Submitted:
26 March 2024
Posted:
27 March 2024
Read the latest preprint version here
Abstract
Keywords:
Introduction
Case Report
Recent Medical History
Clinical Examination and Diagnosis
Discussion
Potential Carcinogenic Mechanisms Induced by COVID-19 modRNA Vaccines
Conclusions
Acknowledgments
Author contributions
Disclosure statement
Data availability
Funding
References
- Kaseb, H.; Tariq, M.A.; Gupta, G. Lymphoblastic Lymphoma. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2023. [Google Scholar]
- Blaylock, R.L. COVID UPDATE: What Is the Truth? Surg Neurol Int 2022, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Polykretis, P. Role of the Antigen Presentation Process in the Immunization Mechanism of the Genetic Vaccines against COVID-19 and the Need for Biodistribution Evaluations. Scand. J. Immunol. 2022, 96, e13160. [Google Scholar] [CrossRef] [PubMed]
- Polykretis, P.; Donzelli, A.; Lindsay, J.C.; Wiseman, D.; Kyriakopoulos, A.M.; Mörz, M.; Bellavite, P.; Fukushima, M.; Seneff, S.; McCullough, P.A. Autoimmune Inflammatory Reactions Triggered by the COVID-19 Genetic Vaccines in Terminally Differentiated Tissues. Autoimmunity 2023, 56, 2259123. [Google Scholar] [CrossRef] [PubMed]
- Polykretis, P.; McCullough, P.A. Rational Harm-benefit Assessments by Age Group Are Required for Continued COVID-19 Vaccination. Scand J Immunol 2022, e13242. [Google Scholar] [CrossRef] [PubMed]
- Banoun, H. MRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues. Int. J. Mol. Sci. 2023, 24, 10514. [Google Scholar] [CrossRef] [PubMed]
- Fraiman, J.; Erviti, J.; Jones, M.; Greenland, S.; Whelan, P.; Kaplan, R.M.; Doshi, P. Serious Adverse Events of Special Interest Following MRNA COVID-19 Vaccination in Randomized Trials in Adults. Vaccine 2022. [CrossRef] [PubMed]
- Seneff, S.; Nigh, G. Worse Than the Disease? Reviewing Some Possible Unintended Consequences of the MRNA Vaccines Against COVID-19. Int. J. Vaccine Theory Pract. Res. 2021, 2, 38–79. [Google Scholar] [CrossRef]
- Kyriakopoulos, A.M.; Nigh, G.; McCullough, P.A.; Olivier, M.D.; Seneff, S. Bell’s Palsy or an Aggressive Infiltrating Basaloid Carcinoma Post-MRNA Vaccination for COVID-19? A Case Report and Review of the Literature. EXCLI J 2023, 22, 992–1011. [Google Scholar] [CrossRef] [PubMed]
- Hulscher, N.; Hodkinson, R.; Makis, W.; McCullough, P.A. Autopsy Findings in Cases of Fatal COVID-19 Vaccine-Induced Myocarditis. ESC Heart Fail 2024. [CrossRef] [PubMed]
- Cosentino, M.; Marino, F. Understanding the Pharmacology of COVID-19 MRNA Vaccines: Playing Dice with the Spike? Int. J. Mol. Sci. 2022, 23, 10881. [Google Scholar] [CrossRef] [PubMed]
- What Are the Ingredients of Pfizer’s Covid-19 Vaccine? Available online: https://www.technologyreview.com/2020/12/09/1013538/what-are-the-ingredients-of-pfizers-covid-19-vaccine/ (accessed on 16 February 2024).
- 5.3.6 CUMULATIVE ANALYSIS OF POST-AUTHORIZATION ADVERSE EVENT REPORTS OF PF-07302048 (BNT162B2) RECEIVED THROUGH 28-FEB-2021. https://phmpt.org/wp-content/uploads/2021/11/5.3.6-postmarketing-experience.pdf.
- EMA, 2020a. Assessment Report Comirnaty Common Name: COVID-19 MRNA Vaccine (Nucleosidemodified) [WWW Document]. Accessed 3.14.21. Https://Www.Ema.Eu Ropa.Eu/En/Documents/Assessment-Report/Comirnaty-Epar-Public-Assessment-Repo Rt_en.Pdf. 2021.
- Nance, K.D.; Meier, J.L. Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Cent Sci 2021, 7, 748–756. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Vaccine-Associated Mortality in the Southern Hemisphere. Available online: https://correlation-canada.org/covid-19-vaccine-associated-mortality-in-the-southern-hemisphere/ (accessed on 5 February 2024).
- Aarstad, J.; Kvitastein, O.A. Is There a Link between the 2021 COVID-19 Vaccination Uptake in Europe and 2022 Excess All-Cause Mortality? Asian Pac. J. Health Sci. 2023, 10, 25–31. [Google Scholar] [CrossRef]
- Gibo, M.; Kojima, S.; Fujisawa, A.; Kikuchi, T.; Fukushima, M. Increased Age-Adjusted Cancer Mortality after the 3rd MRNA-Lipid Nanoparticle Vaccine Dose during the COVID-19 Pandemic in Japan 2023.
- Kuhbandner, C.; Reitzner, M.; Kuhbandner, C.; Reitzner, M. Estimation of Excess Mortality in Germany During 2020-2022. Cureus 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Covid Vaccination and Turbo-Cancer. “Multiple Tumors in Multiple Organs”. Dr. Ute Kruger. Available online: https://www.globalresearch.ca/turbo-cancer-we-have-problem/5789172 (accessed on 25 January 2024).
- Thomas, S.J.; Moreira, E.D.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Polack, F.P.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA Covid-19 Vaccine through 6 Months. New Engl. J. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- EMA - Committee for Medicinal Products for Human Use (CHMP) Type II Variation Assessment Report: Procedure No. EMEA/H/C/005735/II/0093 2022.
- King, N.M.P. Accident & Desire: Inadvertent Germline Effects in Clinical Research. Hastings Cent. Rep. 2003, 33, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Gore, M.E. Adverse Effects of Gene Therapy: Gene Therapy Can Cause Leukaemia: No Shock, Mild Horror but a Probe. Gene Ther. 2003, 10, 4–4. [Google Scholar] [CrossRef]
- Kaplan, J.M.; Roy, I. Accidental Germ-Line Modifications through Somatic Cell Gene Therapies: Some Ethical Considerations. Am J Bioeth 2001, 1, W13. [Google Scholar]
- Cohen, D.; Krauthammer, S.H.; Wolf, I.; Even-Sapir, E. Hypermetabolic Lymphadenopathy Following Administration of BNT162b2 MRNA Covid-19 Vaccine: Incidence Assessed by [18F]FDG PET-CT and Relevance to Study Interpretation. Eur J Nucl Med Mol Imaging 2021, 48, 1854–1863. [Google Scholar] [CrossRef] [PubMed]
- Parry, P.I.; Lefringhausen, A.; Turni, C.; Neil, C.J.; Cosford, R.; Hudson, N.J.; Gillespie, J. “Spikeopathy”: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine MRNA. Biomedicines 2023, 11, 2287. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Karikó, K.; Türeci, Ö. MRNA-Based Therapeutics--Developing a New Class of Drugs. Nat Rev Drug Discov 2014, 13, 759–780. [Google Scholar] [CrossRef] [PubMed]
- Mulroney, T.E.; Pöyry, T.; Yam-Puc, J.C.; Rust, M.; Harvey, R.F.; Kalmar, L.; Horner, E.; Booth, L.; Ferreira, A.P.; Stoneley, M.; et al. N1-Methylpseudouridylation of MRNA Causes +1 Ribosomal Frameshifting. Nature 2024, 625, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Hanna, N.; Mejia, C.M.D.; Heffes-Doon, A.; Lin, X.; Botros, B.; Gurzenda, E.; Clauss-Pascarelli, C.; Nayak, A. Biodistribution of MRNA COVID-19 Vaccines in Human Breast Milk. eBioMedicine 2023, 96. [Google Scholar] [CrossRef] [PubMed]
- Giannotta, G.; Murrone, A.; Giannotta, N. COVID-19 MRNA Vaccines: The Molecular Basis of Some Adverse Events. Vaccines 2023, 11, 747. [Google Scholar] [CrossRef] [PubMed]
- Segalla, G. Apparent Cytotoxicity and Intrinsic Cytotoxicity of Lipid Nanomaterials Contained in a COVID-19 MRNA Vaccine. Int. J. Vaccine Theory Pract. Res. 2023, 3, 957–972. [Google Scholar] [CrossRef]
- Eens, S.; Van Hecke, M.; Favere, K.; Tousseyn, T.; Guns, P.-J.; Roskams, T.; Heidbuchel, H. B-Cell Lymphoblastic Lymphoma Following Intravenous BNT162b2 MRNA Booster in a BALB/c Mouse: A Case Report. Front Oncol 2023, 13, 1158124. [Google Scholar] [CrossRef] [PubMed]
- ENVIGO BALB/c Bagg’s Albino. https://insights.envigo.com/hubfs/resources/data-sheets/envigo-49-balbc-letter_screen.pdf.
- Zamfir, M.-A.; Moraru, L.; Dobrea, C.; Scheau, A.-E.; Iacob, S.; Moldovan, C.; Scheau, C.; Caruntu, C.; Caruntu, A. Hematologic Malignancies Diagnosed in the Context of the MRNA COVID-19 Vaccination Campaign: A Report of Two Cases. Medicina 2022, 58, 874. [Google Scholar] [CrossRef] [PubMed]
- Sekizawa, A.; Hashimoto, K.; Kobayashi, S.; Kozono, S.; Kobayashi, T.; Kawamura, Y.; Kimata, M.; Fujita, N.; Ono, Y.; Obuchi, Y.; et al. Rapid Progression of Marginal Zone B-Cell Lymphoma after COVID-19 Vaccination (BNT162b2): A Case Report. Front. Med. 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-R.; Hsu, C.-W.; Lee, C.-C.; Huang, W.-L.; Lin, C.-Y.; Hsu, Y.-T.; Chang, C.; Tsai, M.-T.; Hu, Y.-N.; Hsu, C.-H.; et al. A Case Report of Posttransplant Lymphoproliferative Disorder After AstraZeneca Coronavirus Disease 2019 Vaccine in a Heart Transplant Recipient. Transpl. Proc 2022, 54, 1575–1578. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, M.; Mitsui, H.; Amano, T.; Ogawa, Y.; Deguchi, N.; Shimada, S.; Miwa, A.; Kawamura, T.; Ogido, Y. Two Cases of Axillary Lymphadenopathy Diagnosed as Diffuse Large B-Cell Lymphoma Developed Shortly after BNT162b2 COVID-19 Vaccination. J Eur Acad Dermatol Venereol 2022, 36, e613–e615. [Google Scholar] [CrossRef]
- Erdogdu, B. Hematopoietic Adverse Events Associated with BNT162b2 MRNA Covid-19 Vaccine. UHOD 2022, 32, 65–67. [Google Scholar] [CrossRef]
- Ang, S.-Y.; Huang, Y.-F.; Chang, C.-T. Ph-Positive B-Cell Acute Lymphoblastic Leukemia Occurring after Receipt of Bivalent SARS-CoV-2 MRNA Vaccine Booster: A Case Report. Med. (Kaunas) 2023, 59, 627. [Google Scholar] [CrossRef]
- Yusuke Ueda, Kazunori Yamada, Yasushi Masaki, Shuichi Mizuta, Tomoyuki Sakai, Takanori Kawanami, Yu Iwao, Kotaro Arida, Hiroto Yanagisawa The SLE Case That a Severe Hemophagocytic Syndrome Developed after COVID19 Vaccination, and Had a Diagnosis of Intravascular Large Cell Lymphoma by an Autopsy. In Proceedings of the medicalonline; June 23 2023; Vol. The Journal of Japanese Society for Lymphoreticular Tissue Research 62(suppl): 105-105, 2022.
- Goldman, S.; Bron, D.; Tousseyn, T.; Vierasu, I.; Dewispelaere, L.; Heimann, P.; Cogan, E.; Goldman, M. Rapid Progression of Angioimmunoblastic T Cell Lymphoma Following BNT162b2 MRNA Vaccine Booster Shot: A Case Report. Front Med 2021, 8, 798095. [Google Scholar] [CrossRef] [PubMed]
- Tachita, T.; Takahata, T.; Yamashita, S.; Ebina, T.; Kamata, K.; Yamagata, K.; Tamai, Y.; Sakuraba, H. Newly Diagnosed Extranodal NK/T-Cell Lymphoma, Nasal Type, at the Injected Left Arm after BNT162b2 MRNA COVID-19 Vaccination. Int J Hematol 2023, 118, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Kreher, M.A.; Ahn, J.; Werbel, T.; Motaparthi, K. Subcutaneous Panniculitis-like T-Cell Lymphoma after COVID-19 Vaccination. JAAD Case Rep 2022, 28, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Ukishima, S.; Miyagami, T.; Arikawa, M.; Kushiro, S.; Takaku, T.; Naito, T. Subcutaneous Panniculitis-like T-Cell Lymphoma Post-MRNA-1273 COVID-19 Vaccination. Clin. Case Rep. 2023, 11, e7143. [Google Scholar] [CrossRef] [PubMed]
- Revenga-Porcel, L.; Peñate, Y.; Granados-Pacheco, F. Anaplastic Large Cell Lymphoma at the SARS-CoV2 Vaccine Injection Site. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e32–e34. [Google Scholar] [CrossRef] [PubMed]
- Panou, E.; Nikolaou, V.; Marinos, L.; Kallambou, S.; Sidiropoulou, P.; Gerochristou, M.; Stratigos, A. Recurrence of Cutaneous T-Cell Lymphoma Post Viral Vector COVID-19 Vaccination. J Eur Acad Dermatol Venereol 2022, 36, e91–e93. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, L.; Grassi, S.O.; Ruffini, L.; Michieletti, E.; Carella, E.; Palli, D.; Zangrandi, A.; Inzerilli, N.; Bernuzzi, P.; Di Nunzio, C.; et al. Non-Hodgkin Lymphoma Developed Shortly after MRNA COVID-19 Vaccination: Report of a Case and Review of the Literature. Med. (Kaunas) 2023, 59, 157. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, E.; Kubota, A.; Miyoshi, H.; Ohshima, K.; Kawakita, T.; Murayama, T. The Case of T-ALL Presenting with NK Phenotype after COVID-19 Vaccination. Pathol. - Res. Pract. 2023, 242, 154310. [Google Scholar] [CrossRef] [PubMed]
- Hobayan, C.G.; Chung, C.G. Indolent Cutaneous Lymphoma with Gamma/Delta Expression after COVID-19 Vaccination. JAAD Case Rep 2022, 32, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Çınar, O.E.; Erdoğdu, B.; Karadeniz, M.; Ünal, S.; Malkan, Ü.Y.; Göker, H.; Haznedaroğlu, İ.C. Comment on Zamfir et al. Hematologic Malignancies Diagnosed in the Context of the MRNA COVID-19 Vaccination Campaign: A Report of Two Cases. Medicina 2022, 58, 874. [Google Scholar] [CrossRef] [PubMed]
- Barnett, C.; Mehta, N.; Towne, W.S.; Babagbemi, K.; Sales, R.M. Metastatic Melanoma in the Breast and Axilla: A Case Report. Clin Imaging 2022, 85, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Bae, E.; Bae, S.; Vaysblat, M.; Abdelwahed, M.; Sarkar, K.; Bae, S. Development of High-Grade Sarcoma After Second Dose of Moderna Vaccine. Cureus 2023, 15, e37612. [Google Scholar] [CrossRef] [PubMed]
- Loacker, L.; Kimpel, J.; Bánki, Z.; Schmidt, C.Q.; Griesmacher, A.; Anliker, M. Increased PD-L1 Surface Expression on Peripheral Blood Granulocytes and Monocytes after Vaccination with SARS-CoV2 MRNA or Vector Vaccine. Clin Chem Lab Med 2023, 61, e17–e19. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Bharara Singh, A. S2 Subunit of SARS-NCoV-2 Interacts with Tumor Suppressor Protein P53 and BRCA: An in Silico Study. Transl Oncol 2020, 13, 100814. [Google Scholar] [CrossRef] [PubMed]
- Seneff, S.; Nigh, G.; Kyriakopoulos, A.M.; McCullough, P.A. Innate Immune Suppression by SARS-CoV-2 MRNA Vaccinations: The Role of G-Quadruplexes, Exosomes, and MicroRNAs. Food Chem Toxicol 2022, 164, 113008. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Chao, C.-H.; Liao, C.-C.; Lee, T.-A.; Hsu, J.-M.; Chou, W.-C.; Wang, J.; Huang, H.-C.; Chang, S.-J.; Lin, Y.-L.; et al. Epithelial-Mesenchymal Transition Induced by SARS-CoV-2 Required Transcriptional Upregulation of Snail. Am J Cancer Res 2021, 11, 2278–2290. [Google Scholar]
- McKernan, K.; Helbert, Y.; Kane, L.T.; McLaughlin, S. Sequencing of Bivalent Moderna and Pfizer MRNA Vaccines Reveals Nanogram to Microgram Quantities of Expression Vector DsDNA per Dose. 2024. [CrossRef]
- Speicher, D.J.; Rose, J.; Gutschi, L.M.; PhD, D.M.W.; McKernan, K. DNA Fragments Detected in Monovalent and Bivalent Pfizer/BioNTech and Moderna ModRNA COVID-19 Vaccines from Ontario, Canada: Exploratory Dose Response Relationship with Serious Adverse Events. 2023. [CrossRef]
- Research, C. for B.E. and Considerations for Plasmid DNA Vaccines for Infectious Disease Indications. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-plasmid-dna-vaccines-infectious-disease-indications (accessed on 14 March 2024).
- SC Senate Hearing - USC Professor Dr. Phillip Buckhaults, 2023; https://rumble.com/embed/v3g2vny/?pub=rgzyb.
- SC Senate Hearing - Dr. Janci Lindsay, 2023; https://rumble.com/embed/v3glx79/?pub=4.
- Carbone, M.; Pass, H.I.; Miele, L.; Bocchetta, M. New Developments about the Association of SV40 with Human Mesothelioma. Oncogene 2003, 22, 5173–5180. [Google Scholar] [CrossRef] [PubMed]
- Gazdar, A.F.; Butel, J.S.; Carbone, M. SV40 and Human Tumours: Myth, Association or Causality? Nat Rev Cancer 2002, 2, 957–964. [Google Scholar] [CrossRef]
- Aldén, M.; Olofsson Falla, F.; Yang, D.; Barghouth, M.; Luan, C.; Rasmussen, M.; De Marinis, Y. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 MRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr. Issues Mol. Biol. 2022, 44, 1115–1126. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Q.; Zhao, C.; Zhu, Z.; Zhu, X.; Zhou, J.; Zhang, S.; Yang, T.; Zhang, B.; Li, J.; et al. An Immune Evasion Mechanism with IgG4 Playing an Essential Role in Cancer and Implication for Immunotherapy. J Immunother Cancer 2020, 8, e000661. [Google Scholar] [CrossRef] [PubMed]
- Daveau, M.; Pavie-Fischer, J.; Rivat, L.; Rivat, C.; Ropartz, C.; Peter, H.H.; Cesarini, J.P.; Kourilsky, F.M. IgG4 Subclass in Malignant Melanoma. J Natl Cancer Inst 1977, 58, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, P.; Gilbert, A.E.; Josephs, D.H.; Ali, N.; Dodev, T.; Saul, L.; Correa, I.; Roberts, L.; Beddowes, E.; Koers, A.; et al. IgG4 Subclass Antibodies Impair Antitumor Immunity in Melanoma. J Clin Invest 2013, 123, 1457–1474. [Google Scholar] [CrossRef] [PubMed]
- Aalberse, R.C.; Stapel, S.O.; Schuurman, J.; Rispens, T. Immunoglobulin G4: An Odd Antibody. Clin. Exp. Allergy 2009, 39, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Huijbers, M.G.; Plomp, J.J.; van der Maarel, S.M.; Verschuuren, J.J. IgG4-Mediated Autoimmune Diseases: A Niche of Antibody-Mediated Disorders. Ann N Y Acad Sci 2018, 1413, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Della-Torre, E.; Lanzillotta, M.; Strollo, M.; Ramirez, G.A.; Dagna, L.; Tresoldi, M. ; COVID-BioB study group Serum IgG4 Level Predicts COVID-19 Related Mortality. Eur J Intern Med 2021, 93, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Irrgang, P.; Gerling, J.; Kocher, K.; Lapuente, D.; Steininger, P.; Habenicht, K.; Wytopil, M.; Beileke, S.; Schäfer, S.; Zhong, J.; et al. Class Switch towards Non-Inflammatory, Spike-Specific IgG4 Antibodies after Repeated SARS-CoV-2 MRNA Vaccination. Science Immunology 2022, 0, eade2798. [Google Scholar] [CrossRef]
- Uversky, V.N.; Redwan, E.M.; Makis, W.; Rubio-Casillas, A. IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. Vaccines 2023, 11, 991. [Google Scholar] [CrossRef]
- Clinical Considerations: Myocarditis after COVID-19 Vaccines | CDC. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/myocarditis.html (accessed on 25 January 2024).
| Case n° | Sex/Age (ref.) |
Time elapsed from vaccination to onset of symptoms | Histology | Vaccine type | Site |
|---|---|---|---|---|---|
| 1 | F/58 [35] | 1 week | DLBCL | Pfizer/BioNTech (2nd dose) | Left cervical area |
| 2 | F/80 [36] | 1 day | MZL | Pfizer/BioNTech (1st dose) | Right temporal lobe |
| 3 | M/51 [37] | 7 days | DLBCL | Astra Zeneca (1st dose) | Mediastinum |
| 4 | M/67 [38] | 2 weeks | DLBCL | Pfizer/BioNTech (2nd dose) | Axilla |
| 5 | F/80 [38] | 2 days | DLBCL | Pfizer/BioNTech (2nd dose) | Axilla |
| 6 | F/49 [39] | 2 days | B-ALL | Pfizer/BioNTech (dose n.s.) | Bone marrow |
| 7 | F/47* [39] | Few days | B-ALL | Pfizer/BioNTech (dose n.s.) | Bone marrow |
| 8 | F/43 [40] | Few days | B-ALL | Moderna (dose n.s.) | Bone marrow |
| 9 | F/61 [41] | Few weeks | IVLBCL | Pfizer/BioNTech (2nd dose) | Multi-organ blood vessels |
| Case n° | Sex/Age (ref.) |
Time elapsed from vaccination to onset of symptoms | Histology | Vaccine type | Site |
|---|---|---|---|---|---|
| 1 | M/53 [35] | 3 days | ENKTCL | Pfizer/BioNTech (1st dose) | Oral cavity |
| 2 | M/66 [42] | 1 week | AITL | Pfizer/BioNTech (2nd dose) | Lymph nodes |
| 3 | M/73 [43] | 3 months | ENKL | Pfizer/BioNTech (2nd dose) | Injection site |
| 4 | F/28 [44] | 3 days | SPTCL | Janssen Pharmaceuticals | Injection site |
| 5 | M/45 [45] | 3 days | SPTCL | Moderna (dose n.s.) | Periumbilical region |
| 6 | M/76 [46] | 10 days | ALCL | Moderna (3rd dose) | Injection site |
| 7 | M/60 [47] | 4 weeks | CTCL | Astra Zeneca (dose n.s.) | Occipital area |
| 8 | F/73 [47] | 10 days | CTCL | Astra Zeneca (dose n.s.) | Skin |
| 9 | M/66 [48] | 10 days | ALCL | Pfizer/BioNTech (3nd dose) | Cervical an axillary lymph nodes |
| 10 | M/55 [49] | 2 days | T-ALL NK | mRNA (brand & dose n.s.) | Neck lymph node & bone marrow |
| 11 | M/79 [50] | 3 days | CTCL | Moderna (3nd dose) | Injection site |
| Case n° | Sex/Age (ref.) |
Time elapsed from vaccination to onset of symptoms | Histology | Vaccine type | Site |
|---|---|---|---|---|---|
| 1 | F/67 [39] | 2 months | AML* | Pfizer/BioNTech | Bone marrow |
| 2 | M/60 [51] | 1 month | AML | Pfizer/BioNTech (4th dose) | Bone marrow |
| 3 | M/61 [51] | 1 month | AML | Pfizer/BioNTech (3rd dose) | Bone marrow |
| 4 | M/72 [51] | 5 weeks | AML | Pfizer/BioNTech (5th dose) | Bone marrow |
| 5 | F/28 [51] | 4 weeks | AML | Pfizer/BioNTech (2nd dose) | Bone marrow |
| 6 | F/74 [46] | 4 days | CMML | Janssen Pharmaceuticals | Bone marrow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
