Submitted:
20 March 2024
Posted:
20 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Mast Cell
2.1. Sentinel Cell
2.2. Main Mediators
2.2.1. Biogenic Amines Histamine and Serotonin
2.2.3. Proteases
2.2.4. Cytokines, Chemokines and Growth Factors
2.2.5. Lipid Mediators, and Nitric Oxide
2.3. Physiological Role Unclear
2.4. Effects on Cell Proliferation, Tissue Remodeling, and Angiogenesis
2.4.1. Complex Integration of Molecular, Cellular, and ECM Events in MC-Mediated Angiogenesis
2.5. Role in Inflammation and Wound Healing
2.6. Role in Reproduction
| MAST CELL-MEDIATED LIFE-MAINTAINING EFFECTS THROUGHOUT LIFE, AND IN FEMALE REPRODUCTION |
|
EMBRYONIC AND FETAL LIFE CREATION OF THE FIRST ORGAN, blood vessels, MCs are probably involved. INFLAMMATION, MCs are probably involved. WOUND HEALING/TISSUE REPAIR, MCs are probably involved. |
|
BIRTH TO DEATH INFLAMMATION, commonplace, often unnoticed, potentially lethal. MCs are involved [§]. WOUND HEALING/TISSUE REPAIR, commonplace, often unnoticed, potentially lethal. MCs are involved [§]. |
|
REPRODUCTIVE AGE FEMALE SEX SYSTEM, successful ovulation, and pregnancy. MCs are involved [§]. |
| Table 1. Distinct life-promoting and life-sustaining effects by activated connective-tissue mast cells (MCs). [§]: MC-mediated angiogenesis is an indispensable feature and may also occur in the other situations where MCs are involved. |
2.7. Role in Health and Homeostasis
| GENERATION #1 |
Critical role in inflammation, potentially lethal **. Critical role in wound healing/tissue repair **.. |
Critical role in commonplace wound healing/tissue repair, potentially lethal ***. |
Pregnancy ***. Childbirth *. |
| GENERATION #2 |
| 2.1 EMBRYONIC AND FETAL LIFE MCs are generated from endothelial cells *** and participate in the creation of the first organ**, blood vessels, that later develops into the body’s largest network. — GO TO 1.1 ABOVE AND THERE IS AN ENDLESS LOOP: 2.1, 2.2, 2.3, 3.1, 3.2, etc. |
| Table 2. Mast cells (MCs) are definitely ***, probably **, or likely * key players in the creation of a permanent loop of life-promoting and life-sustaining events in succeeding generations, safe-guarding the offspring. References are given in the text. |
3. Discussion and Conclusion
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wong, G.W.; Zhou, L.; Kimata, K.; Lam, B.K.; Satoh, N.; Stevens, R.L. Ancient origin of mast cells. Biochem Biophys Res Commun 2014, 451, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Crivellato, E.; Travan, L.; Ribatti, D. The phylogenetic profile of mast cells. Methods Med Biol 2015, 1220, 11–27. [Google Scholar]
- Cavalcante, M.C.M.; Allodi, S.; Valente, A.P.; Straus, A.H.; Takahashi, H.K.; Mourao, P.A.S.; Pawao, M.S.G. Occurrence of heparin in the invertebrate Styela plicata (Tunicata) is restricted to cell layers facing the outside environment: an ancient role in defense? J Biol Chem 2000, 275, 36189–36196. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Gaudenzio, N.; Tsai, M. Mast cells in inflammation and disease: recent progress and ongoing concerns. Ann Rev Immunol 2020, 38, 49–77. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.S.; Jawdat, D.M. Mast cells in innate immunity. J Allergy Clin Immunol 2004, 114, 21–27. [Google Scholar] [CrossRef]
- Dileepan, K.N.; Raveendran, V.V.; Sharma, R.; Abraham, H.; Barua, R.; Singh, V.; Sharma, R.; Sharma, M. Mast cell-mediated immune regulation in health and disease. Front Med 2023, 10, art no 1213320. [Google Scholar] [CrossRef]
- Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast cell: a multi-functional master cell. Front Immunol 2016, 6, 620. [Google Scholar] [CrossRef]
- Dudeck, A.; Köberle, M.; Goldmann, O.; Meyer, N.; Dudeck, J.; Lemmens, S.; Rohde, M.; Roldan, N.G.; Dietze-Schwonberg, K.; Orinska, Z.; Medina, E.; Hendrix, S.; Metz, M.; Zenclussen, A.C.; von Stebut, E.; Biedermann, T. Mast cells as protectors of health. J Allergy Clin Immunol 2019, 144, S4–S18. [Google Scholar] [CrossRef]
- Meyer, N.; Zenclussen, A.C. Mast cells — Good guys with a bad image? Am J Reprod Immunol 2018, 80, e13002. [Google Scholar] [CrossRef]
- Hellman, L.; Akula, S.; Fu, Z.; Wernersson, S. Mast cell and basophil granule proteases—In vivo targets and function. Front Imunnol 2022, 13, art no 918305. [Google Scholar] [CrossRef]
- Norrby, K. Do mast cells contribute to the continued survival of vertebrates? APMIS 2022, 130, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.L.; Kapoor, S.; Carvalho, C.; Bajenoff, M.; Gentek, R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023, 315, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Weller, P.; Grabbe, J.; Gibbs, B.; Zauberbier, T.; Henz, B.M. Human mast cells produce and differentially express both soluble and membrane-bound stem cell factor. Scand J Immunol 1999, 49, 495–500. [Google Scholar]
- Annese, T.; Tamma, R.; Bozza, M.; Zito, A.; Ribatti, D. Autocrine/paracrine loop between SCF+/c-Kit+ mast cells promotes cutaneous melanoma progression. Front Immunol 2022, 13, art no 794974. [Google Scholar] [CrossRef]
- Molderings, G.J.; Afrin, L.B. A survey of the currently known mast cell mediators with potential relevance for therapy of mast cell-induced symptoms. Naunyn Schmiedebergs Arch Pharmacol 2023, 396, 2881–2891. [Google Scholar] [CrossRef] [PubMed]
- Moon, T.C.; Befus, A.D.; Kulka, M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 2014, 5, art no 569. [Google Scholar] [CrossRef]
- Weimerhaus, M.; Carvalho, C.; Rignault, R.; Waeckel-Enee, E.; Dussiot, M.; van Endert, P.; Maciel, T.T.; Hermine, O. Mast cell-mediated inflammation relies on insulin-regulated aminopeptidase controlling cytokine export from the Golgi. J Allergy Clin Immunology 2023, 151, 1595–1608. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.S.; Maurer, M.; Metcalfe, D.D.; Pejler, G.; Sagi-Eisenberg, R.; Nilsson, G. The ingenious mast cell: contemporary insights into mast cell behavior and function. Allergy 2022, 77, 83–99. [Google Scholar] [CrossRef]
- Maurer, M.; Köberle, M.; Metz, M.; Biedermann, T. Mast cells: promoters of health and modulators of disease. J Allerg Clin Immunol 2019, Suppl(4S), S1–S3. [Google Scholar] [CrossRef]
- Gentek, R.; Ghigo, C.; Hoeffel, G.; Bulle, M.J.; Msallam, R.; Gautier, G.; Launay, P.; Chen, J.; Ginhoux, F.; Bejenoff, M. Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells. Immunity 2018, 48, 1160–1171. [Google Scholar] [CrossRef]
- Li, Z.; Liu, S.; Xu, J.; Zhang, X.; Han, D.; Liu, J.; Xia, M.; Yi, L.; Shen, Q.; Lu, L.; Cao, X. Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. Immunity 2018, 49, 640–653. [Google Scholar] [CrossRef]
- Boisset, J.C.; van Cappellen, W.; Andrieu-Soler, C.; Galjart, N.; Dzierzak, E.; Robin, C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 2010, 464, 116–120. [Google Scholar] [CrossRef]
- Carmeliet, P. Angiogenesis in health and disease. Nat Med 2003, 9, 653–660. [Google Scholar] [CrossRef]
- Tauber, M.; Basso, L.; Martin, J.; Bostan, L.; Pinto, M.M.; Thierry, G.R. Landscape of mast cell populations across organs in mice and humans. J Exp Med 2023, 220, e20230570. [Google Scholar] [CrossRef]
- Dwyer, D.F.; Barrett, N.A.; Austen, K.F. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol 2016, 17, 878–887. [Google Scholar] [CrossRef]
- Frossi, B.; Mion, F.; Sibilano, R.; Danelli, L.; Pucillo, C.E.M. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 2018, 282, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Enerbäck, L. Mast cell heterogeneity: the evolution of the concept of a specific mucosal mast cell. In Mast Cell Differentiation and Heterogeneity, ed. A.D. Befus, J. Bienenstock, J.A. Denburg, pp. 1–26.
- Katz, H.R.; Stevens, R.L.; Austen, K.F. Heterogeneity of mammalian mast cells differentiated in vivo and in vitro. J Allergy Clin Immunol 1985, 76(2 Pt 2) Pt 2, 250–259. [Google Scholar] [CrossRef]
- Grigorev, I.P.; Korzhevskii, D.E. Mast cells in the vertebrate brain: Localization and function. J Evolut Biochem Physiol 2020, 57, 16–32. [Google Scholar] [CrossRef]
- Katsoulis-Dimitriou, K.; Kotrba, J.; Voss, M.; Dudeck, J.; Dudeck, A. Mast cell functions linking innate sensing to adaptive immunity. Cells 2020, 9, 2538. [Google Scholar] [CrossRef]
- Forsberg, E.; Pejler, G.; Ringvall, M.; Lunderius, C.; Toasini-Johansson, B.; Kusche-Gullberg, M.; Eriksson, I.; Ledin, J.; Hellman, L.; Kjellen, L. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 1999, 400, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Wernersson, S.; Pejler, G. Mast cell secretory granules: armed for battle. Nat Rev Immunol 2014, 14, 478–494. [Google Scholar] [CrossRef] [PubMed]
- Mulloy, B.; Lever, R.; Page, C.P. Mast cell glycosaminoglycans. Glycoconjugate J 2017, 34, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Heredia, S.A.; Hsu, H.P.; Kao, C.Y.; Tsai, Y.H.; Yamaguchi, Y.; Roers, A.; Hsu, C.L.; Dzhagalov, I.L. Heparin is required for the formation of granules in connective tissue mast cells. Front Immunol 2022, 13, art no 1000405. [Google Scholar] [CrossRef]
- Xu, X.; Dai, Y. Heparin: an intervenor in cell communication. J Cell Mol Med 2010, 14, 175–180. [Google Scholar] [CrossRef]
- Humphries, D.E.; Wong, G.W.; Friend, D.S.; Gurish, M.F.; Qiu, W.T.; Huang, C.; Sharpe, A.H.; Stevens, R.L. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 1999, 400, 769–772. [Google Scholar] [CrossRef]
- Henningsson, F.; Ledin, J.; Lunderius, C.; Wilen, M.; Hellman, L.; Pejler, G. Altered storage of proteases in mast cells from mice lacking heparin: a possible role for heparin in carboxypeptidase a processing. Biol Chem 2002, 383, 383,793–801. [Google Scholar] [CrossRef] [PubMed]
- Peysselon, F.; Ricard-Blum, S. Heparin-protein interactions: From affinity and kinetics to biological roles. Application to an interaction network regulating angiogenesis. Matrix Biol 2014, 35, 73–81. [Google Scholar] [CrossRef]
- Kan, M.; Wang, F.; Xu, J.; Crabb, J.W.; Hou, J.; McKeehan, W.L. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 1993, 259, 1918–1921. [Google Scholar] [CrossRef]
- Neufeld, G.; Tessler, S.; Gitay-Goren, H.; Cohen, T.; Levi, B.Z. Vascular endothelial growth factor and its receptors. Progr growth factor res 1994, 89–97. [Google Scholar] [CrossRef]
- Raab, G.; Klagsbrun, M. Heparin-binding EGF-like growth factor. Biochim Biophys Acta 1997, 1333, F179–F199. [Google Scholar] [CrossRef]
- Marshall, J.S.; Portales-Cervantes, L.; Leong, E. Mast cell responses to viruses and pathogen products. Int J Mol Sci 2019, 20, 4241. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.L.; Jackson, C.L.; Angelini, G.D.; George, S.J. Activation and matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arther Thromb Vasc Biol 1998, 18, 18,1707–1715. [Google Scholar] [CrossRef]
- Stamenkovic, I. Extracellular matrix remodeling: the role of matrix metalloproteinases. J Pathol 2003, 200, 448–464. [Google Scholar] [CrossRef]
- Tchougounova, E.; Lundequist, A.; Fajardo, I.; Winberg, J.O.; Abrink, M.; Pejler, G. A key role for mast cell chymase in the activation of pro-matrix metalloproteinase-9 and pro-matrix metalloproteinase-2. J Biol Chem 2005, 280, 9291–9296. [Google Scholar] [CrossRef]
- Kanbe, N.; Tanaka, A.; Kanbe, M.; Itakura, A.; Kurosaw, M.; Matsuda, H. Human mast cells produce matrix metalloproteinase 9. Eur J Immunol 1999, 29, 2645–2649. [Google Scholar] [CrossRef]
- Xu, K.; Cai, Z.; Yang, F.; Chen, M. Activation-induced upregulation of MMP9 in mast cells is a positive feedback mediator for mast cell activation. Mol Med Rep 2017, 15, 1759–1764. [Google Scholar] [CrossRef]
- da Silva, E.Z.M.; Jamur,M. C.; Oliver, C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014, 62, 698–738. [Google Scholar] [CrossRef] [PubMed]
- Detoraki, A.; Staiano, R.I.; Granata, F.; Giannattasio, G.; Prevete, N.; de Paulis, A.; Ribatti, D.; Genovese, A.; Triggiani, M.; Marone, G. Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J Allergy Clin Immunol 2009, 123, 1142–1149. [Google Scholar] [CrossRef]
- Gately, S.; Li, W.W. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 2004, 31(2 Suppl 7), 2–11. [Google Scholar] [CrossRef]
- Wang, D.; DuBois, R.N. Cyclooxygenase 2-derived prostaglandin E2 regulates the angiogenic switch. PNAS 2004, 101, 415–416. [Google Scholar] [CrossRef]
- Chiarugi, V.; Magnelli, L.; Gallo, O. Cox-2, iNOS and p53 as play-makers of tumor angiogenesis. Int J Mol Med 1998, 2, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K.; Enerbäck, L.; Franzén, L. Mast cell activation and tissue cell proliferation. Cell Tiss Res 1976, 170, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K.; Andersson, R.G. On the role of arachidonic acid metabolites in mast-cell mediated mitogenesis in the rat. Virchows Arch B Cell Pathol Incl Mol Pathol 1984, 46, 83–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Daaka, Y. PGE2 promotes angiogenesis through EP4 and PKA Cy pathway. Blood 2011, 118, 5355–5364. [Google Scholar] [CrossRef]
- Norrby, K. Nitric oxide suppresses bFGF- and IL-1-alpha-mediated but not VEGF165-mediated angiogenesis in natively vascularized mammalian tissue. APMIS 1998, 106, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Oral administration of an oxide synthase inhibitor enhances de novo mammalian angiogenesis mediated by TNF-alpha, saline and mast-cell secretion. APMIS 2000, 108, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Constitutively synthesized nitric oxide is a physiological negative regulator of mammalian angiogenesis mediated by basic fibroblast growth factor. Int J Exp Pathol 2000, 81, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Imanishi, M.; Fujikura, D.; Sugiyama, M.; Tanimoto, K.; Mochiji, Y.; Takahashi, Y.; Hiura, K.; Watanabe, M.; Kashimoto, T.; Nakano, K.; Okamura, T.; Sasaki,N. New inducible mast cell-deficient mouse model (Mcpt5/Cma1dtr). Biochem Biophys Res Commun 2021, 551, 127–132. [Google Scholar] [CrossRef]
- Rodewald, HR.; Feyerabend, T.B. Widespread immunological functions of mast cells: fact or fiction? Immunity 2012, 37, 13–24. [Google Scholar] [CrossRef]
- Franzén, L.; Norrby, K. Immunological challenge causes mitogenic stimulation in normal connective tissue cells. APMIS 1982, 90, 385–389. [Google Scholar] [CrossRef]
- Norrby, K. Intradermal mast-cell secretion causing cutaneous mitogenesis. Virchows Arch B Cell Pathol Incl Mol Pathol 1983, 42, 263–269. [Google Scholar] [CrossRef]
- Norrby, K.; Jakobsson, A.; Sörbo, J. Mast-cell-mediated angiogenesis: A novel experimental model using the rat mesentery. Virchows Arch B Cell Pathol Incl Mol Pathol 1986, 52, 195–206. [Google Scholar] [CrossRef]
- Norrby, K. In vivo models of angiogenesis. J Cell Mol Med 2006, 10, 588–612. [Google Scholar] [CrossRef]
- Norrby, K. Rat mesentery angiogenesis assay. J Vis Exp 2011, 52, e3078. [Google Scholar]
- Norrby, K. Mast cells and angiogenesis. APMIS 2002, 110, 355–371. [Google Scholar] [CrossRef]
- Norrby, K. Basic fibroblast growth factor and mammalian de novo angiogenesis. Microvasc Res 1994, 48, 96–113. [Google Scholar] [CrossRef]
- Norrby, K. Vascular endothelial growth factor and mammalian de novo angiogenesis. Microvasc Res 1996, 51, 153–163. [Google Scholar] [CrossRef]
- Norrby, K. Effect of heparin, histamine, and serotonin on the density-dependent inhibition of replication in two fibroblastic cell lines. Virchows Arch B Cell Pathol Incl Mol Pathol 1973, 15, 75–93. [Google Scholar] [CrossRef]
- Norrby, K. Mast cell histamine, a local mitogen acting via H2-receptors in nearby tissue cells. Virchows Arch B Cell Pathol Incl Mol Pathol 1980, 34, 13–20. [Google Scholar] [CrossRef]
- Norrby, K. Evidence of mast-cell histamine being mitogenic in intact tissue. Agents Actions 1985, 16, 287–290. [Google Scholar] [CrossRef]
- Sörbo, J.; Jakobsson, A.; Norrby, K. Mast-cell histamine is angiogenic through the receptors for histamine1 and histmine2. Int J Exp Pathol 1994, 75, 43–50. [Google Scholar]
- Qin, L.; Zhao, D.; Xu, J.; Ren, X.; Terwilliger, E.F.; Parangi, S.; Lawler, J.; Dvorak, H.F.; Zeng, H. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1. Blood 2013, 121, 2154–2164. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, C.; Pan, R.; Gao, X.; Wei, Z.; Xia, Y.; Dai, Y. Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor. J Cell Biochem 2013, 114, 1009–1019. [Google Scholar] [CrossRef]
- Shah, P.A.; Park, C.J.; Shaughnessy, M.; Cowles, R.A. Serotonin as a mitogen in the gastrointestinal tract: Revisiting a familiar molecule in a new role. Cell Mol Gastroenterol Hepatol 2021, 12, 1093–1104. [Google Scholar] [CrossRef]
- Moon, J.H.; Kim, Y.G.; Kim, K.; Osonoi, S.; Wang, S.; Saunders, D.C.; Wang, J.; Yang, J.; et al. Serotonin regulates adult b-cell mass by perinatal cell proliferation. Diabetes 2020, 69, 205–214. [Google Scholar] [CrossRef]
- Norrby, K. Effect of heparin on cell population kinetics, mitosis and topoinhibition. Virchows Arch B Cell Pathol Incl Mol Pathol 1971, 9, 292–310. [Google Scholar] [CrossRef]
- Norrby, K.; Sörbo, J. Heparin enhances angiogenesis by a systemic mode of action. Int J Exp Pathol 1992, 73, 147–155. [Google Scholar]
- Norrby, K.; Ostergaard, P. Basic FGF-mediated de novo angiogenesis is more effectively suppressed by low-molecular-weight heparin than by high-molecular-weight heparin. Int J Microcirc Clin Exp 1996, 16, 8–15. [Google Scholar] [CrossRef]
- Norrby, K.; Ostergaard, P. A 5.0-kD heparin fraction systemically suppresses VEGF165-mediated angiogenesis. Int J Microcirc 1997, 17, 314–321. [Google Scholar] [CrossRef]
- Norrby, K. TNF-alpha and de novo mammalian angiogenesis. Microvasc Res 1996, 52, 79–83. [Google Scholar] [CrossRef]
- Norrby, K. Interleukin-8 and de novo mammalian angiogenesis. Cell Proliferation 1996, 29, 315–323. [Google Scholar] [CrossRef]
- Norrby, K. Interleukin-1-alpha and de novo mammalian angiogenesis. Microvasc Res 1997, 54, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K.; Eneström, S. Cellular and extracellular changes following mast-cell secretion in avascular rat mesentery. An electron-microscopic study. Cell Tiss Res 1984, 235, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Klagsbrun, M. The affinity of fibroblast growth factors (FGFs) for heparin; FGF-heparan sulfate interactions in cells and extracellular matrix. Curr Opin Cell Biol 1990, 2, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, A.E.; Norrby, K.; Ericson, L.E. A morphometric method to evaluate angiogenesis kinetics in the rat mesentery. Int J Exp Pathol 1994, 75, 219–224. [Google Scholar]
- Ragipoglu, D.; Bülow, J.; Hauff, K.; Voss, M.; Haffner-Luntzer, M.; Dudeck, A.; Ignatius, A.; Fischer, V. Mast cells drive systemic inflammation and compromised bone repair after trauma. Front Immunol 2022, 13, 883707. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Alysandratos, K.D.; Angelidou, A.; Delivanis, D.A.; Sismanopoulos, N.; Zhang, B.; Asadi, S.; Vasiadi, M.; Weng, Z.; Miniati, A.; Kalogeromitros, D. Mast cells and inflammation. Biochim Biophys Acta 2012, 1822, 21–33. [Google Scholar] [CrossRef]
- Zhang, Z.; Kurashima, Y. Two sides of the coin: mast cells as a key regulator of allergy and acute chronic inflammation. Cells 2021, 190(7), 1615. [Google Scholar] [CrossRef]
- Wang, R.M.; Mesfin, J.M.; Karkanitsa, M.; Ungerleider, J.L.; Zelus, E.; Zhang, Y.; Kawakami, Y.; Kawakami, Y.; Kawakami, T.; Christman, K.L. Immunomodulatory contribution of mast cells to the regenerative biomaterial microenvironment. Regen Med 2023, 8, art no 53. [Google Scholar] [CrossRef]
- Tonnesen, M.G.; Feng, X.; Clark, R.A.F. Angiogenesis in wound healing. J Investig Dermatol Symp Proc 2000, 5, 40–46. [Google Scholar] [CrossRef]
- Noli, C.; Miolo, A. The mast cell in wound healing. Vet Dermatol 2002, 12, 303–313. [Google Scholar] [CrossRef]
- Ng, M.F.Y. The role of mast cells in wound healing. Int Wound J 2010, 7, 55–61. [Google Scholar] [CrossRef]
- Komi, D.E.A.; Khomtchouk, K.; Maria, P.L.S. A review of the contribution of mast cells in wound healing: involved molecular and cellular mechanisms. Clin Rev Allergy Immunol 2020, 58, 298–312. [Google Scholar] [CrossRef]
- Bacci, S. Fine regulation during wound healing by mast cells, a physiological role not yet clarified. Int J Mol Sci 2022, 23, 1820. [Google Scholar] [CrossRef]
- Atiakshin, D.; Soboleva, M.; Nikityuk, D.; Alexeeva, N.; Klochkova, S.; Kostin, A.; Shishina, V.; Buchwalow, I.; Tiemann, M. Mast cells in regeneration of the skin in burn wound with special emphasis on molecular hydrogen effect. Pharmaceuticals 2023, 16, 348. [Google Scholar] [CrossRef]
- Wulff, B.C.; Wilgus, T.A. Mast cell activity in the healing wound: more that meet the eye? Exp Dermatol 2013, 22, 507–510. [Google Scholar] [CrossRef]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound healing: a cellular perspective. Physiol Rev 2019, 99, 665–706. [Google Scholar] [CrossRef]
- Weller, K.; Foitzik, K.; Paus, R.; Syska, W.; Maurer, M. Mast cells are required for normal healing of skin wounds in mice. FASEB J 2006, 20, 2366–2368. [Google Scholar] [CrossRef]
- Maurer, M.; Opitz, M.; Henz, B.M.; Paus, R. The mast cell products histamine and serotonin stimulate and TNF-alpha inhibits the proliferation of murine epidermal keratinocytes in situ. J Dermatol Sci 1997, 16, 79–84. [Google Scholar] [CrossRef]
- Woidacki, K.; Jensen, F.; Zenclussen, A.C. Mast cells as novel mediators of reproductive processes. Front Immunol 2013, 4, art no 29. [Google Scholar] [CrossRef]
- Woidacki, K.; Zenclussen, A.C.; Siebenhaar, F. Mast cell-mediated and associated disorders in pregnancy: a risky game with an uncertain outcome? Front Immunol 2014, 5, 231. [Google Scholar] [CrossRef]
- Laoharatchatathanin, T.; Rienrakwong, D.; Hatsugai, Y.; Terashima, R.; Yonezawa, T.; Kurusu, S.; Kawaminami, M. Mast cell dynamics in the ovary are governed by GnRH and Prolactin. Endocrinology 2023, 164, art no bqad144. [Google Scholar] [CrossRef]
- Robinson, R.S.; Woad, K.J.; Hammond, A.J.; Laird, M.; Hunter, M.G.; Mann, G.E. Angiogenesis and vascular function in the ovary. Reproduction 2009, 138, 869–881. [Google Scholar] [CrossRef]
- Zierau, O.; Zenclussen, A.C.; Jensen, F. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front Immunol 2012, 3, article 169. [Google Scholar] [CrossRef]
- Teles, A.; Zenclussen, A.C. How cells of the immune system prepare the endometrium for implantation. Semin Reprod Med 2014, 32, 358–364. [Google Scholar]
- Hamouzova, P.; Cizek, P.; Bartoskova, A.; Vitasek, R.; Tichy, F. Changes in the mast cell distribution in the canine ovary and uterus throughout the estrus cycle. Reprod Domest Anim 2020, 55, 479–485. [Google Scholar] [CrossRef]
- Jensen, F.; Woudwyk, M.; Teles, A.; Woidacki, K.; Taran, F.; Costa, S.; Mallfertheiner, S.F.; Zenclussen, A.C. Estradiol and progesterone regulate the migration of mast cells from the periphery to the uterus and induce their maturation and degranulation. PLoS One 2010, 5, e14409. [Google Scholar] [CrossRef]
- Meyer, N.; Woidacki, K.; Knöfler, M.; Meinhardt, G.; Nowak, D.; Velicky, P.; Pollheimer, J.; Zenclussen, A.C. Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth. Sci Rep 2017, 7, art no 45106. [Google Scholar] [CrossRef]
- Saito, H. Role of mast cell protease in tissue remodeling. Chem Immunol Allergy 2005, 87, 80–84. [Google Scholar]
- Himelreich-Peric, M.; Katusic-Bojanac, A.; Hohsteter, M.; Sincic, N.; Muzic-Radovic, V.; Jezek, D. Mast cells in the mammalian testis and epididymis—Animal models and detection methods. Int J Mol Sci 2022, 23, 2547. [Google Scholar] [CrossRef]
- Di Persio, S.; Neuhaus, N. Human spermatogonial stem cells and their niche in male (in)fertility: novel concepts from single-cell RNA-sequencing. Hum Reprod 2023, 38, 1–13. [Google Scholar] [CrossRef]
- Agier, J.; Pastwinska, J.; Brzezinska-Blaszczyk, E. An overview of mast cell pattern recognition receptors. Inflamm Res 2018, 67, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Hafez, S.M.N.A. Age-related changes in the dermal mast cells and the associated changes in the dermal collagen and cells: A histological and electron microscopy study. Acta Histochem 2019, 121, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Pilkington, S.M.; Barron, M.J.; Watson, R.E.B.; Griffiths, C.E.M.; Bulfone-Paus, S. Aged human skin accumulates mast cells with altered functionality that localize to macrophages and vasoactive interstitial peptide-positive nerve fibers. Br J Dermatol 2019, 180, 849–858. [Google Scholar] [CrossRef]
- Stamenov, N.; Kotov, G.; Iliev, A.; Landzhov, B.; Kirkov, V.; Stanchev, S. Mast cells and basic fibroblast growth factor in physiological aging of rat heart and kidney. Biotech & Histochem 2022, 97, 504–5. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).