Submitted:
25 March 2024
Posted:
26 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Preparation of Juveniles
2.2. Treatment and Experimental Design
2.3. Data Collection
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.C.; Chiu, M.H.; Nie, R.L.; Cordell, G.A.; Qiu, X.S. The cucurbitacins and cucurbitane glycosides: Structures and biological activities. Nat. Prod. Rep. 2005, 22, 386–399. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Kuo, T.C.; Yang, M.; Chien, T.; Chu, M.; Huang, L.; et al. Identification of cucurbitacins and assembly of a draft genome for Aquilaria agallocha. BMC Genom. 2014, 15, 578. [Google Scholar] [CrossRef] [PubMed]
- Noushahi, H.A.; Khan, A.H.; Noushahi, U.F.; Hussain, M.; Javed, T.; Zafar, M.; et al. Biosynthetic pathways of triterpenoids and strategies to improve their biosynthetic efficiency. Plant Growth Regul. 2022, 97, 437–454. [Google Scholar] [CrossRef] [PubMed]
- Gry, J.; Søborg, I.; Andersson, H.C. Cucurbitacins in plant food. Ekspressen Tryk and Kopicenter: Copenhagen, Denmark, 2006.
- Dirr, H.; Schabort, J.C.; Weitz, C. Cucurbitacin 23 reductase from fruit of Cucurbita maxima var. Green Hubbard. Biochem. J. 1986, 33, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Schabort, J.C.; Teijema, H.L. The role of cucurbitacin Δ23 reductase in the breakdown pathway of toxic bitter principles in Cucurbita maxima. Phytochemistry. 1968, 7, 2107–2110. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, Y.; Zeng, J.; Duan, L.; Xue, X.; Wang, H.; et al. Convergence and divergence of cucurbitacin biosynthesis and regulation in Cucurbitaceae. Nat. Plants. 2016, 2, 16183–16202. [Google Scholar] [CrossRef] [PubMed]
- Abbas SVincourt, J.; Habib, L.; Netter, P.; Greige-Gerges, H.; Magdalou, J. The cucurbitacins E, D and I: Investigation of their cytotoxicity towards human chondrosarcoma SW 1353 cell line and their biotransformation in man liver. Toxicol. Lett. 2016, 216, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Mirr, S.A.; Mukherjee, S.; Makar, S.; Pal, G. Cucurbitacins a vibrant triterpenoid: A review on its anticancer property. PharmaTut. 2019, 7, 43–54. [Google Scholar]
- Mphahlele, R.R.; Mashela, P.W.; Pofu, K.M. Post-harvest fruit decay-inducing pathogen in medicinally important Cucumis species indigenous to South Africa. Afrn. J. Agric. Res. 2012, 6, 3786–3791. [Google Scholar] [CrossRef]
- Mashela, P.W.; De Waele, D.; Dube, Z.; KHosa, M.C.; Pofu, K.M.; Tefu, G.; et al. Alternative nematode management strategies. In Nematology in South Africa: A review from the 21st Century, 1st ed.; Fourie, H., et al., Eds.; Springer Nature: Berlin, Germany, 2017; pp. 151–181. [Google Scholar]
- Mashela, P.W.; De Waele, D.; Pofu, K.M. Use of indigenous Cucumis technologies as alternative to synthetic nematicides in management of root-knot nematodes in low-input agricultural farming systems: A review. Sci. Res. Essays. 2011, 33, 6762–6768. [Google Scholar]
- Mashela, P.W.; Pofu, K.M. Cucumis oilseed cake: Nematicidal attributes and management of associated challenges. In Oilseed cake for nematode management, 1st ed.; Amad, F., Pandey, R., Eds.; CRC Press: Boca Raton, FL, 2023; pp. 15–38. [Google Scholar]
- Liu, D.L.; Johnson, I.R.; Lovett, J.V. Mathematical modelling of allelopathey. III: a model for curve-fitting allelochemical dose responses. Nonlin. Biol., Toxicol. Med. 2003, 1, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Gomez, K.A.; Gomez, A.A. Statistical procedures for agricultural research. Wily: New York, USA. 1984.
- Matlala, M.C. Response of morphometrics to cucurbitacin-containing phytonematicides in Scutellonema brachyurus. MSc Dissert., University of Limpopo, Sovenga. South Africa. 2023.
- Mokhoelele, F. Nemarioc-AL, Nemafric-BL and momorfly phytoinsecticides with and without Dicerocaryum senecioides wettener in the management of mealybug on Mimusops zeyheri. Masters Dissertation, . University of Limpopo, Sovenga, South Africa. 2018. [Google Scholar]
- Aguinaldo, A.M.; Tubeville, J.M.; Linford, L.S.; Rivera, M.C.; Garey, J.R.; Raff, R.A.; Lake, J.A. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature. 1997, 29, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.N.; Moens, M. Plant nematology. Wallingford, Oxfordshire, UK. 2013.
- Schultz, R.D.; Bennett, E.E.; Ellis, E.A.; Gumienny, T.L. Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans. PLoS ONE 2014, 9, e101929. [Google Scholar] [CrossRef] [PubMed]
- Dube, Z.P. Nemarioc-AL and Nemafric-BL phytonematicides: Bioactivities in Meloidogyne incognita, tomato crop, soil type and organic matter. PhD thesis, University of Limpopo, Sovenga, South Africa. 2016.
- Van Gundy, S.D.; McKenry, M.V. Action of nematicides; Horsfall, J.G. , Cowling, E.B., Eds.; Plant disease I Academic Press: New York, 1975; pp. 263–280. [Google Scholar]
- Van Wyk, B.E.; Wink, M. Medicinal plants of the world; Timber Press, Inc.: Portland, Oregon, USA, 2004. [Google Scholar]
- Marais, M.; Swart, A.; Fourie, H.; Berry, S.D.; Knoetze, R.; Malan, A.P. Techniques and procedures. In Nematology in South Africa: A view from the 21st century; Fourie, H., Spaull, V., Jones, R., Daneel, M., De Waele, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 73–117. [Google Scholar]
- Mashela, P.W.; Shokoohi, E. Morphometric and total protein responses in Meloidogyne incognita second-stage juveniles to Nemafric-BL phytonematicide. Sci. Rep. 2021, 11, 1135–1147. [Google Scholar] [CrossRef] [PubMed]
- Causton, D.R. Contemporary biology: A biologist’s mathematics. Bedford Square, London, 1977.
- Patel, S.K.; Lavasanifar, A.; Choi, P. Roles of non-polar and polar intermolecular interactions in the improvement of the drug loading capacity of PEO-b-PLC with hydrophobic cucurbitacin drugs. Biomacromolecules. 2009, 10, 2584–2591. [Google Scholar] [CrossRef] [PubMed]
- Dube, Z.P.; Mashela, P.W. Response of Meloidogyne incognita egress and overall sensitivity active ingredients of Nemarioc-AL and Nemafric-BL phytonematicides, Transylv. Rev. 2016, 7, 954–960. [Google Scholar]
- Dube, Z.P.; Mashela, P.W. Confirmation of bioactivities of active ingredients of Nemarioc-AL and Nemafric-BL phytonematicides. Acta Agric. Scand. Sect. B-Soil and Plant Sci. 2017, 67, 571–575. [Google Scholar] [CrossRef]
- Dube, Z.P.; Mashela, P.W. Effects of cucurbitacin A on mobility of Meloidogyne incognita second-stage juveniles. Res. Crops. 2018, 19, 504–508. [Google Scholar]
- Dube, Z.P.; Mashela, P.W.; De Waele, D. Sensitivity of Meloidogyne incognita second-stage juvenile hatch, motility and viability to pure cucurbitacins and cucurbitacin phytonematicides. S. Afrn. J. Plant and Soil. 2019, 36, 29–32. [Google Scholar] [CrossRef]
- Jørgensen, K.S. In Situ bioremediation. Adv. Appl. Microbiol. 2007, 61, 285–305. [Google Scholar]
- Casey, P.J.; Seabra, M.C. Protein prenyltransferases. J. Biol. Chem. 1996, 27, 5289–5292. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.J. Protein prenylation: A mediator of protein-protein interactions. Science. 1993, 259, 1865–1866. [Google Scholar] [CrossRef] [PubMed]
- Novelli, G.; D’Apice, M.R. Protein farneslation and disease. J. Inher. Metab. Dis. 2012, 35, 917–926. [Google Scholar] [CrossRef]
- Wanke, M.; Skorupinska-Tudek, K.; Swiezewska, E. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Acta Biochem. Pol. 2001, 48, 663–672. [Google Scholar] [CrossRef]
- Dinan, L.; Harmatha, J.; Volodin, V.; Lafont, R. Phytoecdysteroids: Diversity, biosynthesis and distribution. In Ecdysomes: Structures and functions, 1st ed.; Smagghe, G., Ed.; 2009; pp. 3–45.
- Lichtenthaler, H.K. The Non-mevalonate DOXP/MEP (Deoxyxylulose 5-Phosphate/Methylerythritol 4-Phosphate) Pathway of Chloroplast Isoprenoid and Pigment Biosynthesis. In The Chloroplast. Advances in Photosynthesis and Respiration; Rebeiz, C.A., et al., Eds.; Springer: Dordrecht, 2010; Volume 31, pp. 95–118. [Google Scholar]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
