Submitted:
20 March 2024
Posted:
20 March 2024
Read the latest preprint version here
Abstract
Keywords:
1. The Friedmann Equation on Thermodynamical Form
2. The Extremal Universe and the Haug-Spavieri Cosmology
3. Conclusion
References
- A. Friedmann. Über die krüng des raumes. Zeitschrift für Physik, 10:377, 1922. [CrossRef]
- E. T. Tatum, U. V. S. Seshavatharam, and S. Lakshminarayana. The basics of flat space cosmology. International Journal of Astronomy and Astrophysics, 5:116, 2015. [CrossRef]
- M. Planck. Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften: Berlin, Germany, 1899. URL https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up.
- M. Planck. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: J.A. Barth, p. 163, see also the English translation “The Theory of Radiation" (1959) Dover, 1906.
- E. G. Haug and S. Wojnow. How to predict the temperature of the CMB directly using the Hubble parameter and the Planck scale using the Stefan-Boltzman law. Research Square, Pre-print, under consideration by journal, 2023. [CrossRef]
- E. G. Haug. CMB, hawking, Planck, and Hubble scale relations consistent with recent quantization of general relativity theory. International Journal of Theoretical Physics, Nature-Springer, 63(57), 2024a. [CrossRef]
- E. T. Tatum, E. G. Haug, and S. Wojnow. High precision Hubble constant determinations based upon a new theoretical relationship between CMB temperature and H0. Hal archive, 2023. URL https://hal.science/hal-04268732.
- E. T. Tatum. Upsilon constants and their usefulness in Planck scale quantum cosmology. Journal of Modern Physics, 15:167, 2024. [CrossRef]
- E. G. Haug and E. T. Tatum. Planck length from cosmological redshifts solves the Hubble tension. ResearchGate.org, 2024a. URL 1. [CrossRef]
- S. Dhal, S. Singh, K. Konar, and R. K. Paul. Calculation of cosmic microwave background radiation parameters using cobe/firas dataset. Experimental Astronomy (2023), 612:86, 2023. [CrossRef]
- D. J. Fixsen and et. al. The temperature of the cosmic microwave background at 10 Ghz. The Astrophysical Journal, 612:86, 2004. [CrossRef]
- D. J. Fixsen. The temperature of the cosmic microwave background. The Astrophysical Journal, 707:916, 2009. [CrossRef]
- A. G. Riess and et. al. A comprehensive measurement of the local value of the Hubble constant with 1 km s-1 Mpc-1 uncertainty from the Hubble space telescope and the sh0es team. The Astrophysical Journal, 934, 2021. [CrossRef]
- E. G. Haug and E. T. Tatum. Solving the Hubble tension by extracting current CMB temperature from the union2 supernova database. Hal archive, 2024b. URL https://hal.science/hal-04368837.
- E. G. Haug. The extremal universe exact solution from Einstein’s field equation gives the cosmological constant directly. Journal of High Energy Physics, Gravitation and Cosmology, 10:386, 2024b. [CrossRef]
- H. Reissner. Über die eigengravitation des elektrischen feldes nach der einsteinschen theorie. Annalen der Physics, 355:106, 1916. [CrossRef]
- R. P. Kerr. Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters, 11:237, 1963. [CrossRef]
- E. T. Newman and A. I. Janis. Note on the Kerr spinning-particle metric. Journal of Mathematical Physics, 6:915, 1965. [CrossRef]
- W. Newman. Newton the Alchemist: Science, Enigma, and the Quest for Nature’s "Secret Fire". Destiny Books, Rochester, Vermont, 2018.
- A. Einstein. Näherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin, 1916.
- E. G. Haug and G. Spavieri. Mass-charge metric in curved spacetime. International Journal of Theoretical Physics, 62:248, 2023a. [CrossRef]
- E. G. Haug and G. Spavieri. New exact solution to Einstein’s field equation gives a new cosmological model. Researchgate.org Pre-print, 2023b. [CrossRef]
- A. Einstein. Cosmological considerations in the general theory of relativity. Sitzungsber. Preuss. Akad. Wiss, Berlin (Math.Phys.), page 142, 1917.
- G. A. Monerat, Filho F. L.G., and and Silva E.V. C.and Neves C. Oliveira-Neto, G. The Planck era with a negative cosmological constant and cosmic strings. Physics letters A, 4741, 2010. [CrossRef]
- T. Prokopec. Negative energy cosmology and the cosmological constant. arXiv:1105.0078, 2011. [CrossRef]
- Maeda. K. and N. Ohta. Cosmic acceleration with a negative cosmological constant in higher dimensions. Journal of High Energy Physics, 2014, 2014. [CrossRef]
- L. Visinelli, S. Vagnozzi, , and U. Danielsson. Revisiting a negative cosmological constant from low-redshift data. Symmetry, 11, 2019. [CrossRef]
- R. Calderón, R. Gannouji, B. L’Huillier, and D. Polarski. Negative cosmological constant in the dark sector? Physical Review D, 103, 2021. [CrossRef]
- Benizri. L. and J. Troost. More on pure gravity with a negative cosmological constant. Journal of High Energy Physics, 2023, 2023. [CrossRef]
- A. A. Sen, S. A. Adil, and S. Sen. Do cosmological observations allow a negative Λ? Monthly Notices of the Royal Astronomical Society, 518, 2023. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
