Submitted:
29 March 2024
Posted:
29 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area and Climate Conditions
2.2. Isotopes Analysis
2.3. Artificial Neural Networks
2.4. Isotopic End-Member Mixing Analysis
3. Results and Discussion
3.1. Isotopic Compositions of River Water
3.2. Performance of ANN Models
3.3. Isotopic End-Member Mixing Analysis Results
3.4. Comparative Analysis for River Flow Components
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barthold, F.K.; Tyralla, C.; Schneider, K.; Vaché, K.B.; Frede, H.G.; Breuer, L. How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resources Research 2011, 47. [Google Scholar] [CrossRef]
- Ali, G.A.; Roy, A.G.; Turmel, M.-C.; Courchesne, F. Source-to-stream connectivity assessment through end-member mixing analysis. Journal of Hydrology 2010, 392, 119–135. [Google Scholar] [CrossRef]
- Burns, D.A.; McDonnell, J.J.; Hooper, R.P.; Peters, N.E.; Freer, J.E.; Kendall, C.; Beven, K. Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrological processes 2001, 15, 1903–1924. [Google Scholar] [CrossRef]
- Tanty, R.; Desmukh, T.S. Application of artificial neural network in hydrology—A review. Int. J. Eng. Technol. Res 2015, 4, 184–188. [Google Scholar]
- Wang, W.; Van Gelder, P.H.; Vrijling, J.K.; Ma, J. Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology 2006, 324, 383–399. [Google Scholar] [CrossRef]
- Kendall, C.; McDonnell, J.J. Isotope Tracers in Catchment Hydrology; Elsevier Science, 1998. [Google Scholar]
- Hoefs, J.; Hoefs, J. Stable isotope geochemistry; Springer, 2009; Volume 285. [Google Scholar]
- Laonamsai, J.; Ichiyanagi, K.; Kamdee, K.; Putthividhya, A.; Tanoue, M. Spatial and Temporal Distributions of Stable Isotopes in Precipitation over Thailand. Hydrological Processes 2020, n/a. [Google Scholar] [CrossRef]
- Good, S.P.; Noone, D.; Kurita, N.; Benetti, M.; Bowen, G.J. D/H isotope ratios in the global hydrologic cycle. Geophysical Research Letters 2015, 42, 5042–5050. [Google Scholar] [CrossRef]
- Jeelani, G.; Saravana Kumar, U.; Kumar, B. Variation of δ18O and δD in precipitation and stream waters across the Kashmir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow. Journal of Hydrology 2013, 481, 157–165. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S. Isotopic temporal and spatial variations of tropical rivers in Thailand reflect monsoon precipitation signals. Hydrological Processes 2021, 35, e14068. [Google Scholar] [CrossRef]
- Haiyan, C.; Yaning, C.; Weihong, L.; Xinming, H.; Yupeng, L.; Qifei, Z. Identifying evaporation fractionation and streamflow components based on stable isotopes in the Kaidu River Basin with mountain–oasis system in north-west China. Hydrological processes 2018, 32, 2423–2434. [Google Scholar]
- Wu, H.; Li, X.; Li, J.; Jiang, Z.; Li, G.; Liu, L. Evaporative enrichment of stable isotopes (δ 18 O and δD) in lake water and the relation to lake-level change of Lake Qinghai, Northeast Tibetan Plateau of China. Journal of Arid Land 2015, 7, 623–635. [Google Scholar] [CrossRef]
- Simpson, H.J.; Herczeg, A.L. Stable isotopes as an indicator of evaporation in the River Murray, Australia. Water Resources Research 1991, 27, 1925–1935. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kanduč, T.; Stichler, W.; Vreča, P. Spatial and seasonal variations in δ18O and δD values in the River Sava in Slovenia. Journal of Hydrology 2008, 359, 303–312. [Google Scholar] [CrossRef]
- Rock, L.; Mayer, B. Isotope hydrology of the Oldman River basin, southern Alberta, Canada. Hydrological Processes: An International Journal 2007, 21, 3301–3315. [Google Scholar] [CrossRef]
- Koeniger, P.; Leibundgut, C.; Stichler, W. Spatial and temporal characterisation of stable isotopes in river water as indicators of groundwater contribution and confirmation of modelling results; a study of the Weser river, Germany. Isotopes in Environmental and Health Studies 2009, 45, 289–302. [Google Scholar] [CrossRef]
- Halder, J.; Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research. Hydrology & Earth System Sciences Discussions 2015, 12. [Google Scholar]
- Laonamsai, J.; Putthividhya, A. Preliminary Assessment of Groundwater and Surface Water Characteristics in the Upper Chao Phraya River Basin Land Using a Stable Isotope Fingerprinting Technique. In Proceedings of the World Environmental and Water Resources Congress 2016; 2016; pp. 367–386. [Google Scholar]
- Putthividhya, A.; Laonamsai, J. Hydrological assessment using stable isotope fingerprinting technique in the Upper Chao Phraya river basin. Lowland technology international : the official journal of the International Association of Lowland Technology 2017, 19, 27–40. [Google Scholar]
- Kim, M.-S.; Lim, B.R.; Jeon, P.; Hong, S.; Jeon, D.; Park, S.Y.; Hong, S.; Yoo, E.J.; Kim, H.S.; Shin, S. Innovative approach to reveal source contribution of dissolved organic matter in a complex river watershed using end-member mixing analysis based on spectroscopic proxies and multi-isotopes. Water Research 2023, 230, 119470. [Google Scholar] [CrossRef]
- Lv, Y.; Gao, L.; Geris, J.; Verrot, L.; Peng, X. Assessment of water sources and their contributions to streamflow by end-member mixing analysis in a subtropical mixed agricultural catchment. Agricultural Water Management 2018, 203, 411–422. [Google Scholar] [CrossRef]
- Romanelli, A.; Soto, D.X.; Matiatos, I.; Martínez, D.E.; Esquius, S. A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Science of the Total Environment 2020, 715, 136909. [Google Scholar] [CrossRef] [PubMed]
- Soulsby, C.; Birkel, C.; Geris, J.; Dick, J.; Tunaley, C.; Tetzlaff, D. Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high-resolution isotope data. Water Resources Research 2015, 51, 7759–7776. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Mukherjee, A.; Hussain, S.A.; Jamal, M.S.; Das, K.; Shaw, A.; Layek, M.K.; Sengupta, P. Stable isotope dynamics of groundwater interactions with Ganges river. Hydrological Processes 2021, 35, e14002. [Google Scholar] [CrossRef]
- Cánovas, C.R.; Macías, F.; Olías, M.; López, R.P.; Nieto, J.M. Metal-fluxes characterization at a catchment scale: Study of mixing processes and end-member analysis in the Meca River watershed (SW Spain). Journal of Hydrology 2017, 550, 590–602. [Google Scholar] [CrossRef]
- Bunn, S.E.; Davies, P.M.; Mosisch, T.D. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater biology 1999, 41, 333–345. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Okuku, C.O.; Njau, E.N. Use of Artificial Neural Networks and Multiple Linear Regression Model for the Prediction of Dissolved Oxygen in Rivers: Case Study of Hydrographic Basin of River Nyando, Kenya. Complex. 2020, 2020, 9570789:9570781–9570789:9570723. [Google Scholar] [CrossRef]
- Reisenbüchler, M.; Bui, M.D.; Rutschmann, P. Reservoir Sediment Management Using Artificial Neural Networks: A Case Study of the Lower Section of the Alpine Saalach River. Water 2021. [Google Scholar] [CrossRef]
- Debbarma, S.; Choudhury, P. River flow prediction with memory-based artificial neural networks: a case study of the Dholai river basin. Int. J. Adv. Intell. Paradigms 2020, 15, 51–62. [Google Scholar] [CrossRef]
- Mitrović, T.; Antanasijević, D.; Lazović, S.; Perić-Grujić, A.; Ristić, M. Virtual water quality monitoring at inactive monitoring sites using Monte Carlo optimized artificial neural networks: A case study of Danube River (Serbia). The Science of the total environment 2019, 654, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Bridhikitti, A.; Prabamroong, T.; Yu, G.-A. Problem identification on surface water quality in the Mun River Basin, Thailand. Sustainable Water Resources Management 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Prabnakorn, S.; Maskey, S.; Suryadi, F.X.; de Fraiture, C. Assessment of drought hazard, exposure, vulnerability, and risk for rice cultivation in the Mun River Basin in Thailand. Natural Hazards 2019, 97, 891–911. [Google Scholar] [CrossRef]
- Li, C.; Fang, H. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: using SWAT model. Catena 2021, 201, 105199. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S.; Kamdee, K.; Tomun, N. Application of Stable Isotopic Compositions of Rainfall Runoff for Evaporation Estimation in Thailand Mekong River Basin. Water 2022, 14, 2803. [Google Scholar] [CrossRef]
- Akter, A.; Babel, M.S. Hydrological modeling of the Mun River basin in Thailand. Journal of Hydrology 2012, 452, 232–246. [Google Scholar] [CrossRef]
- International Atomic Energy, A. IAEA/GNIP precipitation sampling guide V2. 02 September 2014. 2014. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Hafezparast, M.; Marabi, S. Prediction of Discharge Using Artificial Neural Network and IHACRES Models Due to Climate Change. Journal of Renewable Energy and Environment 2021, 8, 75–85. [Google Scholar]
- Baker, J.C.A.; Cintra, B.B.L.; Gloor, M.; Boom, A.; Neill, D.A.; Clerici, S.J.; Leng, M.J.J.; Helle, G.; Brienen, R.J.W. The Changing Amazon Hydrological Cycle—Inferences From Over 200 Years of Tree-Ring Oxygen Isotope Data. Journal of Geophysical Research: Biogeosciences 2022, 127. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv preprint, arXiv:1803.08375 2018.
- Poursaeid, M. An optimized Extreme Learning Machine by Evolutionary Computation for River Flow Prediction and Simulation of Water Pollution in Colorado River Basin, USA. Expert Syst. Appl. 2023, 233, 120998. [Google Scholar] [CrossRef]
- Mutlu, E.; Chaubey, I.; Hexmoor, H.; Bajwa, S.G. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrological Processes: An International Journal 2008, 22, 5097–5106. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F. Isotope evidence for quantifying river evaporation and recharge processes in the lower reaches of the Yellow River. Environmental Earth Sciences 2017, 76, 1–15. [Google Scholar] [CrossRef]
- Xia, C.-A.; Pasetto, D.; Hu, B.X.; Putti, M.; Guadagnini, A. Integration of moment equations in a reduced-order modeling strategy for Monte Carlo simulations of groundwater flow. Journal of Hydrology 2020. [Google Scholar] [CrossRef]
- Laonamsai, J.; Pawana, V.; Chipthamlong, P.; Chomcheawchan, P.; Kamdee, K.; Kimmany, B.; Julphunthong, P. Groundwater Quality Variations in Multiple Aquifers: A Comprehensive Evaluation for Public Health and Agricultural Use. Geosciences 2023, 13. [Google Scholar] [CrossRef]
- Laonamsai, J.; Julphunthong, P.; Chipthamlong, P.; Pawana, V.; Chomchaewchan, P.; Kamdee, K.; Tomun, N.; Kimmany, B. Hydrochemical characteristics and salt intrusion in groundwater of the lower Chao Phraya river basin: Insights from stable isotopes and hydrochemical analysis. Groundwater for Sustainable Development 2023, 23, 101044. [Google Scholar] [CrossRef]
- Putthividhya, A.; Laonamsai, J. SWAT and MODFLOW modeling of spatio-temporal runoff and groundwater recharge distribution. 2017; pp. 51–65.
- Zhong, J.; Chen, S.; Wang, W.; Yan, Z.; Ellam, R.M.; Li, S.L. Unravelling the hydrological effects on spatiotemporal variability of water chemistry in mountainous rivers from Southwest China. Hydrological Processes 2020, 34, 5595–5605. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Alduchov, O.A.; Froehlich, K.O.; Araguas-Araguas, L.J.; Sturchio, N.C.; Kurita, N. Stable isotopes in global precipitation: A unified interpretation based on atmospheric moisture residence time. Geophysical Research Letters 2012, 39, n. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over southeast Asia. Journal of Geophysical Research: Atmospheres 1998, 103, 28721–28742. [Google Scholar] [CrossRef]
- Xia, C.; Liu, G.; Chen, K.; Hu, Y.; Zhou, J.; Liu, Y.; Mei, J. Stable Isotope Characteristics for Precipitation Events and Their Responses to Moisture and Environmental Changes During the Summer Monsoon Period in Southwestern China. Polish Journal of Environmental Studies 2020, 29. [Google Scholar] [CrossRef]
- Yang, Y.-g.; Hu, J.; Xiao, H.; Zou, S.; Yin, Z. [Spatial and temporal variations of hydrological characteristic on the landscape zone scale in alpine cold region]. Huan jing ke xue= Huanjing kexue, 2013; 34 10, 3797–3803. [Google Scholar]
- Yang, K.; Han, G. Controls over hydrogen and oxygen isotopes of surface water and groundwater in the Mun River catchment, northeast Thailand: implications for the water cycle. Hydrogeology Journal 2020, 28. [Google Scholar] [CrossRef]
- Crawford, J.; Hollins, S.E.; Meredith, K.T.; Hughes, C.E. Precipitation stable isotope variability and subcloud evaporation processes in a semi-arid region. Hydrological Processes 2017, 31, 20–34. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S.; Kamdee, K. Controls on Stable Isotopic Characteristics of Water Vapor over Thailand. Hydrological Processes 2021, n/a, e14202. [Google Scholar] [CrossRef]
- Jackisch, D.; Yeo, B.X.; Switzer, A.D.; He, S.; Cantarero, D.L.M.; Siringan, F.P.; Goodkin, N.F. Precipitation stable isotopic signatures of tropical cyclones in Metropolitan Manila, Philippines, show significant negative isotopic excursions. Natural Hazards and Earth System Sciences 2022. [Google Scholar] [CrossRef]
- Fritz, M.; Wetterich, S.; McAlister, J.; Meyer, H. A new local meteoric water line for Inuvik (NT, Canada). Earth System Science Data 2021. [Google Scholar] [CrossRef]
- Terzer-Wassmuth, S.; Araguás-Araguás, L.J.; Wassenaar, L.I.; Stumpp, C. Global and local meteoric water lines for δ17O/δ18O and the spatiotemporal distribution of Δ′17O in Earth’s precipitation. Scientific Reports 2023, 13. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Wang, S.; Zhou, T. A simplified method of developing a local meteoric water line equation for Beijing, China. Journal of Radioanalytical and Nuclear Chemistry 2018, 315, 523–532. [Google Scholar] [CrossRef]
- Welch, C.; Smith, A.A.; Stadnyk, T.A. Linking physiography and evaporation using the isotopic composition of river water in 16 Canadian boreal catchments. Hydrological Processes 2018, 32, 170–184. [Google Scholar] [CrossRef]
- Sang, L.; Zhu, G.-f.; Xu, Y.; Sun, Z.; Zhang, Z.; Tong, H.-l. Effects of Agricultural Large-And Medium-Sized Reservoirs on Hydrologic Processes in the Arid Shiyang River Basin, Northwest China. Water Resources Research 2023, 59. [Google Scholar] [CrossRef]
- Zanial, W.N.C.W.; Malek, M.B.A.; Reba, M.N.M.; Zaini, N.a.; Ahmed, A.N.; Sherif, M.; Elshafie, A. River flow prediction based on improved machine learning method: Cuckoo Search-Artificial Neural Network. Applied Water Science 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Li, R.; Huang, H.; Yu, G.; Yu, H.; Bridhikitti, A.; Su, T. Trends of runoff variation and effects of main causal factors in Mun River, Thailand During 1980–2018. Water 2020, 12, 831. [Google Scholar] [CrossRef]
- Winnick, M.J.; Chamberlain, C.P.; Caves, J.K.; Welker, J.M. Quantifying the isotopic ‘continental effect’. Earth and Planetary Science Letters 2014, 406, 123–133. [Google Scholar] [CrossRef]
- Vallet-Coulomb, C.; Seraphin, P.; Gonçalves, J.C.d.S.I.; Radakovitch, O.; Cognard-Plancq, A.-L.; Crespy, A.; Babic, M.; Charron, F. Irrigation return flows in a mediterranean aquifer inferred from combined chloride and stable isotopes mass balances. Applied Geochemistry 2017, 86, 92–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, A.; You, J.-j.; Jing, X. Quantification of human and climate contributions to multi-dimensional hydrological alterations: A case study in the Upper Minjiang River, China. Journal of Geographical Sciences 2021, 31, 1102–1122. [Google Scholar] [CrossRef]
- Vinogradova, A.A.; Kotova, E.I. Pollution of Russian Northern Seas with Heavy Metals: Comparison of Atmospheric Flux and River Flow. Izvestiya, Atmospheric and Oceanic Physics 2019, 55, 695–704. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
