Submitted:
26 March 2024
Posted:
28 March 2024
Read the latest preprint version here
Abstract
Keywords:
1. Multiple Ways to Write Haugs’ Planck Quantized General Relativity Theory
| Form : | Einstein’s field equation : | Corresponding G : |
|---|---|---|
| Standard form : | G | |
| Planck length : | ||
| Planck time: | ||
| Planck mass: | ||
| Planck energy: | ||
| Planck force : |
| Form : | Schwarzschild metric : |
|---|---|
| Standard form : | |
| Planck length : | |
| Planck time: | |
| Planck mass: | |
| Planck energy: | |
| Planck acceleration : |
2. Conclusions
Conflicts of Interest
References
- M. Planck. Natuerliche Masseinheiten, Der Königlich Preussischen Akademie Der Wissenschaften: Berlin, Germany, 1899. Available online: https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up.
- M. Planck. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: J.A. Barth, p. 163, see also the English translation “The Theory of Radiation" (1959) Dover, 1906.
- A. Einstein. Näherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin, 1916.
- A. S. Eddington. Report On The Relativity Theory Of Gravitation. The Physical Society Of London, Fleetway Press, London. 1918.
- E. G. Haug. Quantized Newton and general relativity theory. Qeios, 2023. [CrossRef]
- E. G. Haug. Different mass definitions and their pluses and minuses related to gravity. Foundations, 2023; 3, 199–219. [CrossRef]
- E. G. Haug. Unified Revolution, New Fundamental Physics. Oslo, E.G.H. Publishing. 2014.
- E. G. Haug. Planck quantization of newton and Einstein gravitation. International Journal of Astronomy and Astrophysics, 2016; 6, 206. [CrossRef]
- E. G. Haug. Newton did not invent or use the so-called Newton’s gravitational constant; G, it has mainly caused confusion. Journal of Modern Physics, 13: 179, 2022. [Google Scholar] [CrossRef]
- E. G. Haug. Progress in the composite view of the Newton gravitational constant and its link to the Planck scale. Universe, 2022; 8. [CrossRef]
- E. G. Haug. Can the Planck length be found independent of big G ? Applied Physics Research, 2017; 9, 58. [CrossRef]
- E. G. Haug. Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a newton force spring. Journal Physics Communication, 2020; 4, 075001. [CrossRef]
- E. G. Haug. Demonstration that newtonian gravity moves at the speed of light and not instantaneously (infinite speed) as thought! Journal of Physics Communication. 2021; 5, 1. [CrossRef]
- E. G. Haug. Planck units measured totally independently of big G. Open Journal of Microphysics, 2022; 12, 55. [CrossRef]
- E. G. Haug. Extraction of the Planck length from cosmological redshift without knowledge off G or ℏ. International Journal of Quantum Foundation, supplement series Quantum Speculations, 2022; 4.
- E. G. Haug. CMB, Hawking, Planck, and Hubble scale relations consistent with recent quantization of general relativity theory. International Journal of Theoretical Physics, Nature-Springer, 2024; 63. [CrossRef]
- E. R. Cohen. Fundamental Physical Constants, in the book Gravitational Measurements, Fundamental Metrology and Constants. Edited by Sabbata, and Melniko, V. N., Netherland, Amsterdam, Kluwer Academic Publishers. 1987; 59.
- M. E. McCulloch. Quantised inertia from relativity and the uncertainty principle. Europhysics Letters (EPL), 2016; 115, 69001. [CrossRef]
- H. Cavendish. Experiments to determine the density of the earth. Philosophical Transactions of the Royal Society of London, (part II), 1798; 88, 469.
- B. E. Clotfelter. The Cavendish experiment as cavendish knew it. American Journal of Physics, 1987; 55, 210. [CrossRef]
- L. Sean. Henry Cavendish and the density of the earth. The Physics Teacher, 1999; 37, 34. [CrossRef]
- A. H. Compton. A quantum theory of the scattering of x-rays by light elements. Physical Review, 1923; 21, 483. [CrossRef]
- E. G. Haug. The Compton wavelength is the true matter wavelength, linked to the photon wavelength, while the de broglie wavelength is simply a mathematical derivative. Qeios, 2023. [CrossRef]
- S. Lan, P. S. Lan, P. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and Müller. A clock directly linking time to a particle’s mass. Science, 2013; 339, 554. [Google Scholar] [CrossRef]
- D. Dolce and A. Perali. On the Compton clock and the undulatory nature of particle mass in graphene systems. The European Physical Journal Plus, 2015; 130, 41. [CrossRef]
- E. G. Haug. God time = Planck time. Open Journal of Microphysics, accepted and forthcoming, 2024. Available online: https://hal.archives-ouvertes.fr/hal-03769825/.
- E. G. Haug. CMB, Hawking, Planck, and Hubble scale relations consistent with recent quantization of general relativity theory. International Journal of Theoretical Physics, 2024; 63. [CrossRef]
- H. Reissner. Über die eigengravitation des elektrischen feldes nach der Einsteinschen theorie. Annalen der Physics, 1916; 355, 106. [CrossRef]
- G. Nordström. On the energy of the gravitation field in Einstein’s theory. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 1918; 20, 1238.
- R. P. Kerr. Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters, 1963; 11, 237. [CrossRef]
- E. Newman, E. Couch, K. Chinnapared, A.; Exton, A. Prakash, and R. Torrence. Metric of a rotating, charged mass. Journal of Mathematical Physics, 6: 918, 1965; Volume 6, p. 918. [Google Scholar] [CrossRef]
- E. T. Newman and A. I. Janis. Note on the Kerr spinning-particle metric. Journal of Mathematical Physics, 1965; 6, 915. [CrossRef]
- E. G. Haug and G. Spavieri. Mass-charge metric in curved spacetime. International Journal of Theoretical Physics, 2023; 62, 248. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
