Submitted:
19 April 2024
Posted:
23 April 2024
You are already at the latest version
Abstract
Keywords:
Supplementary Materials
Acknowledgments
References
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum computation and quantum information; Cambridge university press, 2010. [CrossRef]
- Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review 1999, 41, 303–332. [Google Scholar] [CrossRef]
- Hangleiter, D.; Eisert, J. Computational advantage of quantum random sampling. Review of Modern Physics 2023, 95, 035001. [Google Scholar] [CrossRef]
- Zhong, H.S.; Wang, H.; Deng, Y.H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y.; others. Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef]
- Zhong, H.S.; Deng, Y.H.; Qin, J.; Wang, H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Wu, D.; Gong, S.Q.; Su, H.; others. Phase-programmable gaussian boson sampling using stimulated squeezed light. Physical Review Letters 2021, 127, 180502. [Google Scholar] [CrossRef] [PubMed]
- Madsen, L.S.; Laudenbach, F.; Askarani, M.F.; Rortais, F.; Vincent, T.; Bulmer, J.F.; Miatto, F.M.; Neuhaus, L.; Helt, L.G.; Collins, M.J.; others. Quantum computational advantage with a programmable photonic processor. Nature 2022, 606, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; Burkett, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Collins, R.; Courtney, W.; Dunsworth, A.; Farhi, E.; Foxen, B.; Fowler, A.; Gidney, C.; Giustina, M.; Graff, R.; Guerin, K.; Habegger, S.; Harrigan, M.P.; Hartmann, M.J.; Ho, A.; Hoffmann, M.; Huang, T.; Humble, T.S.; Isakov, S.V.; Jeffrey, E.; Jiang, Z.; Kafri, D.; Kechedzhi, K.; Kelly, J.; Klimov, P.V.; Knysh, S.; Korotkov, A.; Kostritsa, F.; Landhuis, D.; Lindmark, M.; Lucero, E.; Lyakh, D.; Mandrà, S.; McClean, J.R.; McEwen, M.; Megrant, A.; Mi, X.; Michielsen, K.; Mohseni, M.; Mutus, J.; Naaman, O.; Neeley, M.; Neill, C.; Niu, M.Y.; Ostby, E.; Petukhov, A.; Platt, J.C.; Quintana, C.; Rieffel, E.G.; Roushan, P.; Rubin, N.C.; Sank, D.; Satzinger, K.J.; Smelyanskiy, V.; Sung, K.J.; Trevithick, M.D.; Vainsencher, A.; Villalonga, B.; White, T.; Yao, Z.J.; Yeh, P.; Zalcman, A.; Neven, H.; Martinis, J.M. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Cao, S.; Chen, F.; Chen, M.C.; Chen, X.; Chung, T.H.; Deng, H.; Du, Y.; Fan, D.; Gong, M.; Guo, C.; Guo, C.; Guo, S.; Han, L.; Hong, L.; Huang, H.L.; Huo, Y.H.; Li, L.; Li, N.; Li, S.; Li, Y.; Liang, F.; Lin, C.; Lin, J.; Qian, H.; Qiao, D.; Rong, H.; Su, H.; Sun, L.; Wang, L.; Wang, S.; Wu, D.; Wu, Y.; Xu, Y.; Yan, K.; Yang, W.; Yang, Y.; Ye, Y.; Yin, J.; Ying, C.; Yu, J.; Zha, C.; Zhang, C.; Zhang, H.; Zhang, K.; Zhang, Y.; Zhao, H.; Zhao, Y.; Zhou, L.; Lu, C.Y.; Peng, C.Z.; Zhu, X.; Pan, J.W. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin 2022, 67, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Bao, W.S.; Cao, S.; Chen, F.; Chen, M.C.; Chen, X.; Chung, T.H.; Deng, H.; Du, Y.; Fan, D.; Gong, M.; Guo, C.; Guo, C.; Guo, S.; Han, L.; Hong, L.; Huang, H.L.; Huo, Y.H.; Li, L.; Li, N.; Li, S.; Li, Y.; Liang, F.; Lin, C.; Lin, J.; Qian, H.; Qiao, D.; Rong, H.; Su, H.; Sun, L.; Wang, L.; Wang, S.; Wu, D.; Xu, Y.; Yan, K.; Yang, W.; Yang, Y.; Ye, Y.; Yin, J.; Ying, C.; Yu, J.; Zha, C.; Zhang, C.; Zhang, H.; Zhang, K.; Zhang, Y.; Zhao, H.; Zhao, Y.; Zhou, L.; Zhu, Q.; Lu, C.Y.; Peng, C.Z.; Zhu, X.; Pan, J.W. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Physical Review Letters 2021, 127, 180501. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Eddins, A.; Anand, S.; Wei, K.X.; Van Den Berg, E.; Rosenblatt, S.; Nayfeh, H.; Wu, Y.; Zaletel, M.; Temme, K.; others. Evidence for the utility of quantum computing before fault tolerance. Nature 2023, 618, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Ryan-Anderson, C.; Bohnet, J.G.; Lee, K.; Gresh, D.; Hankin, A.; Gaebler, J.; Francois, D.; Chernoguzov, A.; Lucchetti, D.; Brown, N.C.; others. Realization of real-time fault-tolerant quantum error correction. Physical Review X 2021, 11, 041058. [Google Scholar] [CrossRef]
- Krinner, S.; Lacroix, N.; Remm, A.; Di Paolo, A.; Genois, E.; Leroux, C.; Hellings, C.; Lazar, S.; Swiadek, F.; Herrmann, J.; Norris, G.J.; Andersen, C.K.; Müller, M.; Blais, A.; Eichler, C.; Wallraff, A. Realizing repeated quantum error correction in a distance-three surface code. Nature 2022, 605, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ye, Y.; Huang, H.L.; Zhang, Y.; Wu, D.; Guan, H.; Zhu, Q.; Wei, Z.; He, T.; Cao, S.; Chen, F.; Chung, T.H.; Deng, H.; Fan, D.; Gong, M.; Guo, C.; Guo, S.; Han, L.; Li, N.; Li, S.; Li, Y.; Liang, F.; Lin, J.; Qian, H.; Rong, H.; Su, H.; Sun, L.; Wang, S.; Wu, Y.; Xu, Y.; Ying, C.; Yu, J.; Zha, C.; Zhang, K.; Huo, Y.H.; Lu, C.Y.; Peng, C.Z.; Zhu, X.; Pan, J.W. Realization of an Error-Correcting Surface Code with Superconducting Qubits. Physical Review Letters 2022, 129, 030501. [Google Scholar] [CrossRef]
- Acharya, R.; Aleiner, I.; Allen, R.; Andersen, T.I.; Ansmann, M.; Arute, F.; Arya, K.; Asfaw, A.; Atalaya, J.; Babbush, R.; Bacon, D.; Bardin, J.C.; Basso, J.; Bengtsson, A.; Boixo, S.; Bortoli, G.; Bourassa, A.; Bovaird, J.; Brill, L.; Broughton, M.; Buckley, B.B.; Buell, D.A.; Burger, T.; Burkett, B.; Bushnell, N.; Chen, Y.; Chen, Z.; Chiaro, B.; Cogan, J.; Collins, R.; Conner, P.; Courtney, W.; Crook, A.L.; Curtin, B.; Debroy, D.M.; Del Toro Barba, A.; Demura, S.; Dunsworth, A.; Eppens, D.; Erickson, C.; Faoro, L.; Farhi, E.; Fatemi, R.; Flores Burgos, L.; Forati, E.; Fowler, A.G.; Foxen, B.; Giang, W.; Gidney, C.; Gilboa, D.; Giustina, M.; Grajales Dau, A.; Gross, J.A.; Habegger, S.; Hamilton, M.C.; Harrigan, M.P.; Harrington, S.D.; Higgott, O.; Hilton, J.; Hoffmann, M.; Hong, S.; Huang, T.; Huff, A.; Huggins, W.J.; Ioffe, L.B.; Isakov, S.V.; Iveland, J.; Jeffrey, E.; Jiang, Z.; Jones, C.; Juhas, P.; Kafri, D.; Kechedzhi, K.; Kelly, J.; Khattar, T.; Khezri, M.; Kieferová, M.; Kim, S.; Kitaev, A.; Klimov, P.V.; Klots, A.R.; Korotkov, A.N.; Kostritsa, F.; Kreikebaum, J.M.; Landhuis, D.; Laptev, P.; Lau, K.M.; Laws, L.; Lee, J.; Lee, K.; Lester, B.J.; Lill, A.; Liu, W.; Locharla, A.; Lucero, E.; Malone, F.D.; Marshall, J.; Martin, O.; McClean, J.R.; McCourt, T.; McEwen, M.; Megrant, A.; Meurer Costa, B.; Mi, X.; Miao, K.C.; Mohseni, M.; Montazeri, S.; Morvan, A.; Mount, E.; Mruczkiewicz, W.; Naaman, O.; Neeley, M.; Neill, C.; Nersisyan, A.; Neven, H.; Newman, M.; Ng, J.H.; Nguyen, A.; Nguyen, M.; Niu, M.Y.; O’Brien, T.E.; Opremcak, A.; Platt, J.; Petukhov, A.; Potter, R.; Pryadko, L.P.; Quintana, C.; Roushan, P.; Rubin, N.C.; Saei, N.; Sank, D.; Sankaragomathi, K.; Satzinger, K.J.; Schurkus, H.F.; Schuster, C.; Shearn, M.J.; Shorter, A.; Shvarts, V.; Skruzny, J.; Smelyanskiy, V.; Smith, W.C.; Sterling, G.; Strain, D.; Szalay, M.; Torres, A.; Vidal, G.; Villalonga, B.; Vollgraff Heidweiller, C.; White, T.; Xing, C.; Yao, Z.J.; Yeh, P.; Yoo, J.; Young, G.; Zalcman, A.; Zhang, Y.; Zhu, N. Suppressing quantum errors by scaling a surface code logical qubit. Nature 2023, 614, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.H.; Yoder, T.J.; Kim, Y.; Sundaresan, N.; Srinivasan, S.; Li, M.; Córcoles, A.D.; Cross, A.W.; Takita, M. Calibrated decoders for experimental quantum error correction. Physical Review Letters 2022, 128, 110504. [Google Scholar] [CrossRef] [PubMed]
- Bluvstein, D.; Evered, S.J.; Geim, A.A.; Li, S.H.; Zhou, H.; Manovitz, T.; Ebadi, S.; Cain, M.; Kalinowski, M.; Hangleiter, D.; others. Logical quantum processor based on reconfigurable atom arrays. Nature 2024, 626, 58–65. [Google Scholar] [CrossRef]
- Campbell, E. A series of fast-paced advances in Quantum Error Correction. Nature Reviews Physics 2024, 6, 160–161. [Google Scholar] [CrossRef]
- Córcoles, A.D.; Kandala, A.; Javadi-Abhari, A.; McClure, D.T.; Cross, A.W.; Temme, K.; Nation, P.D.; Steffen, M.; Gambetta, J.M. Challenges and Opportunities of Near-Term Quantum Computing Systems. Proceedings of the IEEE 2020, 108, 1338–1352. [Google Scholar] [CrossRef]
- Winick, A.; Wallman, J.J.; Emerson, J. Simulating and Mitigating Crosstalk. Physical Review Letters 2021, 126, 230502. [Google Scholar] [CrossRef]
- Klimov, P.V.; Bengtsson, A.; Quintana, C.; Bourassa, A.; Hong, S.; Dunsworth, A.; Satzinger, K.J.; Livingston, W.P.; Sivak, V.; Niu, M.Y.; others. Optimizing quantum gates towards the scale of logical qubits. Nature Communications 2024, 15, 2442. [Google Scholar] [CrossRef] [PubMed]
- Sarovar, M.; Proctor, T.; Rudinger, K.; Young, K.; Nielsen, E.; Blume-Kohout, R. Detecting crosstalk errors in quantum information processors. Quantum 2020, 4, 321. [Google Scholar] [CrossRef]
- Feng, L.; Huang, Y.Y.; Wu, Y.K.; Guo, W.X.; Ma, J.Y.; Yang, H.X.; Zhang, L.; Wang, Y.; Huang, C.X.; Zhang, C.; others. Realization of a crosstalk-avoided quantum network node using dual-type qubits of the same ion species. Nature Communications 2024, 15, 204. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wang, Y.; Huang, S.; Brown, K.R.; Kim, J. Crosstalk suppression in individually addressed two-qubit gates in a trapped-ion quantum computer. Physical Review Letters 2022, 129, 240504. [Google Scholar] [CrossRef] [PubMed]
- Debroy, D.M.; Li, M.; Huang, S.; Brown, K.R. Logical performance of 9 qubit compass codes in ion traps with crosstalk errors. Quantum Science and Technology 2020, 5, 034002. [Google Scholar] [CrossRef]
- Rudinger, K.; Hogle, C.W.; Naik, R.K.; Hashim, A.; Lobser, D.; Santiago, D.I.; Grace, M.D.; Nielsen, E.; Proctor, T.; Seritan, S.; others. Experimental characterization of crosstalk errors with simultaneous gate set tomography. PRX Quantum 2021, 2, 040338. [Google Scholar] [CrossRef]
- Wei, K.; Magesan, E.; Lauer, I.; Srinivasan, S.; Bogorin, D.F.; Carnevale, S.; Keefe, G.; Kim, Y.; Klaus, D.; Landers, W.; others. Hamiltonian engineering with multicolor drives for fast entangling gates and quantum crosstalk cancellation. Physical Review Letters 2022, 129, 060501. [Google Scholar] [CrossRef]
- Heinz, I.; Burkard, G. Crosstalk analysis for single-qubit and two-qubit gates in spin qubit arrays. Physical Review B 2021, 104, 045420. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, Y.; Li, X.; Han, J.; Xu, H.; Xue, G.; Jin, Y.; Yu, H. Spurious microwave crosstalk in floating superconducting circuits. arXiv, 2206. [Google Scholar]
- Wang, R.; Zhao, P.; Jin, Y.; Yu, H. Control and mitigation of microwave crosstalk effect with superconducting qubits. Applied Physics Letters 2022, 121, 152602. [Google Scholar] [CrossRef]
- Santos, A.C. Role of parasitic interactions and microwave crosstalk in dispersive control of two superconducting artificial atoms. Phys. Rev. A 2023, 107, 012602. [Google Scholar] [CrossRef]
- Tripathi, V.; Chen, H.; Khezri, M.; Yip, K.W.; Levenson-Falk, E.; Lidar, D.A. Suppression of crosstalk in superconducting qubits using dynamical decoupling. Physical Review Applied 2022, 18, 024068. [Google Scholar] [CrossRef]
- Koch, J.; Yu, T.M.; Gambetta, J.; Houck, A.A.; Schuster, D.I.; Majer, J.; Blais, A.; Devoret, M.H.; Girvin, S.M.; Schoelkopf, R.J. Charge-insensitive qubit design derived from the Cooper pair box. Physical Review A 2007, 76, 042319. [Google Scholar] [CrossRef]
- Xu, K.; Sun, Z.H.; Liu, W.; Zhang, Y.R.; Li, H.; Dong, H.; Ren, W.; Zhang, P.; Nori, F.; Zheng, D.; Fan, H.; Wang, H. Probing dynamical phase transitions with a superconducting quantum simulator. Science Advances 2020, 6, eaba4935. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.; Ding, L.; Braumüller, J.; Vepsäläinen, A.; Kannan, B.; Kjaergaard, M.; Greene, A.; Samach, G.O.; McNally, C.; Kim, D.; Melville, A.; Niedzielski, B.M.; Schwartz, M.E.; Yoder, J.L.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. Realization of High-Fidelity CZ and ZZ -Free iSWAP Gates with a Tunable Coupler. Physical Review X 2021, 11. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, S.; Xiang, Z.; Wang, Z.; Yang, Z.; Xu, K.; Tian, Y.; Yu, H.; Zheng, D.; Fan, H.; Zhao, S. Calibration and cancellation of microwave crosstalk in superconducting circuits. Chinese Physics B 2023, 32, 094203. [Google Scholar] [CrossRef]
- High-Fidelity, Frequency-Flexible Two-Qubit Fluxonium Gates with a Transmon Coupler. Physical Review X 2023, 13, 031035–2304. [CrossRef]
- Nuerbolati, W.; Han, Z.; Chu, J.; Zhou, Y.; Tan, X.; Yu, Y.; Liu, S.; Yan, F. Canceling microwave crosstalk with fixed-frequency qubits. Applied Physics Letters 2022, 120, 174001. [Google Scholar] [CrossRef]
- Chen, Z. Metrology of Quantum Control and Measurement in Superconducting Qubits. PhD thesis, University of California, Santa Barbara, 2018.
- Magesan, E.; Gambetta, J.M.; Emerson, J. Characterizing quantum gates via randomized benchmarking. Physical Review A 2012, 85, 042311. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Córcoles, A.D.; Merkel, S.T.; Johnson, B.R.; Smolin, J.A.; Chow, J.M.; Ryan, C.A.; Rigetti, C.; Poletto, S.; Ohki, T.A.; Ketchen, M.B.; Steffen, M. Characterization of addressability by simultaneous randomized benchmarking. Physical Review Letters 2012, 109, 240504. [Google Scholar] [CrossRef]




| Qubit Number | q1 | q2 | q3 | q4 | q5 |
|---|---|---|---|---|---|
| Frequency (MHz) | 4137 | 4181 | 4524 | 4799 | 4075 |
| Anharmonicity (MHz) | -243 | -223 | -250 | -228 | -244 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
