrossRef]
- Shu, Z.; Bolton, J.R.; Belosevic, M.; Gamal El Din, M. Photodegradation of Emerging Micropollutants Using the Medium-Pressure UV/H2O2 Advanced Oxidation Process. Water Research 2013, 47, 2881–2889. [Google Scholar] [CrossRef]
- Angosto, J.M.; Roca, M.J.; Fernández-López, J.A. Removal of Diclofenac in Wastewater Using Biosorption and Advanced Oxidation Techniques: Comparative Results. Water 2020, 12, 3567. [Google Scholar] [CrossRef]
- Adrián Jaén-Gil; Buttiglieri, G. ; Benito, A.; Josep Anton Mir-Tutusaus; Gonzalez-Olmos, R.; Glòria Caminal; Damià Barceló; Montserrat Sarrà; Rodriguez-Mozaz, S. Combining Biological Processes with UV/H2O2 for Metoprolol and Metoprolol Acid Removal in Hospital Wastewater. Chemical Engineering Journal 2021, 404, 126482–126482. [Google Scholar] [CrossRef]
- Keen, O.S.; Baik, S.; Linden, K.G.; Aga, D.S.; Love, N.G. Enhanced Biodegradation of Carbamazepine after UV/H2O2 Advanced Oxidation. Environmental Science & Technology 2012, 46, 6222–6227. [Google Scholar] [CrossRef]
- Spyrou, A.; Tzamaria, A.; Dormousoglou, M.; Skourti, A.; Dimitris Vlastos; Papadaki, M. ; Antonopoulou, M. The Overall Assessment of Simultaneous Photocatalytic Degradation of Cimetidine and Amisulpride by Using Chemical and Genotoxicological Approaches. Science of The Total Environment 2022, 838, 156140–156140. [Google Scholar] [CrossRef]
- Jiménez-Holgado, C.; Calza, P.; Fabbri, D.; Federica Dal Bello; Medana, C. ; Sakkas, V. Investigation of the Aquatic Photolytic and Photocatalytic Degradation of Citalopram. Molecules 2021, 26, 5331–5331. [Google Scholar] [CrossRef] [PubMed]
- Rapti; I. ; Kosma, C.; T. Albanis; I. Konstantinou Solar Photocatalytic Degradation of Inherent Pharmaceutical Residues in Real Hospital WWTP Effluents Using Titanium Dioxide on a CPC Pilot Scale Reactor. Catalysis Today 2023, 423, 113884–113884. [Google Scholar] [CrossRef]
- Vakros, J. Catalytic Processes for Water and Wastewater Treatment. Catalysts 2023, 13, 677. [Google Scholar] [CrossRef]
- Valenzuela, L.; Pedrosa, M.; Bahamonde, A.; Rosal, R.; André Torres-Pinto; Silva, C. G.; Faria, J.L.; Adrián M.T. Silva Carbon Nitride – PVDF Photocatalytic Membranes for Visible-Light Degradation of Venlafaxine as Emerging Water Micropollutant. Catalysis Today 2023, 418, 114042–114042. [Google Scholar] [CrossRef]
- Schnabel, T.; Mehling, S.; Londong, J.; Springer, C. Hydrogen Peroxide-Assisted Photocatalytic Water Treatment for the Removal of Anthropogenic Trace Substances from the Effluent of Wastewater Treatment Plants. Water Science and Technology 2020, 82, 2019–2028. [Google Scholar] [CrossRef]
- Hörsing, M.; Kosjek, T.; Andersen, H.R.; Heath, E.; Ledin, A. Fate of Citalopram during Water Treatment with O3, ClO2, UV and Fenton Oxidation. Chemosphere 2012, 89, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.A.; Stüber, J.; Herrmann, N.; McDowell, D.; Ried, A.; Kampmann, M.; Teiser, B. Ozonation: A Tool for Removal of Pharmaceuticals, Contrast Media and Musk Fragrances from Wastewater? Water Research 2003, 37, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Naghizadeh, M.; Ali Ahmad Aghapour; khorsandi, H. The Degradation and Mineralization of Hydrochlorothiazide (HCTZ) Using Catalytic Ozonation Process (COP) with Al2O3/Granular Activated Carbon Composite. Reaction Kinetics, Mechanisms and Catalysis 2022, 135, 1875–1889. [Google Scholar] [CrossRef]
- Kosman, J.; Monteiro, L.; Vinícius Mariani Lenart; Patrícia Los Weinert; Regina, E. UV–Vis LED-Assisted Photo-Fenton Process for Mineralization of Losartan and Hydrochlorothiazide: Optimization Using Desirability Function. Environmental Science and Pollution Research 2021, 28, 24046–24056. [Google Scholar] [CrossRef] [PubMed]
- Luongo, G.; Saviano, L.; Libralato, G.; Guida, M.; Siciliano, A.; Previtera, L.; Giovanni Di Fabio; Zarrelli, A. Secondary Effects of Hypochlorite Treatment on the Emerging Pollutant Candesartan: The Formation of Degradation Byproducts and Their Toxicological Profiles. Molecules 2021, 26, 3422–3422. [Google Scholar] [CrossRef]
- Li, R.; Liang, C.; Svendsen, S.B.; Vaidotas Kisielius; Bester, K. Sartan Blood Pressure Regulators in Classical and Biofilm Wastewater Treatment – Concentrations and Metabolism. Water Research 2023, 229, 119352–119352. [Google Scholar] [CrossRef]
- Pap, S.; Olivera Paunovic; Prosen, H. ; Kraševec, I.; Polonca Trebše; Niemi, L.; Taggart, M.A.; Maja Turk Sekulic Removal of Benzotriazole Derivatives by Biochar: Potential Environmental Applications. Environmental Pollution 2023, 334, 122205–122205. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.D.; Patterson, B.M.; McKinley, A.J.; Reeder, A.Y.; Furness, A.J.; Donn, M.J. Fate of Benzotriazole and 5-Methylbenzotriazole in Recycled Water Recharged into an Anaerobic Aquifer: Column Studies. Water Research 2015, 70, 184–195. [Google Scholar] [CrossRef]
- Gatidou, G.; Oursouzidou, M.; Stefanatou, A.; Stasinakis, A.S. Removal Mechanisms of Benzotriazoles in Duckweed Lemna Minor Wastewater Treatment Systems. Science of The Total Environment 2017, 596-597, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, K.; Felis, E.; Sochacki, A.; Bajkacz, S. Removal and Transformation Pathways of Benzothiazole and Benzotriazole in Membrane Bioreactors Treating Synthetic Municipal Wastewater. Chemosphere 2019, 227, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Mazioti, A.A.; Stasinakis, A.S.; Pantazi, Y.; Andersen, H.R. Biodegradation of Benzotriazoles and Hydroxy-Benzothiazole in Wastewater by Activated Sludge and Moving Bed Biofilm Reactor Systems. Bioresource Technology 2015, 192, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Rahmani, K.; Rahmani, A.; Rahmani, H. Removal of Benzotriazole by Photo-Fenton like Process Using Nano Zero-Valent Iron: Response Surface Methodology with a Box-Behnken Design. Polish Journal of Chemical Technology 2017, 19, 104–112. [Google Scholar] [CrossRef]
- Weiss, S.; Jakobs, J.; Reemtsma, T. Discharge of Three Benzotriazole Corrosion Inhibitors with Municipal Wastewater and Improvements by Membrane Bioreactor Treatment and Ozonation. Environmental Science & Technology 2006, 40, 7193–7199. [Google Scholar] [CrossRef]
- Minella, M.; De Laurentiis, E.; Pellegrino, F.; Prozzi, M.; Dal Bello, F.; Maurino, V.; Minero, C. Photocatalytic Transformations of 1H-Benzotriazole and Benzotriazole Derivates. Nanomaterials 2020, 10, 1835. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Mai, J.; Wu, S.; Liu, C.; Tang, L.; Mo, Z.; Zhang, M.; Guo, L.; Liu, M.; Ma, J. UV/Chlorine Process for Degradation of Benzothiazole and Benzotriazole in Water: Efficiency, Mechanism and Toxicity Evaluation. Science of The Total Environment 2021, 760, 144304–144304. [Google Scholar] [CrossRef] [PubMed]
- Malinović, B.N.; Markelj, J.; Žgajnar Gotvajn, A.; Kralj Cigić, I.; Prosen, H. Electrochemical Treatment of Wastewater to Remove Contaminants from the Production and Disposal of Plastics: A Review. Environmental Chemistry Letters 2022, 20, 3765–3787. [Google Scholar] [CrossRef]
- Wagner, T.V.; Parsons, J.R.; Huub, H.M. Rijnaarts; Pim de Voogt; Alette A.M. Langenhoff Benzotriazole Removal Mechanisms in Pilot-Scale Constructed Wetlands Treating Cooling Tower Water. Journal of Hazardous Materials 2020, 384, 121314–121314. [Google Scholar] [CrossRef]
- Nie, Y.; Qiang, Z.; Zhang, H.; Ben, W. Fate and Seasonal Variation of Endocrine-Disrupting Chemicals in a Sewage Treatment Plant with A/A/O Process. Separation and Purification Technology 2012, 84, 9–15. [Google Scholar] [CrossRef]
- Qiang, Z.; Nie, Y.; Ben, W.; Qu, J.; Zhang, H. Degradation of Endocrine-Disrupting Chemicals during Activated Sludge Reduction by Ozone. Chemosphere 2013, 91, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging Pollutants in Wastewater: A Review of the Literature. International Journal of Hygiene and Environmental Health 2011, 214, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Seth, R.; Tabe, S.; Yang, P. Oxidation of Emerging Contaminants during Pilot-Scale Ozonation of Secondary Treated Municipal Effluent. Ozone: Science & Engineering 2015, 37, 323–329. [Google Scholar] [CrossRef]
- Bourgin, M.; Beck, B.; Boehler, M.; Borowska, E.; Fleiner, J.; Salhi, E.; Teichler, R.; von Gunten, U.; Siegrist, H.; McArdell, C.S. Evaluation of a Full-Scale Wastewater Treatment Plant Upgraded with Ozonation and Biological Post-Treatments: Abatement of Micropollutants, Formation of Transformation Products and Oxidation By-Products. Water Research 2018, 129, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Marce, M.; Palacios, O.; Bartolomé, A.; Caixach, J.; Baig, S.; Esplugas, S. Application of Ozone on Activated Sludge: Micropollutant Removal and Sludge Quality. Ozone: Science & Engineering 2017, 39, 319–332. [Google Scholar] [CrossRef]
- Council Directive 91/271/EEC concerning urban waste water treatment.
- M. S. Ak; M. Muz; O.T. Komesli; C.F. Gökçay Enhancement of Bio-Gas Production and Xenobiotics Degradation during Anaerobic Sludge Digestion by Ozone Treated Feed Sludge. Chemical Engineering Journal 2013, 230, 499–505. [Google Scholar] [CrossRef]
- Nie, Y.; Qiang, Z.; Ben, W.; Liu, J. Removal of Endocrine-Disrupting Chemicals and Conventional Pollutants in a Continuous-Operating Activated Sludge Process Integrated with Ozonation for Excess Sludge Reduction. Chemosphere 2014, 105, 133–138. [Google Scholar] [CrossRef]
- Burzio, C.; Ekholm, J.; Modin, O.; Falås, P.; Svahn, O.; Persson, F.; van Erp, T.; Gustavsson, D.J.I.; Wilén, B.-M. Removal of Organic Micropollutants from Municipal Wastewater by Aerobic Granular Sludge and Conventional Activated Sludge. Journal of Hazardous Materials 2022, 438, 129528. [Google Scholar] [CrossRef] [PubMed]
- Albergamo, V.; Blankert, B.; Cornelissen, E.R.; Hofs, B.; Knibbe, W.-J.; van der Meer, W.; de Voogt, P. Removal of Polar Organic Micropollutants by Pilot-Scale Reverse Osmosis Drinking Water Treatment. Water Research 2019, 148, 535–545. [Google Scholar] [CrossRef]
- Sara Boström. 2020. Occurrence and fate of 7 APIs in two sewage treatment plants - and their re-actions to tertiary treatment. Bachelor Thesis, 15 ECTS.
- Büning, B. , Rechtenbach, D., Behrendt, J., Otterpohl, R., 2021. Removal of emerging micropollutants from wastewater by nanofiltration and biofilm reactor (MicroStop). En viron. Prog. Sustain. Energy 40, e13587. [CrossRef]
- Hollender, J.; Zimmermann, S.G.; Koepke, S.; Krauss, M.; McArdell, C.S.; Ort, C.; Singer, H.; von Gunten, U.; Siegrist, H. Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration. Environmental Science & Technology 2009, 43, 7862–7869. [Google Scholar] [CrossRef]
- Wang, J.; Tian, Z.; Huo, Y.; Yang, M.; Zheng, X.; Zhang, Y. Monitoring of 943 Organic Micropollutants in Wastewater from Municipal Wastewater Treatment Plants with Secondary and Advanced Treatment Processes. Journal of Environmental Sciences 2018, 67, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Boehler, M.; Zwickenpflug, B.; Hollender, J.; Ternes, T.; Joss, A.; Siegrist, H. Removal of Micropollutants in Municipal Wastewater Treatment Plants by Powder-Activated Carbon. Water Science and Technology 2012, 66, 2115–2121. [Google Scholar] [CrossRef] [PubMed]
- Margot, J.; Kienle, C.; Magnet, A.; Weil, M.; Rossi, L.; de Alencastro, L.F.; Abegglen, C.; Thonney, D.; Chèvre, N.; Schärer, M.; et al. Treatment of Micropollutants in Municipal Wastewater: Ozone or Powdered Activated Carbon? Science of The Total Environment 2013, 461-462, 480–498. [Google Scholar] [CrossRef] [PubMed]
- Sturm, M.T.; Myers, E.; Schober, D.; Thege, C.; Korzin, A.; Schuhen, K. Adaptable Process Design as a Key for Sustainability Upgrades in Wastewater Treatment: Comparative Study on the Removal of Micropollutants by Advanced Oxidation and Granular Activated Carbon Processing at a German Municipal Wastewater Treatment Plant. Sustainability 2022, 14, 11605. [Google Scholar] [CrossRef]
- Kumar, M.; Sridharan, S.; Sawarkar, A.D.; Shakeel, A.; Anerao, P.; Mannina, G.; Sharma, P.; Pandey, A. Current Research Trends on Emerging Contaminants Pharmaceutical and Personal Care Products (PPCPs): A Comprehensive Review. Science of The Total Environment 2023, 859, 160031. [Google Scholar] [CrossRef]



| Group | Compound | Label | Function | CAS No |
|---|---|---|---|---|
| I – very easily decomposed |
Amisulpride | AMI | Anti-psychotic | 71675-85-9 |
| Carbamazepine | CAR | Anti-epileptic drug | 298-46-4 | |
| Citalopram | CIT | Anti-depressant | 59729-33-8 | |
| Clarithromycin | CLA | Antibiotic | 81103-11-9 | |
| Diclofenac | DIC | Anti-rheumatic, analgesic | 15307-86-5 | |
| Hydrochlorothiazide | HCH | Diuretic | 58-93-5 | |
| Metoprolol | MET | Beta blocker (heart) | 37350-58-6 | |
| Venlafaxine | VEN | Anti-depressant | 93413-69-5 | |
| II-Easier removable | Benzotriazole | BZT | Anti-corrosive | 95-14-7 |
| Candesartan | CAN | Anti-hypertension | 139481-59-7 | |
| Irbesartan | IRB | Anti-hypertension | 138402-11-6 | |
| 4-methylbenzotriazole, 6-methylbenzotriazole 5-methylbenzotriazole |
4MeBZT 6MeBZT 5MeBZT |
Anti-corrosive | 29878-31-7 136-85-6 136-85-6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
