Submitted:
26 March 2024
Posted:
27 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
- a)
- For ECVs, using the National Meteorological Service (SMN)–National Water Commission (CONAGUA) database [27], daily series of precipitation and maximum-minimum temperature were obtained. To obtain reliable, long-term and good quality results [28,29], the SMN–CONAGUA daily series were homogenized using the Standard Normal Homogeneity Test (SNHT) method [30]. With the homogenized series, the mean daily temperature (meanT) was determined. Finally, the annual series of: AMT, MMT, AmT, mmT, AMeT, MMeT, average bean degree days (ABDD) [20], CET and CEP were calculated.
- b)
- From the European Space Agency (ESA)–experimental break-adjusted COMBINED Product (version 07.1) [31] – spatial resolution of 0.25° x 0.25°, daily soil moisture was obtained. These data were obtained for two points near the Culiacán and Rosario stations. ASM was calculated annually.
- c)
- From the Agrifood and Fisheries Information Service (SIAP) [32], the annual series of IBY and RBY were obtained.
2. Materials and Methods
Mathematical Equations that Govern the Statistical Analyses, Applied to Agricultural Variables and Essential Climatic Variables (ECVs)
- 1)
- 2)
- Goodness-of-fit statistics were calculated: R2, PC, mean error (ME), root mean square error (RMSE), mean error absolute (MEA), percentage of error mean (PEM), percentage of error absolute mean (PEAM) and Theil’s U2 statistic (U2). To comply with the linearity hypothesis, in each MLR, the condition PC ≥ CCP ∴ CP ≠ 0 was met [7].
- 3)
- For the analysis of severe non-multicollinearity, the variance inflation factor (VIF) and tolerance (To) were initially calculated. For severe non-multicollinearity, it was verified that R2 ≤ 0.800, VIF ≤ 5.000 ∴ To > 0.200 [67] cited by [68,69]. In models, the variables that presented severe multicollinearity were eliminated, to subsequently recalculate each MLR.
- 4)
- For the homogeneity, it was verified that the average of each residual serie was zero [70].
- 5)
- Finally, a normality analysis was applied to the residuals of each MLR. Normality methods were the same as for PC and SC.
3. Results


| P–values of normality tests | ||||
|---|---|---|---|---|
| Dependent variable in each model | Shapiro–Wilk | Anderson–Darling | Lilliefors | Jarque–Bera |
| IBY–Culiacán | 0.410 | 0.211 | 0.077 | 0.860 |
| RBY–Culiacán | 0.158 | 0.185 | 0.070 | 0.344 |
| IBY–Rosario | 0.900 | 0.904 | 0.890 | 0.963 |
| RBY–Rosario | 0.395 | 0.534 | 0.788 | 0.500 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022, Online Edition; 2022. https://population.un.org/wpp/Download/Standard/Population/.
- Stacey, N.; Friederike, M.; Hannes, E.; Naomi, S. Economics of Land Degradation Initiative: Report for policy and decision makers_ Reaping economic and environmental benefits from sustainable land management. Bonn, Germany: ELD Initiative and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; 2015. https://repo.mel.cgiar.org/handle/20.500.11766/4881.
- Servín, P.M.; Salazar, M.R.; López, C.I.L.; Medina, G.G.; Cid, R.J.A. Predicción de la producción y rendimiento de frijol, con modelos de redes neuronales artificiales y datos climáticos. Biotecnia 2022, 24, 104–111. [CrossRef]
- United Nations (UN). The 2030 Agenda and the Sustainable Development Goals: An opportunity for Latin America and the Caribbean (LC/G.2681-P/Rev.3), Santiago; 2018, 90 p. https://repositorio.cepal.org/server/api/core/bitstreams/6321b2b2-71c3-4c88-b411-32dc215dac3b/content.
- Ballari, D.; Vilches, B.L.M.; Orellana, S.M.L.; Salgado, C.F.; Ochoa, S.A.E.; Graw, V.; Turini, N.; Bendix, J. Satellite Earth Observation for Essential Climate Variables Supporting Sustainable Development Goals: A Review on Applications. Remote Sens. 2023, 15, 2716–2740. [CrossRef]
- Lobell, D.B.; Nicholas, K.C.; Field, C.B. Historical effects of temperature and precipitation on California crop yields. Clim. Change 2007, 81, 187–203. [CrossRef]
- Llanes, C.O.; Norzagaray, C.M.; Gaxiola, A.; Pérez, G.E.; Montiel, M.J.; Troyo, D.E. Sensitivity of Four Indices of Meteorological Drought for Rainfed Maize Yield Prediction in the State of Sinaloa, Mexico. Agriculture 2022, 12, 525–538. [CrossRef]
- Ji, Y.; Chen, Z.; Cheng, Q.; Liu, R.; Li, M.; Yan, X.; Li, G.; Wang, D.; Fu, L.; Ma, Y.; Jin, X.; Zong, X.; Yang, T. Estimation of plant height and yield based on UAV imagery in faba bean (Vicia faba L.). Plant Methods 2022, 18, 26–38. [CrossRef]
- Uspensky, A.B.; Rublev, A.N.; Kozlov, D.A.; Golomolzin, V.V.; Yu., V.; Koslov, I.A.; Nikulin, A.G. Monitoring of the Essential Climate Variables of the Atmosphere. Russ. Meteorol. Hydrol. 2022, 47, 819–828. [CrossRef]
- Wang, S.; Wang, W.; Wu, Y.; Zhao, S. Surface Soil Moisture Inversion and Distribution Based on Spatio-Temporal Fusion of MODIS and Landsat. Sustainability 2022, 14, 9905–9919. [CrossRef]
- Mohammed, A.; Feleke, E. Future climate change impacts on common bean (Phaseolus vulgaris L.) phenology and yield with crop management options in Amhara Region, Ethiopia. CABI A&B 2022, 3, 29–42. [CrossRef]
- Haji, S.B.A.; Sharafati, A.; Motta, D.; Jodar, A.A., Pardo, M.A. Satellite-based prediction of surface dust mass concentration in southeastern Iran using an intelligent approach. Stoch. Env. Res. Risk Assess. 2023, 37, 3731–3745. [CrossRef]
- Qian, C.L.; Shi, W.X.; Jia, Z.; Jia, L.; Yi, Z.; Ze, Z. Ensemble learning prediction of soybean yields in China based on meteorological data. J. Integr. Agric. 2023, 22, 1909–1927. [CrossRef]
- Mohite, J.D.; Sawant, S.A.; Pandit, A.; Agrawal, R.; Pappula, S. Soybean crop yield prediction by integration of remote sensing and weather observations. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2023, Volume XLVIII-M-1-2023. 39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye. [CrossRef]
- Zeng, Y.; Su, Z.; Calvet, J.C.; Manninen, T.; Swinnen, E.; Schulz, J.; Roebeling, R.; Poli, P.; Tan, D.; Riihelä, A.; Tanis, C.M.; Arslan, A.N.; Obregon, A.; Kaiser, W.A.; John, V.O.; Timmermans, W.; Timmermans, J.; Kaspar, F.; Gregow, H., Barbu, A.L.; Fairbairn, D.; Gelati, E.; Meurey, C. Analysis of current validation practices in Europe for space-based climate data records of essential climate variables. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 150–161. [CrossRef]
- Global Climate Observing System (GCOS). Essential Climate Variables. Available online: https://gcos.wmo.int/en/essential-climate-variables (accessed on 22 January 2024).
- Ojeda, B.W. Evaluación del impacto del cambio climático en la productividad de la agricultura de riego y temporal del estado de Sinaloa. Informe final de proyecto, Comisión Nacional de Ciencia y Tecnología (CONACYT), México; 2010, 393 p. http://repositorio.imta.mx/bitstream/handle/20.500.12013/1142/RD_0910_6.pdf?sequence=1&isAllowed=y.
- Liu, Y.; Yang, Y. Advances in the Quality of Global Soil Moisture Products: A Review. Remote Sens. 2022, 14, 3741–3772. [CrossRef]
- Medina, G.G.; Ruiz, C.J.A. Estadísticas climatológicas básicas del estado de Zacatecas. Libro técnico número 3, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP); 2004, 249 p. http://zacatecas.inifap.gob.mx/publicaciones/climaZacatecas.pdf.
- Barrios, G.E.J.; López, C.C. Temperatura base y tasa de extesnión floliar en frijol. Agrociencia 2009, 43, 29–35. https://www.redalyc.org/pdf/302/30211438004.pdf.
- Carrão, H.; Russo, S.; Sepulcre, C.G.; Barbosa, P. An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 74–84. [CrossRef]
- Murillo, A.B.; Troyo, D.E.; García, H.J.L.; Landa, H.L., Larrinaga, M.J.A. El frijol Yorimón: leguminosa tolerante a sequía y salinidad. Editorial Centro de Investigaciones Biológicas del Noroeste; 2000, 33 p. https://cibnor.repositorioinstitucional.mx/jspui/handle/1001/1770.
- Ayala, G.A.V.; Acosta, G.J.A.; Reyes, M.L. El cultivo de frijol: presente y futuro para México. Libro técnico número 1 del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP); 2021, 236 p. https://vun.inifap.gob.mx/VUN_MEDIA/BibliotecaWeb/_media/_librotecnico/12319_5085_El_cultivo_del_frijol_presente_y_futuro_para_México.pdf.
- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). Agenda Técnica Agrícola de Sinaloa, Segunda edición; SAGARPA: México City, Mexico; 2015, 242 p. https://issuu.com/senasica/docs/25_sinaloa_2015_sin.
- Flores, C.L.M.; Arzola, G.J.F.; Ramírez, S.M.; Osorio, P.A. Global climate change impacts in the Sinaloa state, Mexico. Cuadernos de Geografía 2012, 21, 115–119. http://www.scielo.org.co/pdf/rcdg/v21n1/v21n1a09.pdf.
- Llanes, C.O.; Gutiérrez, R.O.G.; Montiel, M.J.; Troyo, D.E. Hot Extremes and Climatological Drought Indicators in the Transitional Semiarid-Subtropical Region of Sinaloa, Northwest Mexico. Pol. J. Environ. Stud. 2022, 31, 4567–4577. [CrossRef]
- Servicio Meteorológico Nacional–Comisión Nacional del Agua (SMN–CONAGUA). Base de datos meteorológicos de México. Available online: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica (accessed on 25 December 2023).
- Guijarro, J.A. Homogenization of Climatological Series with Climatol Version 3.1.1. State Meteorological Agency (AEMET): Balearic Islands, Spain; 2018, 20 p. https://repositorio.aemet.es/bitstream/20.500.11765/12185/2/homog_climatol-en.pdf.
- Argiriou, A.A.; Li, Z.; Armaos, V.; Mamara, A.; Shi, Y.; Yan, Z. Homogenized monthly and daily temperature and precipitation time series in China and Greece since 1960. Adv. Atmos. Sci. 2023, 40, 1326–1336. [CrossRef]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [CrossRef]
- European Space Agency (ESA)–experimental break-adjusted COMBINED Product. Database. Available online: https://data.ceda.ac.uk/neodc/esacci/soil_moisture/data/daily_files/break_adjusted_COMBINED/v07.1 (accessed on 12 August 2023).
- Secretaría de Información Agroalimentaria y Pecuaria (SIAP). Datos abiertos del rendimiento del frijol en México. Available online: http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php (accessed on 25 January 2023).
- Oxford Cambridge and RSA (OCR). Formulae and statistical tables (ST1). 1–8: database of critical values. Available online: https://www.ocr.org.uk/Images/174103-unit-h869-02-statistical-problem-solving-statistical-tables-st1-.pdf (accessed on 15 December 2023).
- Bouza, H.C.N. Modelos de regresión y sus aplicaciones. Reporte técnico; 2018, 124 p. https://www.researchgate.net/profile/Carlosouza/publication/323227561_MODELOS_DE_REGRESION_Y_SUS_APLICACIONES/links/5a871265a6fdcc6b1a3abe40/MODELOS-DE-REGRESION-Y-SUS-APLICACIONES.pdf.
- Liang, L.; Cui, H.; Arabameri, A.; Arora, A.; Danesh, S.A. Landslide susceptibility mapping: application of novel hybridization of rotation forests (RF) and Java decision trees (J48). Soft Comput. 2023, 27, 17387–17402. [CrossRef]
- Jinse, J.; Varadharajan, R. Simultaneous raise regression: a novel approach to combating collinearity in linear regression models. Qual. Quant. 2023, 57, 4365–4386. [CrossRef]
- Akingboye, A.S.; Bery, A.A. Development of novel velocity–resistivity relationships for granitic terrains based on complex collocated geotomographic modeling and supervised statistical analysis. Acta Geophys. 2023, 71, 2675–2698. [CrossRef]
- Romero, F.C.S.; López, C.C.; Kohashi, S.J.; Miranda, C.S.; Aguilar, R.V.H.; Martínez, R.C.G. Cambios en el rendimiento y sus componentes en frijol bajo riego y sequía. Rev. Mexicana Cienc. Agríc. 2019, 10, 351–364. [CrossRef]
- Li, S.; You, S.; Song, Z.; Zhang, L.; Liu, Y. Impacts of Climate and Environmental Change on Bean Cultivation in China. Atmos. 2021, 12, 1591–1606. [CrossRef]
- Mardan, M.; Ahmadi, S. Soil moisture retrieval over agricultural fields through integration of synthetic aperture radar and optical image. Gisci. Remote sens. 2021, 58, 1276–1299. [CrossRef]
- Fu, W.M.C.; Molin, J.P. Soybean Yield Estimation and Its Components: A Linear Regression Approach. Agriculture 2020, 10, 348–360. [CrossRef]
- Chakraborty, A.; Krishnamurti, T.N. Numerical simulation of the North American monsoon system. Meteorol. Atmos. Phys. 2003, 84, 57–82. https://link.springer.com/article/10.1007/s00703-002-0566-6.
- Amador, R.M.D.; Acosta, D.E.; Medina, G.G.; Gutiérrez, L.R. An empirical model to predict yield of rainfed dry bean with multi-year data. Rev. Fitotec. Mex. 2007, 30, 311–319. https://www.redalyc.org/pdf/610/61003014.pdf.
- Medina, G.G.; Baez, G.A.D.; López, H.J.; Ruiz, C.J.A.; Tinoco, A.C.A.; Kiniry, J.R. Large-area dry bean yield prediction modeling in Mexico. Rev. Mexicana Cienc. Agríc. 2010, 1, 407–420. https://www.redalyc.org/pdf/2631/263120630010.pdf.
- Gonzalez, G.M.A.; Guertin, D.P. Seasonal bean yield forecast for non-irrigated croplands through climate and vegetation index data: Geospatial effects. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102623–102634. [CrossRef]
- Botero, H.; Barnes, A.P. The effect of ENSO on common bean production in Colombia: a time series approach. Food Secur. 2022, 14, 1417–1430. [CrossRef]
- Guijarro, J.A. Package climatol. R Package Version, 4.0.0; 2023, 40 p.
- Ruiz, C.J.A.; Medina, G.G.; Macías, J.C.; Silva, M.M.S.; Diaz, P.G. Estadísticas climatológicas básicas del estado de Sinaloa (Período 1961- 2003). Libro Técnico Núm. 2. INIFAP-CIRNO. Cd. Obregón, Sonora, México; 2005. https://docplayer.es/41213292-Estadisticas-climatologicas-basicas-del-estado-de-sinaloa-periodo.html.
- Llanes, C.O.; Cervantes, A.L.; González, G.G.E. Calculation of indicators of maximum extreme temperature in Sinaloa state, northwestern Mexico. Earth Sci. Res. J. 2023, 27, 77–84. [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Applied Eng. in Agric. 1985, 1, 96–99. https://www.researchgate.net/publication/247373660_Reference_Crop_Evapotranspiration_From_Temperature.
- Brouwer, C.; Heibloem, M. Irrigation water management: Irrigation water needs. Rome: Food and Agriculture Organization (FAO); 1986. https://www.fao.org/3/s2022e/s2022e07.htm.
- Flores, G.H. Impacto del cambio climático en los distritos de riego de Sinaloa. Tesis de Maestría del Colegio de Postgraduados Campius Montecillo, 2010, 204 p. [CrossRef]
- Dorigo, W.; Preimesberger, W.; Moesinger, L.; Pasik, A.; Scanlon, T.; Hahn, S.; Van der Schalie, R.; Van der Vliet, M., De Jeu, R.; Kidd, R.; Rodriguez, F.N.; Hirschi, M. ESA Soil Moisture Climate Change Initiative (Soil_Moisture_cci): Experimental Break-Adjusted COMBINED Product, Version 07.1. NERC EDS Centre for Environmental Data Analysis; 2023. Available online: https://catalogue.ceda.ac.uk/uuid/0ae6b18caf8a4aeba7359f11b8ad49ae (accessed on 15 December 2023).
- Seo, E.; Dirmeyer, P.A. Improving the ESA CCI daily soil moisture time series with physically based land surface model dataset using a Fourier time-filtering method. J. Hydrometeorol. 2022, 23, 473–489. [CrossRef]
- Feng, S.; Huang, X.; Zhao, S.; Qin, Z.; Fan, J.; Zhao, S. Evaluation of Several Satellite-Based Soil Moisture Products in the Continental US. Sensors 2022, 22, 9977–9994. [CrossRef]
- Yu, W.; Li, Y.; Liu, G. Calibration of the ESA CCI-Combined Soil Moisture Products on the Qinghai-Tibet Plateau. Remote Sens. 2023, 15, 918–932. [CrossRef]
- Secretaría de Agricultura y Desarrollo Rural (SAGARPA) y Servicio de Información Agroalimentaria y Pesquera (SIAP). Aptitud agroaclimática del frijol en México ciclo agrícola otoño–inverno. Informe técnico; 2019, 30 p. https://www.gob.mx/cms/uploads/attachment/file/495087/Reporte_de_Aptitud_agroclim_tica_de_M_xico_del_frijol_OI_2019-2020.pdf.
- Wu, H.; Hayes, J.M.; Weiss, A.; Hu, Q. An evaluation of the standardized precipitation index, the China–Z index and the statistical Z–score. Int. J. Climatol. 2001, 21, 745–758. [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. https://www.bios.unc.edu/~mhudgens/bios/662/2008fall/Backup/wilkshapiro1965.pdf.
- Anderson, T.W.; Darling, D.A. A test of goodness of fit. J. Amer. Stat. Assn. 1954, 49, 765–769. [CrossRef]
- Lilliefors, H. On the Kolmogorov-Smirnov test for normality with mean and variance unknown‖. J. Amer. Statist. Assoc. 1967, 62, 399–402. http://www.bios.unc.edu/~mhudgens/bios/662/2008fall/Backup/lilliefors1967.pdf.
- Jarque, M.C.; Bera, K.A. A test for normality of observations and regression residual. Int. Stat. Rev. 1987, 55, 163–172. http://webspace.ship.edu/pgmarr/Geo441/Readings/Jarque%20and%20Bera%201987%20-%20A%20Test%20for%20Normality%20of%20Observations%20and%20Regression%20Residuals.pdf.
- Hauke, J.; Kossowski, T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest. Geogr. 2011, 30, 87–93. https://www.researchgate.net/publication/227640806_Comparison_of_Values_of_Pearson%27s_and_Spearman%27s_Correlation_Coefficients_on_the_Same_Sets_of_Data.
- Walpole, E.R.; Myers, H.R.; Myers, L.S.; Ye, K. Probabilidad y estadística para ingeniería y ciencias. Universidad de Texas, San Antonio, editorial Pearson; 2012, 816 p. https://vereniciafunez94hotmail.files.wordpress.com/2014/08/8va-probabilidad-y-estadistica-para-ingenier-walpole_8.pdf.
- Breusch, T.S. "Testing for Autocorrelation in Dynamic Linear Models. Aust. Econ. Pap. 1978, 17, 334–355. [CrossRef]
- Ljung, G.M.; Box, G.E.P. On a measure of lack of fit in time series models. Biométrika 1978, 65, 297–303. [CrossRef]
- Kleinbaum, D.G.; Kupper, L.L.; Muller, K.E. Applied regression analysis and other multivariable methods. PWS-Kent, Boston; 1988. https://ebin.pub/applied-regression-analysis-and-other-multivariable-methods-5nbsped-1285051084-9781285051086.html.
- Deduy, G.I. Regresión sobre componentes principals. Tesis de Licenciatura, Universidad de Sevilla. Available online: https://idus.us.es/bitstream/handle/11441/90005/Deduy%20Guerra%20Irene%20TFG.pdf?sequence=1&isAllowed=y (accessed on 20 December 2023).
- Kutner, H.M.; Nachtsheim, J.C.; Neter, J.; Li, W. Applied linear statistical models (fifth edition). Editorial McGraw–Hill Irwin; 2005, 1415 p. https://users.stat.ufl.edu/~winner/sta4211/ALSM_5Ed_Kutner.pdf.
- Carrasquilla, B.A.; Chacón, R.A.; Núñez, M.K., Gómez, E.O.; Valverde, J.; Guerrero, B.M. Regresión lineal simple y múltiple: aplicación en la predicción de variables naturales relacionadas con el crecimiento microalgal. Tecnología en Marcha. Encuentro de Investigación y Extensión; 2016, 33-45. https://www.scielo.sa.cr/scielo.php?pid=S0379-39822016000900033&script=sci_abstract&tlng=es.
- Llanes, C.O.; Norzagaray, C.M.; Gaxiola, A.; González, G.G.E. Regional precipitation teleconnected with PDO–AMO–ENSO in northern Mexico. Theor. Appl. Climatol. 2020, 140, 667–681. [CrossRef]
- Servicio Meteorológico Nacional (SMN). Ciclones que han impactado en México, 1981–2001. Cuadro I.8.1.; 2002. https://paot.org.mx/centro/ine-semarnat/informe02/estadisticas_2000/compendio_2000/01dim_social/01_08_Desastres/data_desastres/CuadroI.8.1b.htm.
- Méndez, M., Magaña, V. Regional Aspects of Prolonged Meteorological Droughts over Mexico and Central American. J. Clim. 2010, 5, 1175–1188. [CrossRef]
- Llanes, C.O.; Gaxiola, H.A.; Estrella, G.R.D.; Norzagaray, C.M.; Troyo, D.E.; Pérez, G.E.; Ruiz, G.R.; Pellegrini, C.M.J. Variability and Factors of Influence of Extreme Wet and Dry Events in Northern Mexico. Atmos. 2018, 9, 12–27. [CrossRef]
- Avila, M.J.A.; Ávila, S.J.M.; Rivas, S.F.J.; Martínez, H.D. El Cultivo del frijol: Sistemas de producción en el noroeste de México. Universidad de Sonora; 2023, 88 p. https://agricultura.unison.mx/memorias%20de%20maestros/EL%20CULTIVO%20DEL%20FRIJOL.pdf.
- Llanes, C.O. Predictive association between meteorological drought and climate indices in the state of Sinaloa, northwestern Mexico. Arab. J. Geosci. 2023, 16, 1–14. [CrossRef]
- Comisión Nacional del Agua (CONAGUA). Base de Datos del Índice Estandarizado de Precipitación (SPI). Secretaría de Gobernación de México. Available online: https://smn.conagua.gob.mx/es/climatologia/monitor-de-sequia/spi. (accessed on 22 october 2023).
- Soria, R.J.; Fernández, O.Y.; Quijano, C.A.; Macías, C.J.; Sauceda, P.; González, D.; Quintana, J. Remote sensing and simulation models for crop management. Proceedings of progress in electromagnetics research symposium. Moscow, Russia; 2012. https://www.researchgate.net/publication/289288401_Remote_sensing_and_simulation_model_for_crop_management.
- Jasso, M.M.; Soria, R.J.; Antonio, N.X. Pérdida de superficies cultivadas de maíz de temporal por efecto de heladas en el valle de Toluca. Rev. Mexicana Cienc. Agríc. 2022, 13, 207–222. [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. DOI: 10.1213/ANE.0000000000002864.
- Zhenhua, L.; Ziqing, X.; Feixiang, C.; Yueming, H.; Ya, W.; Jianbin, L.; Huiming, L.; Luo, L. Soil Moisture Index Model for Retrieving soil Moisture in Semiarid Regions of China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5929–5937. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9204441.
- Rosales, S.R.; Ochoa, M.R.; Acosta, G.J.A. Fenología y rendimiento del frijol en el altiplano de México y su respuesta al Fotoperiodo. Agrociencia 2001, 35, 513–523. https://www.redalyc.org/pdf/302/30235505.pdf.
- Sifuentes, E.; Macías, J.; Ojeda, W.; González, V.M.; Salinas, D.A., Quintana, J.G. Gestión de riego enfocada a variabilidad climática en el cultivo de papa: aplicación al distrito de riego 075, Río fuerte, Sinaloa, México. Tecnol. Cienc. Agua 2016, 7, 149–168. https://www.scielo.org.mx/pdf/tca/v7n2/2007-2422-tca-7-02-00149.pdf.
- Morantes, Q.G.R.; Rincón, P.G.; Pérez, S.N.A. Modelo de regresión lineal múltiple para estimar concentración de PM1. Rev. Int. Contam. Ambie. 2019, 35, 179–194. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/RICA.2019.35.01.13.
- Pérez, R.; López, A.J. Econometría aplicada con Gretl. Universidad de Oviedo; 2019, 385 p. https://www.researchgate.net/profile/Ana-Lopez-Menendez/publication/334771581_Econometria_Aplicada_con_Gretl/links/5d40766ba6fdcc370a6eedb8/Econometria-Aplicada-con-Gretl.pdf.


| Variable | Statistical variable | Culiacán | Rosario | Variable | Statistical variable | Culiacán | Rosario |
|---|---|---|---|---|---|---|---|
| IBY | Average (T ha–1) | 1.526 | 1.372 | mmT | Average (T ha–1) | 14.497 | 15.083 |
| Standard deviation (T ha–1) | 0.242 | 0.291 | Standard deviation (T ha–1) | 5.806 | 5.247 | ||
| Variance (T ha–1)2 | 0.059 | 0.085 | Variance (T ha–1)2 | 33.699 | 27.527 | ||
| Coefficient of variation (%) | 15.867 | 21.207 | Coefficient of variation (%) | 40.044 | 34.784 | ||
| RBY | Average (T ha–1) | 0.628 | 0.678 | AMeT | Average (T ha–1) | 25.785 | 25.634 |
| Standard deviation (T ha–1) | 0.165 | 0.171 | Standard deviation (T ha–1) | 4.137 | 3.091 | ||
| Variance (T ha–1)2 | 0.027 | 0.029 | Variance (T ha–1)2 | 17.116 | 9.552 | ||
| Coefficient of variation (%) | 26.231 | 25.178 | Coefficient of variation (%) | 16.045 | 12.057 | ||
| ASM | Average (T ha–1) | 0.126 | 0.155 | MMeT | Average (T ha–1) | 28.706 | 28.166 |
| Standard deviation (T ha–1) | 0.051 | 0.061 | Standard deviation (T ha–1) | 3.857 | 2.892 | ||
| Variance (T ha–1)2 | 0.003 | 0.004 | Variance (T ha–1)2 | 14.874 | 8.363 | ||
| Coefficient of variation (%) | 40.344 | 39.305 | Coefficient of variation (%) | 13.435 | 10.267 | ||
| AMT | Average (T ha–1) | 33.260 | 32.490 | ABDD | Average (T ha–1) | 17.485 | 17.334 |
| Standard deviation (T ha–1) | 3.332 | 2.232 | Standard deviation (T ha–1) | 4.137 | 3.091 | ||
| Variance (T ha–1)2 | 11.102 | 4.981 | Variance (T ha–1)2 | 17.116 | 9.552 | ||
| Coefficient of variation (%) | 10.018 | 6.869 | Coefficient of variation (%) | 23.661 | 17.831 | ||
| MMT | Average (T ha–1) | 37.184 | 35.593 | CET | Average (T ha–1) | 1834.742 | 1799.484 |
| Standard deviation (T ha–1) | 2.967 | 2.101 | Standard deviation (T ha–1) | 41.421 | 58.663 | ||
| Variance (T ha–1)2 | 8.802 | 4.414 | Variance (T ha–1)2 | 1715.697 | 3441.351 | ||
| Coefficient of variation (%) | 7.979 | 5.903 | Coefficient of variation (%) | 2.258 | 3.260 | ||
| AmT | Average (T ha–1) | 18.310 | 18.778 | CEP | Average (T ha–1) | 416.862 | 578.381 |
| Standard deviation (T ha–1) | 5.199 | 4.597 | Standard deviation (T ha–1) | 102.271 | 138.621 | ||
| Variance (T ha–1)2 | 27.026 | 21.135 | Variance (T ha–1)2 | 10459.329 | 19215.710 | ||
| Coefficient of variation (%) | 28.393 | 24.482 | Coefficient of variation (%) | 24.534 | 23.967 |
| Variable | IBY (T Ha–1 yr–1) |
RBY (T Ha–1 yr–1) |
ASM (m3 m–3 yr–1) |
AMT (°C yr–1) |
MMT (°C) |
AmT (°C yr–1) |
mmT (°C) |
AMeT (°C yr–1) |
MMeT (°C) |
ABDD (°C yr–1) |
CET (mm yr–1) |
CEP (mm yr–1) |
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Culiacán | IBY (T Ha–1 yr–1) | 0.939 | 0.005 | 0.178 | 0.966 | 0.640 | 0.299 | 0.014 | 0.521 | 0.039 | 0.367 | 0.301 | |
| RBY (T Ha–1 yr-1) | 0.135 | 0.001 | 0.850 | 0.609 | 0.515 | 0.885 | 0.694 | 0.726 | 0.722 | 0.653 | 0.096 | ||
| ASM (m3 m–3 yr–1) | 0.443 | –0.487 | 0.056 | 0.062 | 0.402 | 0.371 | 0.016 | 0.158 | 0.094 | 0.286 | 0.193 | ||
| AMT (°C yr–1) | 0.260 | –0.071 | 0.435 | 0.834 | 0.377 | 0.235 | 0.000 | 0.667 | 0.017 | 0.229 | 0.054 | ||
| MMT (°C) | –0.039 | –0.253 | 0.401 | 0.228 | 0.399 | 0.034 | 0.123 | 0.030 | 0.271 | 0.660 | 0.192 | ||
| AmT (°C yr–1) | 0.086 | 0.057 | 0.291 | 0.171 | 0.283 | 0.740 | 0.298 | 0.021 | 0.960 | 0.555 | 0.137 | ||
| mmT (°C) | 0.290 | –0.078 | 0.350 | 0.177 | 0.108 | 0.258 | 0.081 | 0.323 | 0.074 | 0.138 | 0.529 | ||
| AMeT (°C yr–1) | 0.487 | –0.015 | 0.598 | 0.742 | 0.431 | 0.492 | 0.359 | 0.365 | 0.000 | 0.093 | 0.332 | ||
| MMeT (°C) | 0.118 | –0.145 | 0.386 | 0.391 | 0.402 | 0.406 | 0.279 | 0.556 | 0.814 | 0.475 | 0.412 | ||
| ABDD (°C yr–1) | 0.486 | –0.019 | 0.596 | 0.743 | 0.434 | 0.481 | 0.360 | 0.999 | 0.557 | 0.118 | 0.427 | ||
| CET (mm yr–1) | –0.100 | –0.183 | 0.094 | 0.620 | –0.063 | –0.083 | –0.118 | 0.175 | 0.218 | 0.174 | 0.781 | ||
| CEP (mm yr–1) | –0.088 | 0.375 | –0.250 | –0.409 | 0.257 | 0.324 | –0.009 | 0.003 | –0.062 | 0.002 | –0.515 | ||
| Rosario | IBY (T Ha–1 yr–1) | 0.546 | 0.573 | 0.404 | 0.225 | 0.468 | 0.739 | 0.005 | 0.825 | 0.204 | 0.692 | 0.922 | |
| RBY (T Ha–1 yr-1) | –0.111 | 0.139 | 0.239 | 0.618 | 0.708 | 0.876 | 0.622 | 0.832 | 0.144 | 0.783 | 0.204 | ||
| ASM (m3 m–3 yr–1) | –0.279 | –0.155 | 0.468 | 0.053 | 0.065 | 0.854 | 0.265 | 0.240 | 0.897 | 0.722 | 0.060 | ||
| AMT (°C yr–1) | –0.129 | 0.151 | –0.185 | 0.658 | 0.448 | 0.211 | 0.801 | 0.024 | 0.081 | 0.008 | 0.100 | ||
| MMT (°C) | 0.221 | –0.092 | –0.439 | 0.035 | 0.216 | 0.894 | 0.439 | 0.062 | 0.029 | 0.011 | 0.169 | ||
| AmT (°C yr–1) | 0.256 | 0.133 | –0.255 | –0.137 | 0.116 | 0.849 | 0.679 | 0.000 | 0.999 | 0.547 | 0.670 | ||
| mmT (°C) | –0.024 | 0.156 | 0.048 | 0.097 | –0.233 | 0.079 | 0.028 | 0.636 | 0.068 | 0.807 | 0.845 | ||
| AMeT (°C yr–1) | 0.351 | –0.009 | –0.276 | 0.195 | 0.158 | 0.099 | 0.446 | 0.596 | 0.079 | 0.233 | 0.830 | ||
| MMeT (°C) | –0.041 | 0.039 | –0.175 | 0.514 | 0.334 | 0.473 | –0.024 | 0.067 | 0.570 | 0.055 | 0.343 | ||
| ABDD (°C yr–1) | 0.292 | 0.010 | –0.159 | 0.405 | 0.140 | 0.245 | 0.247 | 0.569 | 0.504 | 0.446 | 0.716 | ||
| CET (mm yr–1) | 0.023 | 0.124 | –0.206 | 0.462 | 0.368 | 0.045 | –0.137 | 0.245 | 0.310 | 0.304 | 0.000 | ||
| CEP (mm yr–1) | –0.020 | 0.197 | –0.095 | –0.270 | –0.284 | 0.138 | 0.258 | 0.004 | –0.050 | 0.044 | –0.588 | ||
| n = 32; CPC = |0.349|; CSC = |0.350| | |||||||||||||
| Pearson’s coefficients (PC) | |||||||||||||
| Plain | Spearman’s coefficients (SC) | ||||||||||||
| Bold | Coefficients significantly different from zero | ||||||||||||
| Coefficients with severe multicollinearity | |||||||||||||
| Variable | IBY– Culiacán |
RBY– Culiacán |
IBY– Rosario |
RBY– Rosario |
|---|---|---|---|---|
| Coefficient of determination (R2) | 0.348 | 0.539 | 0.386 | 0.283 |
| Pearson’s coefficient (PC) = (R2)0.5 | 0.590 | 0.734 | 0.621 | 0.532 |
| Mean error (ME) | 1.834 x 10–15 | 2.255 x 10–16 | –1.135 x 10–15 | 3.785 x 10–15 |
| Root mean square error (RMSE) | 0.192 | 0.111 | 0.228 | 0.143 |
| Mean error absolute (MEA) | 0.143 | 0.086 | 0.181 | 0.119 |
| Percentage of error mean (PEM) | –1.735 | –2.643 | –2.844 | –4.391 |
| Percentage of error absolute mean (PEAM) | 9.906 | 13.763 | 13.736 | 18.266 |
| Theil’s statistic (U2) | 0.848 | 0.743 | 0.846 | 0.817 |
| n = 32; CPC = |0.349| |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
